Advocating Safety for Bicyclists at Intersections: Investigating Factors that Influence Bicyclist Injury Severity in Bicycle-Motor Vehicle Crashes at Unsignalized Intersections in North Carolina

Shatoya Covert

Stata Conference 2020

July 30, 2020

イロト 不得 トイヨト イヨト

3

Shatoya Covert

Table of Contents

Introduction

- Purpose of the Study
- Research questions
- Background
- Data Analysis
- Summary
- Recommendations
- Acknowledgements

Shatoya Covert

Introduction

- North Carolina Strategic Highway Safety Plan
- What is it?
- How will it be implemented?
- Relation to this study?

Shatoya Covert

The purpose of this study was to answer the following research questions:

- What are the potential factors associated with bicyclist injury severity in bicycle-motor vehicle crashes at unsignalized intersections?
- Do these factors impact bicyclist safety?

Background Definitions

Bicyclist Injury Severity - 5 types

Unsignalized Intersections - 3 types

Shatoya Covert

Background Data

- The UNC Highway Safety Research Center 8,418 bicycle-motor vehicle (2007 to 2015)
- Sample size 1,273 BMVC's at unsignalized intersections

Shatoya Covert

Background Data

Frequency distribution of Bicyclist Injury Level of BMVC's at unsignalized intersections in North Carolina by year

イロト イヨト イヨト イヨト

Background - Variables Selected

- Bicyclist age, gender
- Driver age, gender, vehicle, vehicle speed
- Roadway class, feature, speed limit, traffic control
- Crash crash type, light condition, day of week
- Environmental rural/urban land, crash time, season
- ALL VARIABLES ARE CATEGORICAL

Research question:

What are the potential factors associated with bicyclist injury severity in bicycle-motor vehicle crashes at unsignalized intersections?

- Ordinal Logistic regression predict outcome of ordinal dependent variable
- Ordinal variable categorical and has ordered relationship between outcomes

Ordinal Logistic Regression

- Performs binomial logistic regressions on cumulative logits
- ▶ logit = log of odds = ln $\left[\frac{Prob(success)}{Prob(failure)}\right]$
- A logit can be modelled as a linear expression of a set of independent variables
- Cumulative logit the odds of an event where that event results in the combination of 1 or more categories of an ordinal dependent variable

Data Analysis - Ordinal Regression Model

$$\mathbf{Y}_{\phi}^{*} = \sum_{h=1}^{H} \beta_{h} X_{h\phi} + \varepsilon_{\phi} = \mathbf{Z}_{\phi} + \varepsilon_{\phi}$$
(1)

$$Z_{\phi} = \sum_{h=1}^{H} \beta_h X_{h\phi} = E(Y_{\phi}^*)$$
⁽²⁾

$$P(Y = 1) = \frac{1}{1 + \exp(Z_{\phi} - \Gamma_{1})}$$

$$P(Y = 2) = \frac{1}{1 + \exp(Z_{\phi} - \Gamma_{2})} - \frac{1}{1 + \exp(Z_{\phi} - \Gamma_{1})}$$

$$P(Y = 3) = 1 - \frac{1}{1 + \exp(Z_{\phi} - \Gamma_{2})}$$

Shatoya Covert

Data Analysis

Assumptions

- Dependent variable must be measured on an ordered level
- There is at least one independent variable that can be categorical or continuous
- There should be no multi-collinearity
- There are proportional odds

Proportional Odds (Parallel Regression) Assumption

- The slope on a continuous variable doesn't change across the different levels of your ordinal dependent variable.
- This assumption is tested by running separate binomial logistic regressions on cumulative binary dependent variables

Data Analysis - Ordinal Regression

Figure: Proportional Odds Assumption

Shatoya Covert

Data Analysis - Ordinal Regression

Proportional Odds Assumption Example

Driver Speed	y>1	y> 2	Brant test results
(compared to 0-20 mph)			Sig.
21-35 mph	0.47	0.808	0.292
	3.24	2.53	
Over 35 mph	0.807	1.83	0.024
	2.78	4.16	

Table: Binary logit coefficients

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Shatoya Covert

Data Analysis - Ordinal Regression - PO Results

The following variables did not meet the assumption

- Driver speed Over 35 mph
- Driver vehicle SUV
- Crash type Bicyclist induced
- Light condition Dawn and Dusk
- Crash time Night
- Season Fall
- χ² statistic for all analyzed variables was significant;
 Proportional Odds Assumption violated
- An alternative model needed

Data Analysis - Alternative Model for Analysis

Generalized Ordered Logit Model (Gologit)

- Partial proportional odds-relaxed the parallel regression assumption (i.e. relaxed assumption of same intercept shifts in our model with all categorical variables)
- Allowed some coefficients to be the same/different.
- Created a series of binary logistic regressions...dependent categories were combined
- Variables that violated the ordinal regression model also violated the gologit model
- Reference Williams, R. (2006). Generalized Ordered Logit/Partial Proportional Odds Models for Ordinal Response Variables. The STATA Journal, 6, pp. 58-82.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Data Analysis - Gologit Model

$$P(Y_i > j) = g(X\beta_j) = \frac{exp(\alpha_j + X_i\beta_j)}{1 + [exp(\alpha_j + X_i\beta_j)]}$$
(3)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where

 α_j = threshold or intercept parameters X_i = vector of explanatory variables β_j = vector of coeff. for explanatory variables j = 1, 2, ..., M - 1

Shatoya Covert

Data Analysis - Gologit Model Results

Wald test of parallel lines assumption: χ² is not significant; final model does not violate the proportional odds/parallel lines assumption

$$\begin{split} &-3.888-0.189+0.158X_2+0.514X_2+0.019X_4+0.003X_6+0.221X_7\\ &-0.088X_8+0.496X_{10}+0.712X_{11a}+1.980X_{11b}+0.154X_{13}-0.196X_{14}\\ &-0.141X_{15}+0.221X_{17}+0.132X_{18}-0.441X_{19}+0.451X_{21}+0.625X_{22}\\ &+0.278X_{23a}+1.188X_{23b}-0.504X_{24}-0.445X_{25}-0.176X_{27}+0.026X_{29}\\ &+0.276X_{31a}+1.221X_{31b}-0.167X_{32}-0.073X_{33}-0.684X_{34}-0.226X_{36a}\\ &+1.448X_{36b}+0.288X_{37}+0.266X_{38}-0.166X_{39}-0.167X_{40}\\ &+0.160X_{42a}+2.031X_{42b}-0.313X_{43}+0.510X_{44}+0.065X_{45}+0.090X_{46a}\\ &-0.634X_{46b} \end{split}$$

イロン イロン イヨン イヨン

э.

Shatoya Covert

Bicyclist Injury Severity at Unsignalized Intersections in NC

=

Data Analysis - Gologit estimates

Verification of the Model

$$\chi^{2} = -2[\ln(L_{0}) - \ln(L_{f})]$$

$$R^{2} = 1 - \frac{\ln(L_{f})}{\ln(L_{0})}$$

$$AIC = -2 * \ln(likelihood) + 2$$
Number of obs = 1,273
LR χ^{2} (41) = 173.13
Prob > χ^{2} = 0.0000
Log likelihood(model) = -1035.9246
Log likelihood(null) = -1122.488
Pseudo R^{2} = 0.0771

* k

イロン イロン イヨン イヨン

∃ 990

Shatoya Covert

LR

Summary - Gologit Significant Variables - Marginal effects

Variables	Coef +/-	Minor/Major/Severe
Bicyclist age: 55+	positive	-0.118 / 0.088 / 0.030
Driver speed: 21-35	positive	-0.117 / 0.094 / 0.023
(m1)Driver speed: over 35 mph	+0.712	-0.165 / 0.001 / 0.165
(m2)Driver speed: over 35 mph	+1.980	
Road feature: 4-way-int.	positive	-0.105 / 0.085 / 0.020
Road feature: T-intersection	positive	-0.145 / 0.116 / 0.030
(*)Light condition: Dk-no lights.	negative	0.156 / -0.129 / -0.027
Day of week: Weekend	positive	-0.067 / 0.051 / 0.016
Season: Spring	positive	-0.119 / 0.088 / 0.031

Summary

Recommendations

Future Work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Shatoya Covert

Acknowledgements

- North Carolina Department of Transportation
- UNC Highway Safety Research Center
- Richard Williams and Hugh Briggs III

Shatoya Covert

The End

Shatoya Covert

Bicyclist Injury Severity at Unsignalized Intersections in NC