Stata Conference 2021 5th & 6th August

Machine Learning using Stata/Python

Giovanni Cerulli

What is Machine Learning?

Machine Learning

A relatively new approach to data analytics, which places itself in the intersection between statistics, computer science, and artificial intelligence

ML objective

Turning information into knowledge and value by "letting the data speak"

Supervised, Unsupervised, Reinforcement Learning

Supervised Machine Learning Methods

Hyper-parameter tuning

ML method	Parameter 1	Parameter 2	Parameter 3
Linear Models and GLS	N. of covariates		
Lasso	Penalization coefficient		
$Elastic ext{-}Net$	Penalization coefficient	Elastic parameter	
Nearest-Neighbor	N. of neighbors		
$Neural\ Network$	N. of hidden layers	N. of neurons	
Trees	N. of leaves		
Boosting	Learning parameter	N. of bootstraps	N. of leaves
$Random\ Forest$	N. of features for splitting	N. of bootstraps	N. of leaves
Bagging	Tree-depth	N. of bootstraps	
Support Vector Machine	\mathbf{C}	Γ	
$Kernel\ regression$	Bandwidth	Kernel function	
Piecewise regression	N. of knots		
$Series\ regression$	N. of series terms		

Software for ML

Software

General purpose ML platform

Deep Learning platform

Deep Learning platform

Software

Python/Stata fully integrated platform via the SFI environment

Various ML packages but poor deep learning libraries

Statistics and Machine Learning Toolbox
Deep Learning Toolbox

Python Scikit-learn platform

c_ml_stata & r_ml_stata (by G. Cerulli, 2020)

scikit-learn

Machine Learning in Python

Getting Started

Release Highlights for 0.24

GitHub

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recogni-

tion.

Algorithms: SVM, nearest neighbors, random

forest, and more...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, nearest neighbors, random

forest, and more...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping

experiment outcomes

Algorithms: k-Means, spectral clustering, mean-

shift, and more...

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

Examples

Table of Contents

Stata's Python API documentation Indices and tables

Next topic

Characteristic (sfi.Characteristic)

Quick search

Go

Stata's Python API documentation

The **Stata Function Interface (sfi)** module allows users to interact Python's capabilities with core features of Stata. The module can be used interactively or in do-files and ado-files.

Within the module, classes are defined to provide access to Stata's characteristics, current dataset, frames, date and time, macros, scalars, matrices, value labels, global Mata matrices, missing values, etc.

Class Summary

- Characteristic (sfi.Characteristic)
- Data (sfi.Data)
- Datetime (sfi.Datetime)
- Frame (sfi.Frame)
- Macro (sfi.Macro)
- Mata (sfi.Mata)
- Matrix (sfi.Matrix)
- Missing (sfi.Missing)
- Platform (sfi.Platform)
- Preference (sfi.Preference)
- Scalar (sfi.Scalar)
- SFIToolkit (sfi.SFIToolkit)
- StrLConnector (sfi.StrLConnector)
- ValueLabel (sfi.ValueLabel)

ML regression and classification with

r_ml_stata & c_ml_stata

Stata command r ml stata

modeltype_options	Description
Model	

tree Regression tree

randomforest Bagging and random forests

Elastic net

boost Boosting

elasticnet

nearestneighbor Nearest Neighbor

neuralnet Neural network

svm Support vector machine

Regression

Stata command c ml stata

modeltype_options	Description
Model	
tree	Classification tree
randomforest	Bagging and random forests
boost	Boosting
${ t regularized multinomial}$	Regularized multinomial
nearestneighbor	Nearest Neighbor
neuralnet	Neural network
naivebayes	Naive Bayes
svm	Support vector machine
multinomial	Standard multinomial

Classification

Practical implementation

Nearest neighbor regression

```
* ML REGRESSION WITH "r_ml_stata"
* EXAMPLE -> PROSTATE CANCER DATASET (Stamey et al., 1989)
**************************************
DESCRIPTION OF THE DATASET
The dataset is available through Hastie et al. (2009) on the authors' website
Training dataset: "prostate.dta"
The following variables are included in the dataset
Predictors (or features)
        Log(prostate-specific antigen)
 lpsa
 lweight Log(prostate weight)
         Patient age
 age
     Log(benign prostatic hyperplasia amount)
 lbph
     Seminal vesicle invasion
 svi
 lcp
     Log(capsular penetration)
 gleason Gleason score
 pgg45 Percentage Gleason scores 4 or 5
Outcome (or target)
 lcavol Log(cancer volume)
```

```
* Clear all
clear all
* Set the directory
cd "/Users/giocer/Desktop/output"
* Set the "learner"
global learner "nearestneighbor"
* Load the dataset
sysuse "prostate.dta" , clear
* Set "target" (y) and "features" (X)
global y "lcavol"
global X "lpsa lweight age lbph svi lcp gleason pgg45"
* Split sample into "training" and "testing" datasets
splitsample , generate(vsplit, replace) split(0.80 0.20) show rseed(1010)
```

```
* Form the "training" dataset
preserve
keep if vsplit==1
drop vsplit
save data_train , replace
restore
* Form the "testing" dataset
preserve
keep if vsplit==2
drop $y
drop vsplit
save data_test , replace
restore
```

```
* Form a dataset containing only the "y" of the testing dataset
preserve
keep if vsplit==2
keep $y
gen index=_n-1
save test_y ,replace
restore
* Open the "training" dataset
use data_train , clear
```

```
* Run a ML regression using "r_ml_stata"
r_ml_stata $y $X , mlmodel($learner) in_prediction("in_pred") ///
cross_validation("CV") out_sample("data_test") ///
out_prediction("out_pred") seed(10) save_graph_cv("graph_cv")
* Explore the results
ereturn list
scalars:
             e(OPT_NN) = 27
      e(TEST\_ACCURACY) = -.1116904556751251
     e(TRAIN\_ACCURACY) = .217652040719986
         e(BEST_INDEX) = 52
   e(SE_TEST_ACCURACY) = .2502414777390628
macros:
         e(OPT_WEIGHT) : "uniform"
```

10-fold cross-validation results


```
* Plot the in-sample predictions
use in_pred , clear
gen id =_n
sort id
tw (line $y id , lc(green)) ///
   (line in_pred id , lc(orange)) , ///
   xtitle("Units' identifier") ///
   legend(order(1 "Actual" 2 "In-sample prediction")) ///
   note(LEARNER: $learner) ///
   plotregion(style(none)) scheme(s1mono)
```

In-sample predictions

LEARNER: nearestneighbor

```
* Plot the out-of-sample predictions
use out_pred , clear
merge 1:1 index using "test_y"
tw (line $y index , lc(green)) ///
    (line out_sample_pred index , ///
    lc(orange)) , xtitle("Units' identifier") ///
    legend(order(1 "Actual" 2 "Out-sample prediction")) ///
    note(LEARNER: $learner) ///
    plotregion(style(none)) scheme(s1mono)
```

Out-of-sample prediction

LEARNER: nearestneighbor

Example Comparing multiple learners

Guessing whether a "new" car is a "foreign" or "domestic" one based on a series of characteristics, including price, number of repairs, weight, etc

arXiv.org > stat > arXiv:2103.03122

Statistics > Computation

[Submitted on 3 Mar 2021]

Machine Learning using Stata/Python

Giovanni Cerulli

Cross-validation

Cross-validation maximum of the classification test accuracy over a grid of learners' tuning parameters.

Accuracy measure: "error rate"

Comparing learner performance

Forest plot for comparing mean and standard deviation of different learners. Classification setting

Applied Economics Letters

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rael20

Improving econometric prediction by machine learning

Giovanni Cerulli

References

☐ Cerulli, G. 2020. C ML STATA: Stata module to implement machine learning classification in Stata. Statistical Software Components, Boston College Department of Economics. Available at: https://econpapers.repec.org/software/bocbocode/s458830.htm ☐ Cerulli, G. 2020. R ML STATA: Stata module to implement machine learning regression in Stata. Statistical Software College Department of Economics. Available Components, Boston at: https://econpapers.repec.org/software/bocbocode/s458831.htm ☐ Cerulli, G. 2020. A super-learning machine for predicting economic outcomes, MPRA Paper 99111, University Library of Munich, Germany, 2020 ☐ Cerulli, G. 2020. Improving econometric prediction by machine learning, *Applied Economics Letters*, Forthcoming. ☐ Gareth, J., Witten, D., Hastie, D.T., Tibshirani, R. 2013. An Introduction to Statistical Learning: with Application in R. New York, Springer ☐ Raschka, S., Mirjalili, V. 2019. Python Machine Learning. 3rd Edition, Packt Publishing.