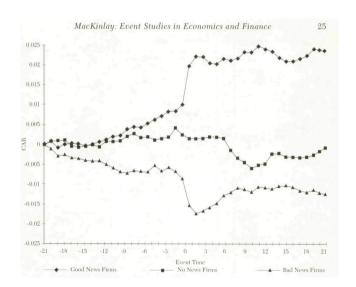
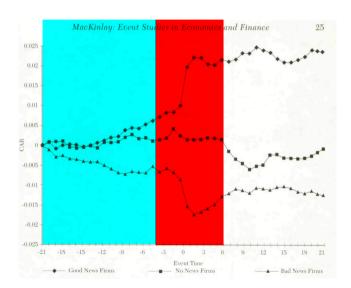
# Event studies with daily stock returns in Stata – Which command to use?

Thomas Kaspereit


UNIVERSITY OF LUXEMBOURG


30 July 2020

- What are event studies?
- 2 What should event study commands be able to do?
- 3 Which commands are available?
- 4 How do these commands compare to each other?
- Concluding remarks

- What are event studies?
- 2 What should event study commands be able to do?
- Which commands are available?
- 4 How do these commands compare to each other?
- Concluding remarks

What are event studies?





#### Problem:

Every day, security prices and returns are influenced by many other news events than the event of research interest.

#### Problem:

Every day, security prices and returns are influenced by many other news events than the event of research interest.

#### Solution:

Event studies assume that all others news effects cancel out, except the macro-economic news that affect securities.

#### Problem:

Every day, security prices and returns are influenced by many other news events than the event of research interest.

#### Solution:

Event studies assume that all others news effects cancel out, except the macro-economic news that affect securities.

Implementation of solution:

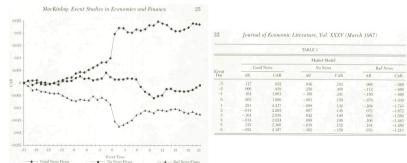
Estimation of a (market) index model during the estimation period.

$$R_{it} = \alpha_i + \beta_i R_{mt} + \epsilon_i$$

## Event studies have been applied to many research questions.

- Is accounting information decision useful?
- Do changes in dividend policy affects shareholder value?
- Do mergers and acquisitions create or destroy shareholder value?
- Do CEO changes/deaths affect share prices?
- Do announcements of adhering to sustainability principles create shareholder value?
- Do Covid 19 news affect stock prices?

...


- What are event studies?
- 2 What should event study commands be able to do?
- Which commands are available?
- 4 How do these commands compare to each other
- Concluding remarks

### Event study commands should have at least have the following features:

- 1. Data management (transforming calendar time to event time)
- 2. Calculation of average abnormal returns (market index and other models)
- 3. Assessment of statistical significance of average abnormal returns.
- 4. Generating output (abnormal return graph, result tables, etc.)

## Event study commands should have at least have the following features:

- 1. Data management (transforming calendar time to event time)
- 2. Calculation of average abnormal returns (market index and other models)
- 3. Assessment of statistical significance of average abnormal returns.
- 4. Generating output (abnormal return graph, result tables, etc.)



- What are event studies?
- 2 What should event study commands be able to do?
- Which commands are available?
- 4 How do these commands compare to each other?
- Concluding remarks

Which commands are available?

## There are currently three user-written commands:

- eventstudy (Zhang et al. 2013)
- eventstudy2 (Kaspereit 2015, 2020)
- estudy (Pacicco et al. 2017, 2020)

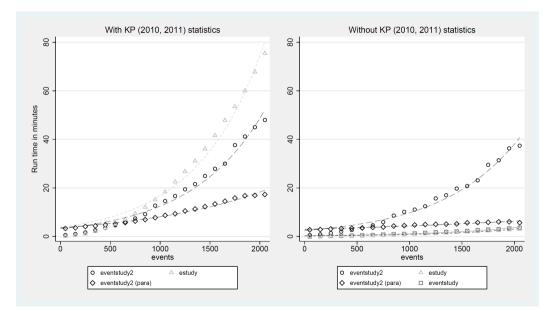
Which commands are available?

- What are event studies
- 2 What should event study commands be able to do?
- Which commands are available?
- 4 How do these commands compare to each other?
- Concluding remarks

| $\text{Feature} \!\!\downarrow \mid\mid \text{Command} \!\!\rightarrow$ | eventstudy                                                                      | eventstudy2                                                                                           | estudy                                                                            |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Data management                                                         | YES                                                                             | YES                                                                                                   | YES                                                                               |  |  |
| (Synchronization)                                                       | - Market model                                                                  | - Market model<br>- Raw returns                                                                       | - Market model                                                                    |  |  |
| Calculation of<br>abnormal returns<br>(Benchmark model)                 |                                                                                 | - Raw returns - Constant mean returns - Market adjusted returns - Factor model (up to 12 factors)     | - Constant mean returns - Market adjusted returns - Factor model (no restriction) |  |  |
|                                                                         |                                                                                 | - Factor model<br>with (G)ARCH<br>- Buy-and-hold<br>raw returns<br>- Buy-and-hold<br>abnormal returns |                                                                                   |  |  |
|                                                                         |                                                                                 | - t-test<br>(assuming independence)<br>- t-test<br>(crude adjustment)                                 | - t-test<br>(assuming independence)                                               |  |  |
| Hypothesis testing<br>(Test statistics)                                 |                                                                                 | - Patell Z-statistic - Adjusted Patell statistic - Boehmer et al. test                                | - Patell Z-statistic - Adjusted Patell statistic - Boehmer et al. test            |  |  |
| (Test statistics)                                                       |                                                                                 | - Kolari and Pynnonen test<br>- Generalized sign test                                                 | - Kolari and Pynnonen test                                                        |  |  |
|                                                                         |                                                                                 | Wilcoxon signed-ranks test     Corrado rank test     Corrado and Zivney rank test                     | - Wilcoxon signed-ranks test                                                      |  |  |
|                                                                         |                                                                                 | - GRANK test<br>- Bootstrapped t-ratio                                                                | - GRANK test                                                                      |  |  |
|                                                                         |                                                                                 | - Tabulation of<br>average abnormal returns                                                           |                                                                                   |  |  |
| Presentation                                                            |                                                                                 | and significance levels - Tabulation of cumulative average                                            | - Tabulation of<br>cumulative (average)                                           |  |  |
| (Tabulating<br>abnormal returns:                                        |                                                                                 | abnormal returns and<br>significance levels                                                           | abnormal returns and<br>significance levels                                       |  |  |
| reporting on<br>dropped observations)                                   |                                                                                 | - Extensive reporting on<br>dropped events<br>- Graphical display of                                  | - Graphical display of                                                            |  |  |
|                                                                         |                                                                                 | cumulative average<br>abormal returns                                                                 | cumulative average<br>abormal returns                                             |  |  |
|                                                                         | - (Cumulative) abnormal returns<br>are available for<br>cross-sectional testing | - (Cumulative) abnormal returns<br>are available for<br>cross-sectional testing                       | (Cumulative) abnormal returns<br>are available for<br>cross-sectional testing     |  |  |

|                                                         | $\textbf{Feature} \!\!\downarrow \mid \mid \textbf{Command} \!\!\to$ | eventstudy                                                                      | eventstudy2                                                                                                                                                                                      | estudy                                                                                                                                             |
|---------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Data management<br>(Synchronization)                    |                                                                      | YES                                                                             | YES                                                                                                                                                                                              | YES                                                                                                                                                |
| (Synchronization)                                       | - Market model                                                       | - Market model<br>- Raw returns                                                 | - Market model                                                                                                                                                                                   |                                                                                                                                                    |
| Calculation of<br>abnormal returns<br>(Benchmark model) |                                                                      |                                                                                 | - Constant mean returns - Market adjusted returns - Factor model (up to 12 factors)                                                                                                              | - Constant mean returns - Market adjusted returns - Factor model (no restriction)                                                                  |
|                                                         |                                                                      |                                                                                 | - Factor model<br>with (G)ARCH<br>- Buy-and-hold<br>raw returns<br>- Buy-and-hold<br>abnormal returns                                                                                            | Not more events<br>than maximum number<br>of variables                                                                                             |
|                                                         |                                                                      |                                                                                 | - t-test<br>(assuming independence)<br>- t-test<br>(crude adjustment)                                                                                                                            | - t-test<br>(assuming independence)                                                                                                                |
|                                                         | Hypothesis testing<br>(Test statistics)                              |                                                                                 | <ul> <li>Patell Z-statistic</li> <li>Adjusted Patell statistic</li> <li>Boehmer et al. test</li> <li>Kolari and Pynnonen test</li> </ul>                                                         | <ul> <li>Patell Z-statistic</li> <li>Adjusted Patell statistic</li> <li>Boehmer et al. test</li> <li>Kolari and Pynnonen test</li> </ul>           |
|                                                         |                                                                      |                                                                                 | - Generalized sign test - Wilcoxon signed-ranks test - Corrado rank test - Corrado and Zivney rank test - GRANK test                                                                             | - Wilcoxon signed-ranks test                                                                                                                       |
|                                                         |                                                                      |                                                                                 | - Bootstrapped t-ratio - Tabulation of average abnormal returns                                                                                                                                  | - GRANK (est                                                                                                                                       |
|                                                         | Presentation<br>(Tabulating<br>abnormal returns:                     |                                                                                 | and significance levels - Tabulation of cumulative average abnormal returns and significance levels                                                                                              | - Tabulation of<br>cumulative (average)<br>abnormal returns and<br>significance levels                                                             |
|                                                         | abnormal returns;<br>reporting on<br>dropped observations)           | - (Cumulative) abnormal returns<br>are available for<br>cross-sectional testing | - Extensive reporting on<br>dropped events<br>- Graphical display of<br>cumulative average<br>abormal returns<br>- (Cumulative) abnormal returns<br>are available for<br>cross-sectional testing | - Graphical display of<br>cumulative average<br>abormal returns<br>- (Cumulative) abnormal returns<br>are available for<br>cross-sectional testing |

## What is the level of applicability of the three commands?


Literature screening of three leading field journals:

- Journal of Accounting Research
- Journal of Finance
- Management Science

Selection and analysis of all 180 event studies that appeared in these journals during the period 2009–2018.

| Authors                             | Sample period | Datasources         | Benchmark models         | Test statistics   | Events       |
|-------------------------------------|---------------|---------------------|--------------------------|-------------------|--------------|
| Abarbanell and Park (2017)          | 1993-2012     | CRSP                | BH_MATCH                 | t-Stat            | 47,977       |
| Abrahamson et al. (2011)            | 1998-2007     | CRSP                | MA                       | None              | 2,788        |
| Agarwal et al. (2013)               | 2004-2007     | CRSP                | MM                       | Patell Z, GenSign | 66           |
| Agarwal et al. (2016)               | 1998-2010     | CRSP                | MA                       | None              | 3,046        |
| Aggarwal et al. (2015)              | 2007-2009     | CRSP                | RAW                      | None              | 3,053        |
| kenneth R. Ahern and Harford (2014) | 1986-2010     | CRSP                | MA                       | None              | not reported |
| Akbas (2016)                        | 1980-2011     | CRSP                | MA                       | None              | 366,454      |
| Albuquerque and Schroth (2015)      | 1990-2010     | CRSP                | RAW                      | None              | 114          |
| Allee and DeAngelis (2015)          | 2004-2014     | CRSP                | MA, FM                   | None              | 33,428       |
| Ammann et al. (2016)                | 1992-2008     | CRSP                | MM                       | t-Stat            | 1,875        |
| Anderson et al. (2012)              | 2005-2007     | CRSP                | PEA                      | t-Stat            | 1,571        |
| Anderson et al. (2018)              | 1992-2014     | CRSP                | RAW                      | None              | 27,615       |
| Arikan and Stulz (2016)             | 1975-2008     | CRSP                | MA                       | t-Stat, Wilcoxon  | 3,081        |
| Ashbaugh-Skaife et al. (2009)       | 2003-2005     | CRSP                | BH_IND                   | Wilcoxon          | 787          |
| Babenko (2009)                      | 1996-2002     | CRSP                | MM                       | None              | 1,174        |
| Badoer and James (2016)             | 2001-2001     | CRSP Treasury       | COMEAN                   | t-Stat            | 1            |
| Becher et al. (2015)                | 1993-2008     | CRSP                | RAW, CAL                 | None, t-Stat      | 5,381        |
| Berkman and Truong (2009)           | 2000-2004     | CRSP, yahoo!Finance | BA                       | t-Stat            | 38,031       |
| Berkman et al. (2014)               | 1999-2010     | Compustat Global    | MA                       | t-Stat            | 4,136        |
| Bernhardt et al. (2016)             | 2003-2010     | CRSP                | BH_IND                   | t-Stat            | 24,793       |
| Betton et al. (2014)                | 1980-2008     | CRSP                | MM                       | None              | 6,150        |
| Bhojraj et al. (2009)               | 1988-2006     | CRSP                | MA, BH_MATCH, CAL        | t-Stat, BS t-Stat | 35,530       |
| Blankespoor et al. (2017)           | 2011-2013     | CRSP                | BH_MATCH                 | None              | 224          |
| Bradley et al. (2017)               | 1983-2011     | CRSP                | MA                       | None              | 40,719       |
| Brennan et al. (2016)               | 1983-2010     | CRSP                | MA                       | None              | not reported |
| Brown and Tucker (2011)             | 1997-2006     | CRSP                | MA                       | None              | 23,487       |
| Bruno et al. (2016)                 | 1999-2003     | CRSP                | BH_MATCH                 | t-Stat            | 2,002        |
| Bushee et al. (2010)                | 1993-2004     | CRSP                | MA                       | None              | 27,987       |
| Bushee et al. (2011)                | 1999-2007     | CRSP                | BH_MATCH                 | t-Stat, Wilcoxon  | 95,105       |
| Bushman et al. (2017)               | 2000-2012     | CRSP                | MA                       | None              | 41,760       |
| Call et al. (2018)                  | 1978-2012     | CRSP                | MA                       | None              | 658          |
| Cao and Narayanamoorthy (2012)      | 1987-2008     | CRSP                | BH_IND                   | None              | 305,908      |
| Cao et al. (2015)                   | 2000-2010     | CRSP                | BH_IND, PEA              | None              | 40,807       |
| Cen et al. (2016)                   | 1979-1995     | CRSP                | BH_MATCH                 | None              | 62,041       |
| Chang et al. (2010)                 | 1992-2002     | CRSP                | MM, FM, BH_IND, BH_MATCH | t-Stat, Wilcoxon  | 298          |
| Chava et al. (2018)                 | 1989-2007     | CRSP                | MM                       | None              | 1,677        |
| Cheong and Thomas (2018)            | 1993-2013     | CRSP                | MA                       | None              | 197,004      |
| Chhaochharia et al. (2017)          | 1999-2006     | CRSP                | MM                       | None              | 6,643        |
| Choudhary et al. (2009)             | 2004-2005     | CRSP                | MM                       | t-Stat            | 365          |
| Christensen et al. (2009)           | 2004-2004     | CRSP                | MA                       | None              | 136          |
| Cohen and Schmidt (2009)            | 1993-2003     | CRSP                | MA                       | None              | 266,520      |
| Cohn et al. (2016)                  | 2010-2010     | CRSP                | COMEAN                   | CDA               | 3            |
| Collin-Dufresne and Fos (2015)      | 1994 - 2010   | CRSP                | BH_IND                   | t-Stat            | 3,126        |
| Crane and Koch (2018)               | 1980-2012     | CRSP                | MA                       | None              | 26,766       |

|                             | eventstudy |             | eventstudy2 |        | estudy |        |  |
|-----------------------------|------------|-------------|-------------|--------|--------|--------|--|
| Panel A: All three journals |            |             |             |        |        |        |  |
| Fully applicable            | 15         | 8.33%       | 163         | 90.56% | 96     | 53.33% |  |
| Partially applicable        | 4          | 2.22%       | 5           | 2.78%  | 17     | 9.44%  |  |
| Not applicable              | 161        | 89.44%      | 12          | 6.67%  | 67     | 37.22% |  |
| Panel B: Journal of A       | Accounti   | ng Research |             |        |        |        |  |
| Fully applicable            | 3          | 5.45%       | 54          | 98.18% | 31     | 56.36% |  |
| Partially applicable        | 1          | 1.82%       | 0           | 0.00%  | 5      | 9.09%  |  |
| Not applicable              | 51         | 92.73%      | 1           | 1.82%  | 19     | 34.55% |  |
| Panel C: Journal of F       | inance     |             |             |        |        |        |  |
| Fully applicable            | 6          | 8.45%       | 65          | 91.55% | 41     | 57.75% |  |
| Partially applicable        | 2          | 2.82%       | 1           | 1.41%  | 4      | 5.63%  |  |
| Not applicable              | 63         | 88.73%      | 5           | 7.04%  | 26     | 36.62% |  |
| Panel D: Managemen          | t Scienc   | e           |             |        |        |        |  |
| Fully applicable            | 6          | 11.11%      | 44          | 81.48% | 24     | 44.44% |  |
| Partially applicable        | 1          | 1.85%       | 4           | 5.63%  | 8      | 14.81% |  |
| Not applicable              | 47         | 87.04%      | 6           | 8.45%  | 22     | 40.74% |  |



- What are event studies'
- 2 What should event study commands be able to do
- Which commands are available?
- 4 How do these commands compare to each other?
- 5 Concluding remarks

Concluding remarks Slide 19

The three command do not represent evolutions but can be best choices in different scenarios:

- eventstudy: simple studies, Stata beginners, assessment of statistical significance not required
- eventstudy2: very complex and large studies, extremely accurate results
- estudy: complexer studies of limited size (<24,000 events), comfortable output (LaTeX), by event assessment of statistical significance

Concluding remarks Slide 20

## Many thanks to...

- **Bill Rising** for setting up and testing my Zoom connection.
- ▶ the **Stata Corp. crew** for organizing the conference.
- Joe Newton for providing valuable input during the ongoing review process in the Stata Journal.

Concluding remarks Slide 21