Smooth varying coefficient models in Stata
Yet another semiparametric approach

Rios-Avila, Fernando¹

¹fríosavi@levy.org
Levy Economics Institute

Stata Conference, July 2020
At home edition
Table of Contents

1 Introduction

2 Non-Parametric regressions and SVCM

3 Example

4 SVCM in Stata: vc_pack

5 Example: vc_pack

6 Conclusions
Table of Contents

1 Introduction

2 Non-Parametric regressions and SVCM

3 Example

4 SVCM in Stata: vc_pack

5 Example: vc_pack

6 Conclusions
Nonparametric regressions are powerful tools to capture relationships between dependent and independent variables with minimal functional forms assumptions. (very flexible)

The added flexibility comes at a cost:
- Curse of dimensionality. Larger sample sizes are needed to achieve same power as parametric models.
- Computational burden. Procedures for model selection and estimation demand a lot of time.

Perhaps because of this, Stata had a limited set of native commands for the estimation of nonparametric models.

This changed with npregress series/kernel. (still they kind be slow and too flexible)
A response to the main weakness of NP methods has been the development of semiparametric (SP) methods.

SP combine the flexibility of NP regressions with the structure of standard parametric models.

The added structure reduces the curse of dimensionality and the computational cost of model selection and estimation.

Many community-contributed commands have been proposed for the analysis of a large class of semiparametric models in Stata.

See: Verardi(2013)

See: Semipar-Stata
In this presentation, I'll describe the estimation of a particular type of SP model known as Smooth varying coefficient models (SVCM).
Introduction

- In this presentation, I’ll describe the estimation of a particular type of SP model known as Smooth varying coefficient models (SVCM).
- I’ll show how they could be estimated ”manually”
In this presentation, I'll describe the estimation of a particular type of SP model known as Smooth varying coefficient models (SVCM).

I’ll show how they could be estimated ”manually”

and introduce the package \texttt{vc_pack}, that can be used for the model selection, estimation, and visualization of this type of model.
Table of Contents

1. Introduction
2. Non-Parametric regressions and SVCM
3. Example
4. SVCM in Stata: vc_pack
5. Example: vc_pack
6. Conclusions
What do they do?

- Consider a model with 3 set of variables such that:

\[y = f(X, Z, e) \]

- Where \(X \) and \(Z \) are observed and \(W = [X; Z], \ E(e|x, z) = 0 \)
What do they do?: Parametric Regression

- a Standard OLS (parametric model under linearity assumption), will estimate their relationship with respect to Y such that:

\[E(y|x, z) = x \ast b_x + z \ast b_z \]

- where it's well known that:

\[b_w = (W'W)^{-1}(W'Y) \]

\[W = [X; Z] & b'_w = [b'_x; b'_w] \]
What do they do?: NonParametric Regression

- NP regression assumes the conditional expected value of the Y is a smooth function.

\[E(y|x, z) = g(x, z) \]

- In this model, often, there are not parameters to be estimated, but conditional means

\[g(x, z) = \frac{\sum y_i \ast K(w_i, w, h)}{\sum K(w_i, w, h)} \]

- where \(K() \) is a product of Kernel functions. (thus this is a kernel-based NP regression)
- So the NP regression is simply the estimation of weighted means.
- One can also use Splines, series, or penalized splines.
What do they do?: SVCM Regression

- SVCM regression assumes the model is linear conditional on z:

 $$E(y|x, z) = x b_x(z)$$

- This model combines the linear structure of OLS, assuming the coefficients are nonlinear with respect to Z.

- If we have enough observations for $Z=z$, the estimator is simply:

 $$b_x(z) = E(X'X|Z = z)^{-1}E(X'y|Z = z)$$

 $$b_x(z) = (X'K(z)X)^{-1}(X'K(z)y)$$

- where $K(z)$ is a matrix with the diagonal equal to the $K(Z,z,h)$.
What do they do?: SVCM Regression

- However, local constant tends to be bias at the boundaries of Z. So as an alternative, Local Linear (LL) estimator can be used:

\[b_x(Z_i) \approx b_x(z) + \frac{\partial b_x(z)}{\partial z}(Z_i - z) \]

- But we are still interested in \(b_x(z) \).

- The estimator above remains the same, but \(X \) is substituted by \(\mathcal{X} = (X; (Z_i - z)X) \).
Table of Contents

1 Introduction

2 Non-Parametric regressions and SVCM

3 Example

4 SVCM in Stata: vc_pack

5 Example: vc_pack

6 Conclusions
The estimation of SVCM is relatively straightforward, specially if Z is a single variable.

- Choose point(s) of reference Z (probably many points)
- Choose appropriate bandwidth h
- Choose between local constant or local linear (or local polynomial)
- Estimate coefficients, and done
- Or, use splines instead of kernel (see function)

* Local constant
 - `webuse dui, clear`
 - `regress citations college taxes i.csize ///`
 - `if fines==9 (as if h=0)`
 - `regress citations college taxes i.csize ///`
 - `[iw=normalden(fines,9,.5)]`

* Local Linear
 - `gen dz=fines-9`
 - `regress citations c.dz##c.(college taxes i.csize) ///`
 - `[iw=normalden(fines,9,.5)]`
Example

Coefficients on College

- OLS
- VCM-Exact
- SVCM-LC
- SVCM-LL

Fines

0 5 10 15 20
7 8 9 10 11 12
Example: Remarks

- While the estimation is "easy", important aspects need to be addressed:
- Model selection and choice of bandwidth
- Systematic model estimation and standard errors.
- Post estimation and evaluation of the model.
- And plots of conditional effects.
Table of Contents

1 Introduction

2 Non-Parametric regressions and SVCM

3 Example

4 SVCM in Stata: vc_pack

5 Example: vc_pack

6 Conclusions
To address these points, I propose and present a set of commands that aim to facilitate the estimation of SVMC.

In specific, the commands can be used for the estimation of SVCM using a local linear estimator and assuming a single conditioning variable z.
Model selection: `vc_bw` and `vc_bwalt`

- The first (most important) step is the selection of the bandwidth h. This reflects the trade off between variance and Bias in the model estimation.
- `vc_bw` and `vc_bwalt` provide two options (different algorithms) that can be used to select an optimal bandwidth using a leave-one-out Cross validation procedure:

\[
h^* = \min_h \sum_{i=1}^{N} \omega(z)(y_i - \hat{y}_i)^2
\]

- For a faster estimation of the CV criteria and \(h^* \), both commands use binned Local Linear regressions.

\[
vc_bw[alt] \ y \ x1 \ x2 \ x3, \ vcoeff(z) ///
[\text{kernel(kfun)} \ \text{trimsample(varname)} \ \text{otheroptions}]
\]
Binned Regression

#R from 20 to 2

Outcome
FSP-LL
LL at .2
LL at .6
The next step is the model estimation. While the estimation itself is simple, the estimation of standard errors require special care.

Three options are provided: `vc_[p|bs]reg`

These commands estimate LL-SVCM for a selected "ref. points".

`vc_[p]reg` Estimate VcoV matrix a Sandwich formula:

\[\Sigma(B(z)) = q_c(X'K(z)X)^{-1}(X'K(z)D(e_i)K(z)X)(X'K(z)X)^{-1} \]

The difference between them is how \(e_i \) is estimated. Either using F-LL or Binn-LL

`vc_bsreg` instead uses a Bootstrap procedure to estimate \(\Sigma \).

\[vc_[p|bs]reg \ y \ x1 \ x2 \ x3, \ [vcoeff(z) \ bw(#) \ kernel(kfun)] \ /// \]
\[[klist(numlist) \ or \ k(#)] \ /// \]
\[[robust \ cluster(varname) \ hc2 \ hc3 \ or \ reps(#)] \]
Post estimation: `vc_predict` & `vc_test`

- The third step would be summarize and evaluate the estimated model.
- This can be done with `vc_predict` & `vc_test`
- The first command has the following syntax:

  ```stata
  vc_predict y x1 x2 x3, [ vcoeff(svar) bw(#) kernel(kfun)] ///
  [yhat(newvar) res(newvar) looe(newvar) lvrg(newvar)] [stest]
  ```

- This command provides some information regarding model fitness.
- And can be used to obtain model predictions, residuals, Leave-one-out residuals, or the leverage statistics
- option `stest`, estimates the approximate F-Statistic for testing against parametric models.
Post estimation: `vc_predict`

- Log Mean Squared LOO-errors:
 \[
 \text{LogMSLOOE} = \log \left(\frac{1}{N} \sum (y_i - \hat{y}_i)^2 \right)
 \]

- Goodness of Fit \(R^2\): (Henderson and Parmeter 2014)
 \[
 R_1^2 = 1 - \frac{SSR}{SST} \quad \text{or} \quad R_2^2 = \frac{\text{Cov}(y_i, \hat{y}_i)^2}{\sqrt{\text{Var}(y_i) \text{Var}(\hat{y}_i)}}
 \]
Post estimation: `vc_predict`

- Degrees of Freedom: Hastie and Tibshirani (1990)

 \[\text{Model : } df_1 = \text{Tr}(S) \]

 \[\text{Resid : } N - df_2 = N - (1.25 \ast \text{Tr}(S) - .5) \]

 Where \(S \) is a \(N \times N \) matrix. The SVCM projection matrix

- Expected Kernel Observations:

 \[Kobs(z) = \sum_{i=1}^{N} k_w \left(\frac{Z_i - z}{h} \right) = \sum_{i=1}^{N} k \left(\frac{Z_i - z}{h} \right) \ast k^{-1}(0) \]

 \[E(Kobs(z_i)) = \frac{1}{N} \sum_{i=1}^{N} Kobs(z_i) \]
Post estimation: `vc_predict`

- Specification test (Approximate F-test)

\[
aF = \frac{\sum \hat{e}_{ols}^2 - \sum \hat{e}_{svcm}^2}{\sum \hat{e}_{svcm}^2} * \frac{n - df2}{df2 - df_{ols}} \sim F_{n - df2, df2 - df_{ols}}
\]

- where the alternative parametric models are:

\[
M0 : y = Xb_x + Zb_z + e_{ols}
\]

\[
M1 : y = Xb_x + (X \ast Z)b_{xz1} + Zb_z + e_{ols}
\]

\[
M2 : y = Xb_x + (X \ast Z, X \ast Z^2)b_{xz2} + Zb_z + e_{ols}
\]

\[
M3 : y = Xb_x + (X \ast Z, X \ast Z^2, X \ast Z^3)b_{xz3} + Zb_z + e_{ols}
\]
Post estimation: \texttt{vc_test}

- I also include a command to implement Cai, Fan, and Yao (2000) specification test.

\[
\hat{J} = \frac{\sum \hat{e}_{ols} - \sum \hat{e}_{svcm}}{\sum \hat{e}_{svcm}}
\]

Where the Critical values are estimated via Wild Bootstrap Procedure.

\texttt{vc_test y x1 x2 x3, [vcoeff(svar) bw(#) kernel(kernel)] ///}
\texttt{[knots(#) km(#) degree(#d) wbsrep(#wb)]}
Visualization: `vc_graph`

- After model has been estimated, we can produce plots of the Smooth varying coefficients (or the changes across Z)
- `vc_graph` can be used for this, using all the points of reference estimated via `vc_[p|bs]reg`

```stata
vc_graph [varlist] , [ ci(#) constant delta ] ///
[xvar(xvarname) graph(stub) ///
[rarea ci_off pci addgraph(str) ]
```

- `varlist` should follow the same syntax as in the original model.
- Using `delta` plots the coefficients for the interactions $x \times (Z - z)$, and constant plots the local constant.
- All figures will be stored in memory using sequentially numbers
Table of Contents

1. Introduction
2. Non-Parametric regressions and SVCM
3. Example
4. SVCM in Stata: vc_pack
5. Example: vc_pack
6. Conclusions
Example: Bw selection

```
. ** Stata Conf Example
. qui:webuse dui, clear
. vc_bwalt citations i.college i.taxes i.csize, vcoeff(fines) plot
Kernel: gaussian
Iteration: 0 BW: 0.5539761 CV: 3.129985 Path: \\ 
Iteration: 1 BW: 0.6093737 CV: 3.1242958 Path: \\ /
....
Iteration: 14 BW: 0.7397731 CV: 3.1194971 Path: \\ /
Iteration: 15 BW: 0.7397731 CV: 3.1194971
Bandwidth stored in global $opbw_
Kernel function stored in global $kernel_
VC variable name stored in global $vcoeff_
. vc_bw citations i.college i.taxes i.csize, vcoeff(fines) plot
Kernel: gaussian
Iteration: 0 BW: 0.5539761 CV: 3.129985
Iteration: 1 BW: 0.6870521 CV: 3.120199
Iteration: 2 BW: 0.7343729 CV: 3.119504
Iteration: 3 BW: 0.7397456 CV: 3.119497
Iteration: 4 BW: 0.7397999 CV: 3.119497
Bandwidth stored in global $opbw_
Kernel function stored in global $kernel_
VC variable name stored in global $vcoeff_
```
Example: Post-Estimation

. vc_predict citations i.college i.taxes i.csize, stest

Smooth Varying coefficients model
Dep variable : citations
Indep variables : i.college i.taxes i.csize
Smoothing variable : fines
Kernel : gaussian
Bandwidth : 0.73980
Log MSLOOER : 3.11950
Dof residual : 477.146
Dof model : 18.684
SSR : 10323.152
SSE : 37886.159
SST : 47950.838
R2-1 1-SSR/SST : 0.78471
R2-2 : 0.79010
E(Kernel obs) : 277.835
Example: Post-Estimation

Specification Test approximate F-statistic
H0: Parametric Model
H1: SVCM y=x*b(z)+e

Alternative parametric models:
Model 0 y=x*b0+g*z+e
F-Stat: 8.24705 with pval 0.00000
Model 1 y=x*b0+g*z+(z*x)b1+e
F-Stat: 5.80964 with pval 0.00000
Model 2 y=x*b0+g*z+(z*x)b1+(z^2*x)*b2+e
F-Stat: 0.75977 with pval 0.65174
Model 3 y=x*b0+g*z+(z*x)b1+(z^2*x)*b2+(z^3*x)*b3+e
F-Stat: -2.07399 with pval 1.00000
Example: Post-Estimation

. set seed 1
. vc_test citations i.college i.taxes i.csize, wbsrep(100) degree(1)
Estimating J statistic CI using 100 Reps
Specification test.
H0: y = x*b0 + g*z + (z*x)*b1 + e
H1: y = x*b(z) + e
J-Statistic : 0.16869
Critical Values
90th Percentile: 0.09473
95th Percentile: 0.10543
97.5th Percentile: 0.10861

. vc_test citations i.college i.taxes i.csize, wbsrep(100) degree(2)
Estimating J statistic CI using 100 Reps
Specification test.
H0: y = x*b0 + g*z + (z*x)*b1 + (z^2*x)*b2 + e
H1: y = x*b(z) + e
J-Statistic : 0.01410
Critical Values
90th Percentile: 0.01189
95th Percentile: 0.01545
97.5th Percentile: 0.01725
Example: Estimation

```
. qui:vc_preg citations i.college i.taxes i.csiz, klist(9)
. ereturn display, cformat(%5.4f) vsquish
```

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|-------|-----|----------------------|
| college | 9.8706 | 1.0206 | 9.67 | 0.000 | 7.5618 12.1794 |
| taxes | -6.3768 | 1.0592 | -6.02 | 0.000 | -8.7728 -3.9808 |
| medium | 6.7344 | 0.9364 | 7.19 | 0.000 | 4.6162 8.8526 |
| large | 14.9946 | 1.0710 | 14.00 | 0.000 | 12.5719 17.4174 |
| college#_delta_ | -8.2560 | 1.2105 | -6.82 | 0.000 | -10.9944 -5.5175 |
| college | -4.5777 | 1.1637 | -3.93 | 0.003 | -7.2101 -1.9454 |
| taxes#_delta_ | 3.0082 | 1.2104 | 2.49 | 0.035 | 0.2701 5.7463 |
| medium | -1.2990 | 1.0685 | -1.22 | 0.255 | -3.7163 1.1182 |
| large | -4.8632 | 1.2333 | -3.94 | 0.003 | -7.6531 -2.0734 |
| _cons | 23.9563 | 1.0986 | 21.81 | 0.000 | 21.4711 26.4415 |
Example: Visualization

```
. qui: vc_preg citations i.college i.taxes i.csize, k(10)
. vc_graph 1.college
```

![Varying Coefficients of 1.college](image)
Example: Visualization

. qui: vc_preg citations i.college i.taxes i.cs, k(10)
. vc_graph i.taxes

Varying Coefficients of i.taxes

Drunk driving fines in thousands of dollars

95% Confidence Interval
Table of Contents

1 Introduction

2 Non-Parametric regressions and SVCM

3 Example

4 SVCM in Stata: vc_pack

5 Example: vc_pack

6 Conclusions
Conclusions

- SVCMs are an alternative to full nonparametric models for the analysis of data.
- Models are assumed to be linear conditional on a smoothing variable(s) Z.
- In this presentation, I reviewed the implementation of this model using the commands in \texttt{vc_pack}.
- Thank you!

If interested, current version of programs and paper can be accessed from \url{bit.ly/rios_vcpack}.

