
ddml: Double/debiased machine learning in
Stata

Mark E Schaffer (Heriot-Watt University, IZA)

Achim Ahrens (ETH Zürich)
Christian B Hansen (University of Chicago)
Thomas Wiemann (University of Chicago)

Package website: https://statalasso.github.io/

Latest version available here

September 7, 2023

https://statalasso.github.io/
https://statalasso.github.io/pdf/pres_ddml.pdf

Introduction
A rich and growing literature exploits machine learning to facilitate
causal inference.

A central focus: high-dimensional controls and/or instruments,
which can arise if
I we observe many controls/instruments
I controls/instruments enter through an unknown function

Belloni, Chernozhukov, and Hansen (2014) and Belloni et al.
(2012) propose estimators relying on the Lasso that allow for
high-dimensional controls/instruments.
⇒ Available via pdslasso in Stata (Ahrens, Hansen, and

Schaffer, 2020)

1 / 40

Introduction
What if we don’t want to use the lasso?
I The Lasso might not be the best-performing machine learner

for a particular problem.
I The Lasso relies on the approximate sparsity assumption,

which might not be appropriate in some settings.

Chernozhukov et al. (2018) propose Double/Debiased Machine
Learning (DDML) which allow to exploit machine learners other
than the Lasso.

Our contribution:
I We introduce ddml, which implements DDML for Stata.
I We provide simulation evidence on the finite sample

performance of DDML.
I Our recommendation is to use DDML in combination with

Stacking.

2 / 40

Background
Motivating example. The partial linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

How do we account for confounding factors xi? — The standard
approach is to assume linearity g(xi) = x ′i β and consider
alternative combinations of controls.

Problems:
I Non-linearity & unknown interaction effects
I High-dimensionality: we might have “many” controls
I We don’t know which controls to include

3 / 40

Background
Motivating example. The partial linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

Post-double selection (Belloni, Chernozhukov, and Hansen, 2014)
and post-regularization (Chernozhukov, Hansen, and Spindler,
2015) provide data-driven solutions for this setting.

Both “double” approaches rely on the sparsity assumption and use
two auxiliary lasso regressions: yi xi and di xi .

Related approaches exist for optimal IV estimation (Belloni et al.,
2012) and/or IV with many controls (Chernozhukov, Hansen, and
Spindler, 2015).

4 / 40

Background
These methods have been implemented for Stata in pdslasso
(Ahrens, Hansen, and Schaffer, 2020), dsregress (StataCorp)
and R (hdm; Chernozhukov, Hansen, and Spindler, 2016).

Example 1:

. clear

. use https://statalasso.github.io/dta/AJR.dta

. pdslasso logpgp95 avexpr ///
(lat_abst edes1975 avelf temp* humid* steplow-oilres)

Variables in parentheses are treated as high-dimensional controls.
The lasso selects from them.

5 / 40

Background
These methods have been implemented for Stata in pdslasso
(Ahrens, Hansen, and Schaffer, 2020), dsregress (StataCorp)
and R (hdm; Chernozhukov, Hansen, and Spindler, 2016).

Example 2:
Select controls, but specify that logem4 is an unpenalized
instrument (using partial(logem4)).

. ivlasso logpgp95 (avexpr=logem4) ///
(lat_abst edes1975 avelf temp* humid* steplow-oilres), ///
partial(logem4)

6 / 40

Background
There are advantages of relying on lasso:
I intuitive assumption of (approximate) sparsity
I computationally relatively cheap (due to plugin lasso penalty;

no cross-validation needed)
I Linearity has its advantages (e.g. extension to fixed effects;

Belloni et al., 2016)

But there are also drawbacks:
I What if the sparsity assumption is not plausible?
I There is a wide set of machine learners at disposable—Lasso

might not be the best choice.
I Lasso requires careful feature engineering to deal with

non-linearity & interaction effects.

7 / 40

Review of DDML
The partial linear model:

Y = θ0D + g0(X) + U
D = m0(X) + V

Naive idea: We estimate conditional expectation functions (CEFs)
`0(X) = E [Y |X] and m0(X) = E [D|X] using ML and partial out
the effect of X (in the style of Robinson, 1988):

θ̂DDML =
(
1
n
∑

i
V̂ 2

i

)−1 1
n
∑

i
V̂i (Yi − ˆ̀),

where V̂ = D − m̂i .

8 / 40

Review of DDML
Yet, there is a problem:
I The estimation error of the first step (CEF estimation) may

spill-over to the second step (estimation of structural
parameters).

I For example, the estimation error `(xi)− ˆ̀ and vi may be
correlated due to over-fitting, leading to poor finite sample
performances (own-observation bias).

DDML relies on two ingredients:
1. cross-fitting: sample splitting with swapped samples
2. Neyman-orthogonal scores: score functions which are

robust to small perturbations

9 / 40

Review of DDML

Cross-fitting for the partial linear model (DML 2)
Split the sample {(Yi ,Di ,Xi)}n

i=1 randomly in K folds of approximately
equal size. Denote Ik the set of observations included in fold k and Ick its
complement.

1. For each k ∈ {1, . . . ,K}:
1.1 Fit a CEF estimator to the sub-sample Ick using Yi as the

outcome and Xi as predictors. Obtain the out-of-sample
predicted values ˆ̀Ic

k
(Xi) for i ∈ Ik .

1.2 Fit a CEF estimator to the sub-sample Ick using Di as the
outcome and Xi as predictors. Obtain the out-of-sample
predicted values m̂Ic

k
(Xi) for i ∈ Ik .

2. Compute
θ̂n =

1
n
∑n

i=1
(
Yi − ˆ̀Ic

ki
(Xi)

)(
Di − m̂Ic

ki
(Xi)

)
1
n
∑n

i=i
(
Di − m̂Ic

ki
(Xi)

)2 . (1)

10 / 40

The importance of cross-fitting

(a) n = 1000 (b) n = 1000

Notes: Figures (a) and (b) compare the bias of the oracle estimator (which knows
the true data-generating process) and gradient-boosted trees with and without sample
splitting. Specifically, we generate 1’000 samples of size n = 1000 using the partially
linear model Yi = θ0Di + g(Xi) + εi , Di = g(Xi) + ui where the nuisance function is
g(Xi) = 1{Xi1 > 0.3}1{Xi2 > 0}1{Xi3 > −1}. Gradient boosting uses 1200 trees, a
maximum tree depth of 6, a learning rate of 0.1, and early stopping with 20% validation
sample.

11 / 40

Remarks
Remark 1: Number of folds.
I The number of cross-fitting folds K is a necessary tuning

choice. Theoretically, any finite value is admissable.
I Based on our simulation experience, we find that more folds

tends to lead to better performance, especially when the
sample size is small.

12 / 40

Remarks
Remark 2: Cross-fitting repetitions.

We recommend running the cross-fitting procedure more than once
using different random folds to assess randomness introduced via
the sample splitting.

Let θ̂(r)
n denote the DDML estimate from the r th cross-fit

repetition and ŝ(r)
n its associated standard error estimate with

r = 1, . . . ,R:

˘̂θn = median
((
θ̂(r)

n

)R

r=1

)

˘̂sn =

√√√√median
((

(ŝ(r)
n)2 + (θ̂(r)

n − ˘̂
θn)2

)R

r=1

)
.

ddml facilitates this using the rep(integer) options.

13 / 40

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive model

Y = g0(D,X) + U (2)

where D is a scalar binary variable and that D is not required to be
additively separable from the controls X . In this setting, the
parameters of interest are

θATE
0 ≡ E [g0(1,X)− g0(0,X)]

θATET
0 ≡ E [g0(1,X)− g0(0,X)|D = 1],

(3)

which correspond to the average treatment effect (ATE) and
average treatment effect on the treated (ATET), respectively.

14 / 40

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Partial linear IV model

Y = θ0D + g0(X) + U,

where we leverage instrumental variables Z for identification.

Let `0(X) ≡ E [Y |X], m0(X) ≡ E [D|X], and r0(X) ≡ E [Z |X].

We assume E [Cov(U,Z |X)] = 0 and E [Cov(D,Z |X)] 6= 0, and
consider the score function

ψ(W ; θ, `,m, r) =
(
Y − `(X)− θ(D −m(X))

)(
Z − r(X)

)
,

where W ≡ (Y ,D,X ,Z).

15 / 40

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Flexible Partially Linear IV Model

Y = θ0D + g0(X) + U,

where we leverage instrumental variables Z for identification.

Let p0(Z ,X) ≡ E [D|Z ,X].

We assume E [U|Z ,X] = 0 and E [Var(E [D|Z ,X]|X)] 6= 0, and
consider the score function

ψ(W ; θ, `,m, p) =
(
Y − `(X)− θ(D −m(X))

)(
p(Z ,X)−m(X)

)
.

The Flexible Partially Linear IV Model allows for approximation of
optimal instruments.

16 / 40

DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive IV model

Y = g0(D,X) + U

where D takes values in {0, 1}. The parameter of interest we
target is the local average treatment effect

θ0 = E [g0(1,X)− g0(0,X)| p0(1,X) > p0(0,X)] , (4)

where p0(Z ,X) ≡ Pr(D = 1|Z ,X).

17 / 40

The choice of machine learner
Which machine learner should we use?

ddml supports a range of ML programs: pylearn, lassopack,
randomforest. — Which one should we use?

We don’t know whether we have a sparse or dense problem; linear
or non-linear. We don’t know whether, e.g., lasso or random
forests will perform better.

Stacking, as implemented in pystacked, provides a solution: We
use an ‘optimal’ combination of base learners.

18 / 40

The choice of machine learner
Which machine learner should we use?

The choice of CEF estimator can make a huge difference.

(a) Linear DGP (b) Non-linear DGP
Notes: Figures (a) and (b) compare the bias of the oracle estimator (which knows the true data-generating process),
cross-validated lasso and gradient-boosted trees under two alternative data-generating processes. Specifically, we
generate 1’000 samples of size n = 1000 using the partially linear model Yi = θ0Di + g(Xi) + εi , Di = g(Xi) + ui
where the nuisance function is either g(Xi) =

∑
j
0.9j Xij (linear) or g(Xi) = 1{Xi1 > 0.3}1{Xi2 > 0}1{Xi3 >

−1} (non-linear DGP). Gradient boosting uses 1000 trees, a learning rate of 0.01 and early stopping with 20%
validation sample. See Ahrens et al. (2023, Section 4.2) for details.

19 / 40

The choice of machine learner
Which machine learner should we use?

We have already seen one answer: stacking.

DDML + stacking involves two layers of re-sampling:
1. Cross-fitting layer: Divide the sample into K cross-fitting

folds. In each cross-fitting step k ∈ {1, . . . ,K}, the stacking
learner is trained on the training sample Tk ≡ I \ Ik .

2. Cross-validation layer: Fitting the stacking learner requires to
sub-divide the training sample Tk further into V
cross-validation folds. We denote the cross-validation folds by
Tk,1, . . . ,Tk,V .

A DDML-specific variant: ‘pooled stacking’, i.e. stack once at the
end to get a single stacked learner (a single set of stacking weights
instead of K sets of weights).

20 / 40

The choice of machine learner

I1 I2 I3 I4 I5

1. Split sample into K cross-fitting folds (here K = 5).

2. For each k, define stacking training sample
Tk ≡ I \ Ik, and split into V folds (here V = 3).

Tk,1 Tk,2 Tk,3

3. For each (k, v, j), fit base learner j on
T c
k,v ≡ Tk \ Tk,v and obtain out-of-sample

predicted values ℓ̂
(j)
Tc
k,v

(Xi) for i ∈ Tk,v.

Learner j = 1

j = 2

j = 3

4. For each k, fit Y against ℓ̂
(1)
Tc
k
(Xi), . . . , ℓ̂

(J)
Tc
k
(Xi)

with i ∈ Tk to obtain stacking weights ŵk,j . Obtain

out-of-sample predicted values as
∑

j
ŵk,j ℓ̂

(j)
Tk

for
i ∈ Ik.

21 / 40

The choice of machine learner
Short-stacking takes a short-cut and is computationally much
cheaper. The final learner is fit on the cross-fitted predicted values.

I1 I2 I3 I4 I5

1. Split sample into K cross-fitting folds (here K = 5).

2. For each (k, j), fit learner j on the train-
ing sample j and obtain cross-fitted values as
ℓ̂
(j)
Ic
k
(Xi) for i ∈ Ik.

3. Use final learner to fit Y against ℓ̂
(1)
Ic
k
(Xi), . . . , ℓ̂

(J)
Ic
k
(Xi) on

full sample, obtain short-stacking weights ŵj and cross-fitted

short-stacked values as
∑

j
ŵj ℓ̂

(j)
Ic
k
(Xi).

22 / 40

The ddml package
We introduce ddml for Stata:
I Compatible with various ML programs in Stata (e.g.

lassopack, pylearn, randomforest).
→ Any program with the classical “reg y x” syntax and

post-estimation predict will work.
I Short (one-line) and flexible multi-line version
I Five models supported: partial linear model, interactive

model, interactive IV model, partial IV model, optimal IV.
I ddml supports data-driven combinations of multiple machine

learners via stacking by leveraging pystacked (Ahrens,
Hansen, and Schaffer, 2022; Pedregosa et al., 2011; Buitinck
et al., 2013).

I Standard stacking, short-stacking, pooled stacking all
supported.

23 / 40

Extended ddml syntax
Step 1: Initialize ddml and select model.

ddml init model
[

, kfolds(integer) fcluster(varname)
foldvar(varlist) reps(integer) mname(name) prefix

]
where model is partial, interactive, iv, fiv, or interactiveiv.

The reps option repeats the estimation for the specified number of
different random cross-fit splits. In this case ddml will report the median
or mean estimated coefficient(s) of interest across resamples.

Step 2: Add ML programs for estimating conditional expectations.

ddml cond_exp : command depvar vars
[

, cmdopt
]

where cond_exp selects the conditional expectation to be estimated by
the machine learning program command. command is a ML program
that supports the standard reg y x-type syntax. cmdopt are specific to
that program.

Multiple estimation commands per equation are allowed.
24 / 40

Extended ddml syntax

cond_exp partial interactive iv fiv late
E[Y|X] X X X
E[Y|X,D] X
E[Y|X,Z] X

E[D|X] X X X X
E[D|Z,X] X X

E[Z|X] X X

Table: The table lists the conditional expectations which need to be
specified for each model.

25 / 40

Extended ddml syntax
Step 3: Cross-fitting.

This step implements the cross-fitting algorithm (the most
time-consuming step).

ddml crossfit
[

, mname(name) shortstack poolstack

nostdstack finalest(name)
]

Standard stacking and pooled-stacking rely on ddml’s pystacked
integration; short-stacking is available with all learners.

Step 4: Estimation of causal effects

In the last step, we estimate the parameter of interest for all combination
of learners added in Step 2.

ddml estimate
[

, mname(name) robust cluster(varname)
vce(vcetype) att trim spec(string) rep(string)

]

26 / 40

Quick syntax: qddml

Syntax for Partially Linear and Interactive Model

qddml depvar treatment_vars (controls),
model(partial|interactive)

[
options

]

Syntax for IV models

qddml depvar (controls) (treatment_vars=excluded_instruments) ,

model(iv|late|fiv)
[

options
]

where ddml_options options are internally passed to the ddml
subroutines.

We illustrate with a qddml at the end of this presentation.

27 / 40

Simple ddml example
We demonstrate the use of ddml using the partially linear model
by extending the analysis of 401(k) eligibility and total financial
wealth of Poterba, Venti, and Wise (1995). The data consists of
n = 9915 households from the 1991 SIPP.

In this simple example, we use two learners, OLS and
cross-validated lasso. This gives us 4 possible combinations of
learners for Y and D; ddml will report all 4 and the minimum-MSE
specification in detail.

Step 0: Load data, define globals
. use "sipp1991.dta", clear
. global Y net_tfa
. global X age inc educ fsize marr twoearn db pira hown
. global D e401

Step 1: Initialise ddml and select model:
. set seed 123
. ddml init partial, kfolds(4) 28 / 40

Simple ddml example (cont’d.)
Step 2: Add supervised ML programs for estimating conditional
expectations. We used pystacked as the front-end for
sklearn.linear_model.LassoCV.

. *** add learners for E[Y|X]

. ddml E[Y|X]: reg $Y $X
Learner Y1_reg added successfully.
. ddml E[Y|X]: pystacked $Y c.($X)##c.($X), type(reg) m(lassocv)
Learner Y2_pystacked added successfully.
. *** add learners for E[D|X]
. ddml E[D|X]: reg $D $X
Learner D1_reg added successfully.
. ddml E[D|X]: pystacked $D c.($X)##c.($X), type(reg) m(lassocv)
Learner D2_pystacked added successfully.

Step 3: Cross-fitting with 4 folds
. ddml crossfit
Cross-fitting E[y|X] equation: net_tfa
Cross-fitting fold 1 2 3 4 ...completed cross-fitting
Cross-fitting E[D|X] equation: e401
Cross-fitting fold 1 2 3 4 ...completed cross-fitting

29 / 40

Simple ddml example (cont’d.)
Step 4: Estimation of causal effects

. ddml estimate, robust allcombos

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_reg Y2_pystacked

D equations (1): e401
e401 learners: D1_reg D2_pystacked

DDML estimation results:
spec r Y learner D learner b SE

1 1 Y1_reg D1_reg 5986.657 (1523.694)
2 1 Y1_reg D2_pystacked 9554.227 (1401.761)
3 1 Y2_pystacked D1_reg 9136.558 (1373.453)

* 4 1 Y2_pystacked D2_pystacked 9772.700 (1352.800)
* = minimum MSE specification for that resample.
Min MSE DDML model
y-E[y|X] = y-Y2_pystacked_1 Number of obs = 9915
D-E[D|X] = D-D2_pystacked_1

Robust
net_tfa Coef. Std. Err. z P>|z| [95% Conf. Interval]

e401 9772.7 1352.8 7.22 0.000 7121.261 12424.14
_cons 93.98181 534.8218 0.18 0.861 -954.2496 1142.213

30 / 40

Extended ddml example
We use the same dataset and model as before, but employ stacking
with a wider range of learner. pystacked does the standard
stacking; ddml does the short-stacking and pooled stacking.

We could ask for all versions of stacking at the cross-fitting stage.
Instead, for illustration purposes, we first estimate using only
standard stacking and then re-stack to get the short-stacking and
pooled stacking results (re-stacking is very fast).

Step 0: Load data, define globals
. use "sipp1991.dta", clear
. global Y net_tfa
. global X age inc educ fsize marr twoearn db pira hown
. global D e401

Step 1: Initialise ddml and select model:
. set seed 123
. ddml init partial, kfolds(4)

31 / 40

Extended ddml example (cont’d.)
Step 2: Add supervised ML programs for estimating conditional
expectations.

. *** add learners for E[Y|X]

. ddml E[Y|X]: pystacked $Y $X || ///
> method(ols) || ///
> m(lassocv) xvars(c.($X)##c.($X)) || ///
> m(ridgecv) xvars(c.($X)##c.($X)) || ///
> m(rf) pipe(sparse) opt(max_features(5)) || ///
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)
Learner Y1_pystacked added successfully.
. *** add learners for E[D|X]
. ddml E[D|X]: pystacked $D $X || ///
> method(ols) || ///
> m(lassocv) xvars(c.($X)##c.($X)) || ///
> m(ridgecv) xvars(c.($X)##c.($X)) || ///
> m(rf) pipe(sparse) opt(max_features(5)) || ///
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)
Learner D1_pystacked added successfully.

32 / 40

Extended ddml example (cont’d.)
Step 3: Cross-fitting with 4 folds; also report stacking weights

. qui ddml crossfit

. ddml extract, show(stweights)
mean stacking weights across folds/resamples for D1_pystacked (e401)
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .01557166 .01557166

lassocv 2 .10078951 .10078951
ridgecv 3 .43673555 .43673555

rf 4 .0294692 .0294692
gradboost 5 .41743408 .41743408
mean stacking weights across folds/resamples for Y1_pystacked (net_tfa)
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .09662631 .09662631

lassocv 2 .46475744 .46475744
ridgecv 3 .32388159 .32388159

rf 4 .09392876 .09392876
gradboost 5 .0145518 .0145518

Note that these are mean weights across 4 cross-fits.
33 / 40

Extended ddml example (cont’d.)
Step 4: Estimation of causal effects - standard stacking only

. ddml estimate, robust

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_pystacked

D equations (1): e401
e401 learners: D1_pystacked

DDML estimation results:
spec r Y learner D learner b SE

st 1 Y1_pystacked D1_pystacked 9406.384 (1300.170)
Stacking DDML model
y-E[y|X] = y-Y1_pystacked_1 Number of obs = 9915
D-E[D|X] = D-D1_pystacked_1

Robust
net_tfa Coef. Std. Err. z P>|z| [95% Conf. Interval]

e401 9406.384 1300.17 7.23 0.000 6858.097 11954.67
_cons 199.9922 535.7477 0.37 0.709 -850.054 1250.038

Stacking final estimator: nnls1

34 / 40

Extended ddml example (cont’d.)
Step 4: Estimation of causal effects - all stacking approaches

. ddml estimate, robust shortstack poolstack

Model: partial, crossfit folds k=4, resamples r=1
Mata global (mname): m0
Dependent variable (Y): net_tfa
net_tfa learners: Y1_pystacked

D equations (1): e401
e401 learners: D1_pystacked

DDML estimation results:
spec r Y learner D learner b SE

st 1 Y1_pystacked D1_pystacked 9406.384 (1300.170)
ss 1 [shortstack] [ss] 9602.256 (1300.825)
ps 1 [poolstack] [ps] 9500.226 (1298.061)

Shortstack DDML model
y-E[y|X] = y-Y_net_tfa_ss_1 Number of obs = 9915
D-E[D|X] = D-D_e401_ss_1

Robust
net_tfa Coef. Std. Err. z P>|z| [95% Conf. Interval]

e401 9602.256 1300.825 7.38 0.000 7052.685 12151.83
_cons 83.96643 533.9871 0.16 0.875 -962.629 1130.562

Stacking final estimator: nnls1

35 / 40

Extended ddml example (cont’d.)
Step 3: Cross-fitting details - pooled stacking weights

. ddml extract, show(psweights)
pool-stacked weights across resamples for e401
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .01401754 .01401754

lassocv 2 .07248977 .07248977
ridgecv 3 .45855838 .45855838

rf 4 .02897807 .02897807
gradboost 5 .42595624 .42595624
pool-stacked weights across resamples for net_tfa
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .07029715 .07029715

lassocv 2 .54372591 .54372591
ridgecv 3 .28352695 .28352695

rf 4 .10244998 .10244998
gradboost 5 7.991e-15 7.991e-15

Pooled stacking uses a single set of weights across 4 cross-fits.

36 / 40

Extended ddml example (cont’d.)
Step 3: Cross-fitting details - short-stacking weights

. ddml extract, show(ssweights)
short-stacked weights across resamples for e401
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 0 0

lassocv 2 .24104781 .24104781
ridgecv 3 .34174905 .34174905

rf 4 .05456516 .05456516
gradboost 5 .36263798 .36263798
short-stacked weights across resamples for net_tfa
final stacking estimator: nnls1

learner mean_weight rep_1
ols 1 .07689168 .07689168

lassocv 2 0 0
ridgecv 3 .79121732 .79121732

rf 4 0 0
gradboost 5 .131891 .131891

Short-stacking uses a single set of weights. Standard stacking is
not required so estimation using just short-stacking is fast.

37 / 40

qddml example: Partial linear model
qddml is the one-line (‘quick’) version of ddml and uses a syntax
similar to pds/ivlasso.

The qddml default when used with pystacked is to do
short-stacking only (much faster than standard stacking).

NB: This can also be done with ddml- use the nostdstack option
at the cross-fit stage.

Here is how to do the same DDML estimation in one line using
qddml. We choose a different model name for the Mata object and
use the prefix option so the estimated model and conditional
expectations in Stata’s memory don’t overwrite those from the
previous estimation.

NB: All ddml postestimation commands and utilities also work
after qddml. Below we illustrate the use of the replay option of
ddml estimate.

38 / 40

qddml example: Partial linear model (cont’d.)
. global pystacked_opts || ///
> method(ols) || ///
> m(lassocv) xvars(c.($X)##c.($X)) || ///
> m(ridgecv) xvars(c.($X)##c.($X)) || ///
> m(rf) pipe(sparse) opt(max_features(5)) || ///
> m(gradboost) pipe(sparse) opt(n_estimators(250) learning_rate(0.01)) , ///
> njobs(5)
.
. set seed 123
. // suppress output with quietly
. qui qddml $Y $D ($X), model(partial) kfolds(4) robust ///
> pystacked($pystacked_opts) mname(m0q) prefix
.
. // illustrate replay option
. ddml estimate, mname(m0q) spec(ss) rep(1) notable replay
Shortstack DDML model
y-E[y|X] = y-m0q_Y_net_tfa_ss_1 Number of obs = 9915
D-E[D|X] = D-m0q_D_e401_ss_1

Robust
net_tfa Coef. Std. Err. z P>|z| [95% Conf. Interval]

e401 9602.256 1300.825 7.38 0.000 7052.685 12151.83
_cons 83.96643 533.9871 0.16 0.875 -962.629 1130.562

Stacking final estimator: nnls1

39 / 40

Summary
I ddml implements Double/Debiased Machine Learning for

Stata:
I Compatible with various ML programs in Stata
I Short (one-line) and flexible multi-line version
I Uses Stacking Regression as the default machine learner;

implemented via separate program pystacked
I 5 models supported

I The advantage to pdslasso is that we can make use of
almost any machine learner.

I But which machine learner should we use?
I We suggest stacking. We don’t know which learner is best

suited for a particular problem.
I Stacking allows to consider multiple learners in a joint

framework, and thus reduces the risk of misspecification.
I ddml supports 3 forms of stacking: standard stacking,

short-stacking and pooled stacking. NB: Our MC results
(separate paper) suggest short-stacking performs as well or
better than the other two versions and is much faster; our
recommended default.

40 / 40

References I
Ahrens, Achim, Christian B. Hansen, and Mark E. Schaffer (2020).

“lassopack: Model selection and prediction with regularized regression
in Stata”. In: The Stata Journal 20.1, pp. 176–235. url:
https://doi.org/10.1177/1536867X20909697.

– (2022). pystacked: Stacking generalization and machine learning in
Stata. url: https://arxiv.org/abs/2208.10896.

Ahrens, Achim et al. (2023). ddml: Double/debiased machine learning in
Stata. url: https://arxiv.org/abs/2301.09397.

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen (2014).
“Inference on treatment effects after selection among high-dimensional
controls”. In: Review of Economic Studies 81, pp. 608–650. url:
https://doi.org/10.1093/restud/rdt044.

Belloni, Alexandre et al. (2012). “Sparse Models and Methods for
Optimal Instruments With an Application to Eminent Domain”. In:
Econometrica 80.6. Publisher: Blackwell Publishing Ltd,
pp. 2369–2429. url: http://dx.doi.org/10.3982/ECTA9626.

https://doi.org/10.1177/1536867X20909697
https://arxiv.org/abs/2208.10896
https://arxiv.org/abs/2301.09397
https://doi.org/10.1093/restud/rdt044
http://dx.doi.org/10.3982/ECTA9626

References II
Belloni, Alexandre et al. (2016). “Inference in High Dimensional Panel

Models with an Application to Gun Control”. In: Journal of Business &
Economic Statistics 34.4. Genre: Methodology, pp. 590–605. url:
https://doi.org/10.1080/07350015.2015.1102733 (visited on
02/14/2015).

Buitinck, Lars et al. (2013). “API design for machine learning software:
experiences from the scikit-learn project”. In: ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, pp. 108–122.

Chernozhukov, Victor, Christian Hansen, and Martin Spindler (May
2015). “Post-Selection and Post-Regularization Inference in Linear
Models with Many Controls and Instruments”. In: American Economic
Review 105.5, pp. 486–490. url:
https://doi.org/10.1257/aer.p20151022.

– (2016). “High-dimensional metrics in R”. In: 401, pp. 1–32.

https://doi.org/10.1080/07350015.2015.1102733
https://doi.org/10.1257/aer.p20151022

References III
Chernozhukov, Victor et al. (2018). “Double/debiased machine learning

for treatment and structural parameters”. In: The Econometrics
Journal 21.1. tex.ids= Chernozhukov2018a publisher: John Wiley &
Sons, Ltd (10.1111), pp. C1–C68. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12, pp. 2825–2830.

Poterba, James M, Steven F Venti, and David A Wise (1995). “Do 401
(k) contributions crowd out other personal saving?” In: Journal of
Public Economics 58.1, pp. 1–32.

Robinson, P. M. (1988). “Root-N-Consistent Semiparametric
Regression”. In: Econometrica 56.4. ISBN: 00129682, p. 931. url:
http://www.jstor.org/stable/1912705?origin=crossref.

https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
http://www.jstor.org/stable/1912705?origin=crossref

	Appendix
	References

