Smooth varying coefficient models in Stata

Yet another semiparametric approach

Rios-Avila, Fernando¹

¹friosavi@levy.org Levy Economics Institute

Stata Conference, July 2020 At home edition

A D > A B > A B > A B

Table of Contents

2 Non-Parametric regressions and SVCM

3 Example

- SVCM in Stata: vc_pack
- 5 Example: vc_pack

6 Conclusions

< □ > < □ > < □ > < □ > < □ >

Table of Contents

Introduction

2 Non-Parametric regressions and SVCM

3 Example

- 4 SVCM in Stata: vc_pack
- 5 Example: vc_pack

6 Conclusions

- Nonparametric regressions are powerful tools to capture relationships between dependent and independent variables with minimal functional forms assumptions. (very flexible)
- The added flexibility comes at a cost:
 - Curse of dimensionality. Larger sample sizes are needed to achieve same power as parametric models.
 - Computational burden. Procedures for model selection and estimation demand a lot of time.
- Perhaps because of this, Stata had a limited set of native commands for the estimation of nonparametric models.
- This changed with npregress series/kernel. (still they kind be slow and too flexible)

Stata 2020

- A response to the main weakness of NP methods has been the development of semiparametric (SP) methods.
- SP combine the flexibility of NP regressions with the structure of standard parametric models.
- The added structure reduces the curse of dimensionality and the computational cost of model selection and estimation.
- Many community-contributed commands have been proposed for the analysis of a large class of semiparametric models in Stata.

See: Verardi(2013) Semipar-Stata

• In this presentation, I'll describe the estimation of a particular type of SP model known as Smooth varying coefficient models (SVCM).

< □ > < □ > < □ > < □ > < □ >

- In this presentation, I'll describe the estimation of a particular type of SP model known as Smooth varying coefficient models (SVCM).
- I'll show how they could be estimated "manually"

< □ > < □ > < □ > < □ > < □ >

- In this presentation, I'll describe the estimation of a particular type of SP model known as Smooth varying coefficient models (SVCM).
- I'll show how they could be estimated "manually"
- and introduce the package vc_pack, that can be used for the model selection, estimation, and visualization of this type of model.

(日) (同) (日) (日)

Table of Contents

Introduction

3 Example

- 4 SVCM in Stata: vc_pack
- 5 Example: vc_pack

6 Conclusions

What do they do?

• Consider a model with 3 set of variables such that:

$$y = f(X, Z, e)$$

• Where X and Z are observed and W=[X;Z], E(e|x,z) = 0

< □ > < □ > < □ > < □ > < □ >

What do they do?:Parametric Regression

• a Standard OLS (parametric model under linearity assumption), will estimate their relationship with respect to Y such that :

$$E(y|x,z) = x * b_x + z * b_z$$

• where its well known that:

$$b_w = (W'W)^{-1}(W'Y)$$

 $W = [X; Z]\&b'_w = [b'_x; b'_w]$

What do they do?:NonParametric Regression

• NP regression assumes the conditional expected value of the Y is a smooth function.

$$E(y|x,z) = g(x,z)$$

• In this model, often, there are not parameters to be estimated, but conditional means

$$g(x,z) = \frac{\sum y_i * K(w_i, w, h)}{\sum K(w_i, w, h)}$$

- where K() is a product of Kernel functions. (thus this is a kernel-based NP regression)
- So the NP regression is simply the estimation of weighted means.
- One can also use Splines, series, or penalized splines.

< 日 > < 同 > < 三 > < 三 >

What do they do?:SVCM Regression

• SVCM regression assumes the model is linear conditional on z:

$$E(y|x,z) = xb_x(z)$$

- This model combines the linear structure of OLS, assuming the coefficients are nonlinear with respect to Z.
- If we have enough observations for Z=z, the estimator is simply:

$$b_{X}(z) = E(X'X|Z=z)^{-1}E(X'y|Z=z)$$
$$b_{X}(z) = (X'\mathcal{K}(z)X)^{-1}(X'\mathcal{K}(z)y)$$

• where $\mathcal{K}(z)$ is a matrix with the diagonal equal to the K(Z,z,h).

(日) (同) (日) (日)

What do they do?:SVCM Regression

• However, local constant tends to be bias at the boundaries of Z. So as an alternative, Local Linear (LL) estimator can be used:

$$b_x(Z_i) \approx b_x(z) + \frac{\partial b_x(z)}{\partial z}(Z_i - z)$$

- But we are still interested in $b_x(z)$.
- The estimator above remains the same, but X is substituted by $\mathcal{X} = (X; (Z_i z)X)$

(日) (同) (日) (日)

Table of Contents

- Introduction
- 2 Non-Parametric regressions and SVCM

3 Example

- 4 SVCM in Stata: vc_pack
- 5 Example: vc_pack

6 Conclusions

Stata 2020

SVCM-Kernel Local Linear Estimation

- The estimation of SVCM is relatively straight forward, specially if Z is a single variable.
 - Choose point(s) of reference Z (probably many points)
 - Choose appropriate bandwidth h
 - Choose between local constant or local linear (or local polynomial)
 - Estimate coefficients, and done
 - Or, use splines instead of kernel (see f_able)
- * Local constant
- . webuse dui, clear
- . regress citations college taxes i.csize ///
 if fines==9 (as if h=0)
- . regress citations college taxes i.csize ///
 [iw=normalden(fines,9,.5)]
- * Local Linear
- . gen dz=fines-9
- . regress citations c.dz##c.(college taxes i.csize) ///
 [iw=normalden(fines,9,.5)]

Example

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example: Remarks

- While the estimation is "easy", important aspects need to be address:
- Model selection and choice of bandwidth
- Systematic model estimation and standard errors.
- Post estimation and evaluation of the model.
- and plots of conditional effects.

(日) (同) (日) (日)

Table of Contents

1 Introduction

2 Non-Parametric regressions and SVCM

3 Example

4 SVCM in Stata: vc_pack

5 Example: vc_pack

6 Conclusions

SVCM in Stata: vc_pack

- To address these points, I propose and present a set of commands that aim to facilitate the estimation of SVMC.
- In specific, the commands can be used for the estimation of SVCM using a local linear estimator and assuming a single conditioning variable z.

(日) (同) (日) (日)

Model selection: vc_bw and vc_bwalt

- The first (most important) step is the selection of the bandwidth h. This reflects the trade off between variance and Bias in the model estimation.
- vc_bw and vc_bwalt provide two options (different algorithms) that can be used to select an optimal bandwidth using a leave-one-out Cross validation procedure:

$$h^* = \min_h \sum_{i=1}^N \omega(z)(y_i - \hat{y}_{-i})^2$$

• For a faster estimation of the CV criteria and *h*^{*}, both commands use binned Local Linear regressions.

```
vc_bw[alt] y x1 x2 x3, vcoeff(z) ///
[kernel(kfun) trimsample(varname) otheroptions]
```

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Binned Regression

Estimation and Inference: vc_reg; vc_bsreg & vc_preg

- The next step is the model estimation. While the estimation itself is simple, the estimation of standard errors require special care.
- Three options are provided. vc_[p|bs]reg
- These commands estimate LL-SVCM for a selected "ref. points".
- vc_[p]reg Estimate VcoV matrix a Sandwich formula:

 $\Sigma(B(z)) = q_c(\mathcal{X}'\mathcal{K}(z)\mathcal{X})^{-1}(\mathcal{X}'\mathcal{K}(z)D(e_i)\mathcal{K}(z)\mathcal{X})(\mathcal{X}'\mathcal{K}(z)\mathcal{X})^{-1}$

The difference between them is how e_i is estimated. Either using F-LL or Binn-LL

• vc_bsreg instead uses a Bootstrap procedure to estimate Σ.

```
vc_[p|bs]reg y x1 x2 x3, [vcoeff(z) bw(#) kernel(kfun)] ///
[klist(numlist) or k(#) ] ///
[robust cluster(varname) hc2 hc3 or reps(#)]
```

Post estimation: vc_predict & vc_test

- The third step would be summarize and evaluate the estimated model.
- This can be done with vc_predict & vc_test
- The first command has the following syntax:

```
vc_predict y x1 x2 x3, [ vcoeff(svar) bw(#) kernel(kfun)] ///
[yhat(newvar) res(newvar) looe(newvar) lvrg(newvar)] [stest]
```

- This command provides some information regarding model fitness.
- And can be used to obtain model predictions, residuals, Leave-one-out residuals, or the leverage statistics
- option stest, estimates the approximate F-Statistic for testing against parametric models.

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うへつ

Post estimation: vc_predict

• Log Mean Squared LOO-errors:

$$LogMSLOOE = log\left[rac{1}{N}\sum(y_i - \hat{y}_{-i})^2
ight]$$

• Goodness of Fit (R^2) : (Henderson and Parmeter 2014)

$$R_1^2 = 1 - \frac{SSR}{SST}$$
 or $R_2^2 = \frac{Cov(y_i, \hat{y}_i)^2}{\sqrt{Var(y_i)Var(\hat{y}_i)}}$

< □ > < □ > < □ > < □ > < □ >

Post estimation: vc_predict

• Degrees of Freedom: Hastie and Tibshirani (1990)

Model : df1 = Tr(S)

Resid :
$$N - df^2 = N - (1.25 * Tr(S) - .5)$$

Where S is a $N \times N$ matrix. The SVCM projection matrix

• Expected Kernel Observations:

$$Kobs(z) = \sum_{i=1}^{N} k_w \left(\frac{Z_i - z}{h}\right) = \sum_{i=1}^{N} k \left(\frac{Z_i - z}{h}\right) * k^{-1}(0)$$

$$E(Kobs(z_i)) = \frac{1}{N} \sum_{i=1}^{N} Kobs(z_i)$$

Post estimation: vc_predict

• Specification test (Approximate F-test)

$$aF = \frac{\sum \hat{e}_{ols}^2 - \sum \hat{e}_{svcm}^2}{\sum \hat{e}_{svcm}^2} * \frac{n - df2}{df2 - df_{ols}} \sim F_{n - df2, df2 - df_{ols}}$$

• where the alternative parametric models are:

$$M0: y = Xb_{x} + Zb_{z} + e_{ols}$$

$$M1: y = Xb_{x} + (X * Z)b_{xz1} + Zb_{z} + e_{ols}$$

$$M2: y = Xb_{x} + (X * Z, X * Z^{2})b_{xz2} + Zb_{z} + e_{ols}$$

$$M3: y = Xb_{x} + (X * Z, X * Z^{2}, X * Z^{3})b_{xz3} + Zb_{z} + e_{ols}$$

Stata 2020 25 / 38

Post estimation: vc_test

• I also include a command to implement Cai, Fan, and Yao (2000) specification test.

$$\hat{J} = \frac{\sum \hat{e}_{ols}^2 - \sum \hat{e}_{svcm}^2}{\sum \hat{e}_{svcm}^2}$$

Where the Critical values are estimated via Wild Bootstrap Procedure.

vc_test y x1 x2 x3, [vcoeff(svar) bw(#) kernel(kernel)] ///
[knots(#) km(#) degree(#d) wbsrep(#wb)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Visualization: vc_graph

- After model has been estimated, we can produce plots of the Smooth varying coefficients (or the changes across Z)
- vc_graph can be used for this, using all the points of reference estimated via vc_[p|bs]reg

```
vc_graph [varlist] , [ ci(#) constant delta ] ///
[xvar(xvarname) graph(stub) ///
[rarea ci_off pci addgraph(str) ]
```

- varlist should follow the same syntax as in the original model.
- Using delta plots the coefficients for the interactions x * (Z z), and constant plots the local constant.
- All figures will be stored in memory using sequentially numbers

Table of Contents

- 1 Introduction
- 2 Non-Parametric regressions and SVCM
- 3 Example
- 4 SVCM in Stata: vc_pack
- 5 Example: vc_pack

6 Conclusions

Example: Bw selection

```
. ** Stata Conf Example
. qui:webuse dui, clear
. vc_bwalt citations i.college i.taxes i.csize, vcoeff(fines) plot
Kernel: gaussian
Iteration: 0 BW: 0.5539761 CV: 3.129985 Path: \
Iteration: 1 BW: 0.6093737 CV: 3.1242958 Path: \ /
Iteration: 14 BW: 0.7397731 CV: 3.1194971 Path: \ /
Iteration: 15 BW: 0.7397731 CV: 3.1194971
Bandwidth stored in global $opbw_
Kernel function stored in global $kernel
VC variable name stored in global $vcoeff_
. vc_bw citations i.college i.taxes i.csize, vcoeff(fines) plot
Kernel: gaussian
Iteration: 0 BW: 0.5539761 CV: 3.129985
Iteration: 1 BW: 0.6870521 CV: 3.120199
Iteration: 2 BW: 0.7343729 CV: 3.119504
Iteration: 3 BW: 0.7397456 CV: 3.119497
Iteration: 4 BW: 0.7397999 CV:
                                 3.119497
Bandwidth stored in global $opbw_
Kernel function stored in global $kernel_
VC variable name stored in global $vcoeff_
```

Example:Post-Estimation

	. vc_predict citati	ĹOI	ns i.college i.taxes i.csize, stest					
Smooth Varying coefficients model								
	Dep variable	:	citations					
	Indep variables	:	i.college i.taxes i.csize					
	Smoothing variable	:	fines					
	Kernel	:	gaussian					
	Bandwidth	:	0.73980					
	Log MSLOOER	:	3.11950					
	Dof residual	:	477.146					
	Dof model	:	18.684					
	SSR	:	10323.152					
	SSE	:	37886.159					
	SST	:	47950.838					
	R2-1 1-SSR/SST	:	0.78471					
	R2-2	:	0.79010					
	E(Kernel obs)	:	277.835					

Example:Post-Estimation

Specification Test approximate F-statistic H0: Parametric Model H1: SVCM y=x*b(z)+eAlternative parametric models: Model 0 y=x*b0+g*z+eF-Stat: 8.24705 with pval 0.00000 Model 1 y=x*b0+g*z+(z*x)b1+eF-Stat: 5.80964 with pval 0.00000 Model 2 $y=x*b0+g*z+(z*x)*b1+(z^2*x)*b2+e$ F-Stat: 0.75977 with pval 0.65174 Model 3 $y=x*b0+g*z+(z*x)*b1+(z^2*x)*b2+(z^3*x)*b3+e$ F-Stat: -2.07399 with pval 1.00000

Example:Post-Estimation

```
. set seed 1
. vc_test citations i.college i.taxes i.csize, wbsrep(100) degree(1)
Estimating J statistic CI using 100 Reps
Specification test.
H0: y=x*b0+g*z+(z*x)*b1+e
H1: y=x*b(z)+e
J-Statistic
              :0.16869
Critical Values
90th Percentile:0.09473
95th Percentile:0.10543
97.5th Percentile:0.10861
. vc_test citations i.college i.taxes i.csize, wbsrep(100) degree(2)
Estimating J statistic CI using 100 Reps
Specification test.
H0: y=x*b0+g*z+(z*x)*b1+(z^2*x)*b2+e
H1: y=x*b(z)+e
J-Statistic
            :0.01410
Critical Values
90th Percentile:0.01189
95th Percentile:0.01545
97.5th Percentile:0.01725
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example: vc_pack

Example:Estimation

<pre>. qui:vc_preg citations i.college i.taxes i.csize, klist(9) . ereturn display, cformat(%5.4f) vsquish</pre>										
citations		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
college	1									
college	L	9.8706	1.0206	9.67	0.000	7.5618	12.1794			
taxes	L									
tax	L	-6.3768	1.0592	-6.02	0.000	-8.7728	-3.9808			
csize	L									
medium	L	6.7344	0.9364	7.19	0.000	4.6162	8.8526			
large	L	14.9946	1.0710	14.00	0.000	12.5719	17.4174			
delta	L	-8.2560	1.2105	-6.82	0.000	-10.9944	-5.5175			
college#cdelta_	L									
college	L	-4.5777	1.1637	-3.93	0.003	-7.2101	-1.9454			
<pre>taxes#cdelta_</pre>	L									
tax	L	3.0082	1.2104	2.49	0.035	0.2701	5.7463			
csize#cdelta_	L									
medium	L	-1.2990	1.0685	-1.22	0.255	-3.7163	1.1182			
large	L	-4.8632	1.2333	-3.94	0.003	-7.6531	-2.0734			
_cons	I	23.9563	1.0986	21.81	0.000	21.4711	26.4415			

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Example: Visualization

- . qui:vc_preg citations i.college i.taxes i.csize, k(10)
- . vc_graph 1.college

Example: Visualization

```
. qui:vc_preg citations i.college i.taxes i.csize, k(10)
```

. vc_graph 1.taxes

Table of Contents

- 1 Introduction
- 2 Non-Parametric regressions and SVCM

3 Example

- 4 SVCM in Stata: vc_pack
 - 5 Example: vc_pack

6 Conclusions

Stata 2020

Conclusions

- SVCMs are an alternative to full nonparametric models for the analysis of data.
- Models are assumed to be linear conditional on a smoothing variable(s) Z.
- \bullet In this presentation, I reviewed the implementation of this model using the commands in vc_pack
- Thank you!

If interested, current version of programs and paper can be accessed from $bit.ly/rios_vcpack$

Stata 2020

References

Cai, Z., J. Fan, and Q. Yao. 2000. Functional-coefficient regression models for nonlinear time series. Journal of the American Statistical Association 95: 941-956.

Hastie, T. J., and R. J. Tibshirani. 1990. Generalized Additive Models. London: Chapman & Hall-CRC.

—-. 1993. Varying-coefficient models (with discussion). Journal of the Royal Statistical Society, Series B 55: 757-796.

Henderson, D. J., and C. F. Parmeter. 2015. Applied Nonparametric Econometrics.

Cambridge: Cambridge University Press.

Rios-Avila, F. (forthcoming) Smooth varying-coefficient models in Stata. Forthcoming in The Stata Journal.

Stata 2020