nwxtregress: Network regressions in Stata UK Stata Conference 2023

Jan Ditzen ${ }^{1}$, William Grieser ${ }^{2}$, Morad Zekhnini ${ }^{3}$

${ }^{1}$ Free University of Bozen-Bolzano, Italy
jan.ditzen@unibz.it
${ }^{2}$ Texas Christian University, USA
w.grieser@tcu.edu
${ }^{3}$ Michigan State University, USA
zekhnini@msu.edu

September 8, 2022

Many applications of interactions are best represented using networks I

- Empirical analysis in social sciences (nearly) invariably relies on the assumption of cross-sectional independence.
- Most real-world applications involve interactions between units of observation.
- E.g., companies buy and sell from one another, individuals share information with family and friends, etc.
- A key question remains: how do we analyze outcomes in a regression framework in the context of networks?
- cross-sectional independence cannot be assumed!

Many applications of interactions are best represented using networks II

- Spatial econometrics provide an answer:
- Models dependence across cross-sectional units
- Initially used in regional science to model neighbouring regions
- Empirical models and estimation techniques with a priori knowledge of relationship between units (LeSage and Pace, 2009; Kelejian and Piras, 2017)
- In Stata implemented in the Sp environment with some limitations.

A parsimonious model of interactions

- General panel model with N units:

$$
y_{i t}=\sum_{j \neq i} \rho_{i j} y_{j t}+X_{i t} \beta+\epsilon_{i t}
$$

- Considering all interactions $\left(\approx N^{2}\right)$ is impractical
- Ord (1975) proposed the Spatial Autoregressive (SAR) model:

$$
y_{i t}=\rho \sum_{j \neq i} w_{i j, t} y_{j t}+X_{i t} \beta+\epsilon_{i t}
$$

- $w_{i j, t}$ represents a priori link between i and j
- In matrices with additional spatial lag of X (SDM):

$$
y_{t}=\rho W_{t} y_{t}+X_{t} \beta+W_{t} X_{t} \theta+\epsilon_{t}
$$

- Estimating the model "as is" poses various challenges (Manski, 1993; Angrist, 2014)

How to solve?

- Reduced form of SAR (omitting time indices):

$$
y=(I-\rho W)^{-1}(X \beta+\epsilon)
$$

- $(I-\rho W)^{-1}$ can be "difficult" to calculate and model is non linear in parameters.
- Given mathematical restrictions on ρ and W :

$$
\begin{align*}
(I-\rho W)^{-1} & =I+\rho W+\rho^{2} W^{2}+\ldots \tag{1}\\
\Rightarrow y & =\left(I+\rho W+\rho^{2} W^{2}+\ldots\right)(X \beta+\epsilon) \tag{2}
\end{align*}
$$

- Interpretation can be split into
- Own effect (I term)
- Immediate peers' effect (W term)
- Peers of peers effect (W^{2} term)
- Direct $\left(\partial y_{i} / \partial x_{i}\right)$ and indirect effects $\left(\partial y_{i} / \partial x_{j}\right)$

A short primer on estimation

- Focusing on one cross-section (for notational convenience), the likelihood function of the model is:

$$
\begin{aligned}
f\left(Y, X ; \rho, \beta, \sigma^{2}\right) & =\left|I_{N}-\rho W\right|\left(2 \pi \sigma^{2}\right)^{-N / 2} \exp \left(-\frac{e^{\prime} e}{2 \sigma^{2}}\right) \\
e & =(I-\rho W) Y-X \beta
\end{aligned}
$$

- If ρ is known (say ρ_{0}), then β (and σ^{2}) can be integrated out in a maximum likelihood estimation (MLE).
- The problem becomes an optimization w.r.t. ρ only.
- The estimation proceeds with an MCMC sampler using the above likelihood over a grid of different values for ρ.
- $|I-\rho W|$ is the determinant, usually calculated via LU decomposition and challenging to calculate for large matrices.

How to estimate the model then?

nwxtregress

- estimates SAR and SDM models with a mix of a MLE and MCMC sampling (LeSage and Pace, 2009)
- allows the estimation of spatial/network models with
- unbalanced datasets
- time varying spatial weights/network dependencies
- several formats to define the spatial weights/network dependencies
- calculates direct, indirect and total effects.
- Speed improvements using Python

Types of Spatial Weight Matrices

Two challenges
(1) Dimension

- Spatial weight matrix W is $N \times N$, often sparse.
- Requires unnecessary amount of memory
(2) Time Varying W_{t} and unbalanced data
- Most economic data comes as flows, i.e. origin and destination.
- Flows can change over time.
- Square spatial weight matrix "unusual" format.
- nwxtregress uses internally sparse spatial weight matrices.
- Allows for time varying spatial weight matrices, unbalanced data and is memory/speed efficient.

Speed

- For estimation ($I-\rho W$) needs to be inverted. Usually calculated via LU decomposition.
- Two caveats:
- No sparse matrix support in Stata/mata. If W is sparse, then matrices are converted back to square matrices.
- Calculations challenging for large matrices.
- Solution: use Python's sparse matrix environment.
- Implemented in nwxtregress with option python.
- Up to $10 x$ faster.

Example: BEA I/O Tabels I

Data

- We collect USE/MAKE table data from the BEA's website
- These data represent the goods that were used (USE) and made (MAKE) by each industry in the US
- To construct links between industries, we convert into flows between industries
- Loaded data as Sp matrix using spmatrix fromdata $\mathrm{W}=$ sam* , replace, but only for year 1998. W is $N \times N$.
- We also collect key variables about each industry: capital consumption, compensation, and net surplus.

Example: BEA I/O Tabels II

Data

- We are estimating using nwxtregress
- SAR:

$$
\begin{aligned}
\text { cap_cons }= & \beta_{0}+\rho W_{1} \text { cap_cons } \\
& +\beta_{1} \text { compensation }+\beta_{3} \text { net_surplus }+\epsilon
\end{aligned}
$$

- SDM:

$$
\begin{aligned}
\text { cap_cons }= & \beta_{0}+\rho W_{1} \text { cap_cons }+\gamma_{1} W_{2} \text { compensation } \\
& +\beta_{1} \text { compensation }+\beta_{3} \text { net_surplus }+\epsilon
\end{aligned}
$$

SAR

Time constant spatial weights

	Number of obs	$=$	1358
Panel Variable (i): ID	Number of groups	$=$	62
Time Variable (t): Year	Obs. of group:		22
		min	$=$
avg	$=$	19	
		max	$=$
		$=$	22
	R-squared	0.77	
	Adj.R-squared	$=$	0.77

cap_cons	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf. Interval]	
compensation	-.7195389	.0123628	-58.20	0.000	-.767359	-.6791014
net_surplus	-.7595604	.014257	-53.28	0.000	-.8046761	-.708425
_cons	.7214415	.0117927	61.18	0.000	.6828125	.7663866
W						
	cap_cons	.120138	.0247156	4.86	0.000	.038

Example

Time varying spatial weight

- Network data in timesparse format as mata matrix W. ${ }^{1}$
- Especially for large datasets gains in speed and memory are considerable. Example
- The first column identifies the year, second and third the IDs and the last one the value of the weight.
- Non standardized timesparse W:
. mata $W[1 . .4,$.

1	2	3	4	
	1	1	1	120.445105
2	1997	1997	1	2
3	1997	1	3	0
4	1997	1	4	1594.653373

${ }^{1}$ Often called Coordinate (COO) list format.

SDM

	Number of obs	=	1358
Panel Variable (i): ID	Number of groups	=	62
Time Variable (t): Year	Obs. of group:		22
	min	$=$	19
	avg	$=$	22
	max	=	22
	R-squared	=	0.77
	Adj. R-squared	$=$	0.77

| cap_cons | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| compensation | -.7015208 | .0123799 | -56.67 | 0.000 | -.7482582 | -.6556848 |
| net_surplus | -.7472091 | .0141113 | -52.95 | 0.000 | -.7920688 | -.6965197 |
| _cons | .7730435 | .0143202 | 53.98 | 0.000 | .7288873 | .8187064 |
| W | | | | | | |
| | | | | | | |
| cap_cons | .031389 | .0283132 | 1.11 | 0.268 | -.054 | .119 |
| compensation | -.0895239 | .0181129 | -4.94 | 0.000 | -.1565037 | -.0227881 |

SDM

Direct Indirect Effects

\| 10	50	30	40	50		
	100					
Average Impacts				Number	obs =	1358
cap_cons	dy/dx	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
direct						
compensation	-. 7002594	. 0124331	-56.32	0.000	-. 7490398	-. 6526457
net_surplus	-. 7472824	. 0141128	-52.95	0.000	-. 7922827	-. 6965584
indirect						
compensation	. 7741688	. 014668	52.78	0.000	. 7288423	. 8191533
net_surplus	-. 0248066	. 0225161	-1.10	0.271	-. 1018671	. 0382383
total						
compensation	. 0739094	. 0151583	4.88	0.000	. 0152978	. 1373628
net_surplus	-. 772089	. 027054	-28.54	0.000	-. 8611195	-. 6896129

Conclusion

- nwxtregress extends spxtregress:
- Allows for unbalanced datasets and time varying spatial weight matrices
- Spatial weights can be directly loaded from datasets, frames, mata matrices or spmatrix objects.
- Available on GitHub (https://janditzen.github.io/nwxtregress/) or directly in Stata:

> net install nwxtregress,
> from(https://janditzen.github.io/nwxtregress/)

- Please, help us by providing feedback

References I

Kelejian, H., and G. Piras. 2017. Spatial Econometrics. Academic Press.
LeSage, J. P., and R. K. Pace. 2009. Introduction to Spatial Econometrics. Florida CRC Press.

nwxtregress ${ }^{2}$

Syntax

Spatial Autocorrelation Model (SAR)
nwxtregress depvar indepvars [if], dvarlag(W1[,options1)])
[mcmc_options options2]
Spatial Durbin Model (SDM)
nwxtregress depvar indepvars [if],dvarlag(W1[,options1)]) ivarlag(W2[,options1) [mcmc_options options2]

- W1 and W2 define spatial weight matrices, default is Sp object.

[^0]
nwxtregress

Spatial Weight Options

```
nwxtregress depvar indepvars[if],dvarlag(W1[,options1)])
[ ivarlag(W2[,options1) mcmc_options options2]
```

- options1 controls the spatial weight matrices:
- mata declares weight matrix is mata matrix.
- sparse if weight matrix is sparse.
- timesparse weight matrix is sparse and varying over time.
- frame (name) use spatial weight from frame.
- id (string) vector of IDs if W is a non sparse mata matrix.
- zero(real) how to treat zeros in spatial weight matrix when using (time) sparse matrices.

nwxtregress

Further Options
nwxtregress depvar indepvars [if], dvarlag(W1[options1)])
[ivarlag(W2[,options1) mcmc_options options2]

- options2 are:
- nosparse do not convert weight matrix internally to a sparse matrix.
- noconstant suppress constant.
- fe add fixed effects.
- absorb() absorb fixed effects using reghdfe
- mcmc_options control the Markov Chain Monte Carlo Details
- python use Python to calculate $|I-\rho W|$
- usebp use BarryPace trick instead of LUD for $|I-\rho W|$.

Weight Matrices

Square

Square matrix format

- The spatial weights are a matrix with dimension $N_{g} \times N_{g}$. It is time constant. An Example for a 5×5 matrix is:

Weight Matrices

Sparse format

- The sparse matrix format is a $v \times 3$ matrix, where v is the number of non-zero elements in the spatial weight matrix.
- The weight matrix is time constant. The first column indicates the destination, the second the origin of the flow. A sparse matrix of the matrix from above is:

Destination	Origin	Flow
1	2	0.1
1	3	0.2
2	3	0.1
2	4	0.2
3	1	0.3
3	2	0.1
4	1	0.2
4	3	0.2

Weight Matrices

Time-Sparse format

- The time sparse format can handle time varying spatial weights.
- The first column indicates the time period, the remaining are the same as for the sparse matrix. For example, if there are two time periods and we have the matrix from above for the first and the square for the second period:

Time	Destination	Origin	Flow
1	1	2	0.1
1	1	3	0.2
1	2	3	0.1
1	2	4	0.2
1	3	1	0.3
1	3	2	0.1
1	4	1	0.2
1	4	3	0.2
	(next time period)		
2	1	2	0.1
2	1	3	0.4
2	2	3	0.1
2	2	4	0.4
2	3	1	0.9
2	3	2	0.1
2	4	1	0.4
2	4	3	0.4

Example Sparse Matrix

- Contiguity matrix for 100 units.
- Total number of elements in W: 10,000 (100×100).
- Non-zero elements: 200, 9800 elements are zero.
- Square matrix will consume 80,000bytes (in mata).
- COO matrix with 3×200 elements will consume 2,400 bytes.
- Calculation ρW on square matrix implies 10,000 mathematical operations, but only 200 lead to a non-zero result!
- Using COO matrix will limit the mathematical operations to 200 !

mcmc_options back

Control the Markov Chain Monte Carlo:

- python use Python to calculate $|I-\rho W|$
- draws (integer 2000) number of griddy gibs draws.
- gridlength(integer 1000) grid length
- nomit(integer 500) number of omitted draws
- barrypace(numlist) settings for BarryPace Trick, iterations, maxorder default: 50100
- usebp use BarryPace trick instead of LUD for $|I-\rho W|$.
- seed(\#) sets the seed.

Partial derivatives are no longer β s

back

- In traditional model:

$$
\frac{\partial y_{i}}{\partial x_{i}}=\beta, \text { and } \frac{\partial y_{i}}{\partial x_{j}}=0, i \neq j
$$

- In the model with interactions:

$$
\frac{\partial y_{i}}{\partial x_{j}}=(I-\rho W)_{i j}^{-1} \beta, \forall i, j
$$

- Listing all partial derivatives is impractical.
- LeSage and Pace (2009) propose summarizing partial derivative estimates into direct and indirect effect averages:
- Direct: $\frac{1}{N} \sum_{i} \frac{\partial y_{i}}{\partial x_{i}}$
- Indirect: $\frac{1}{N} \sum_{i} \sum_{j \neq i} \frac{\partial y_{i}}{\partial x_{j}}$

[^0]: ${ }^{2}$ This command is work in progress. Options, functions and results might change.

