Yulia Marchenko

Vice President, Statistics and Data Science StataCorp LLC

2022 UK Stata Conference

Outline

What's new? What is a Bayesian multilevel model? Why Bayesian multilevel models? School data Random-intercept (panel-data) model Bayesian random-intercept model Bayesian random-coefficients and higher-level models Bayesian multilevel models using bayesmh Summary Additional resources References

What's new in Bayesian multilevel modeling in Stata 17?

- New flexible and powerful multilevel syntax in bayesmh allows you to fit:
- nonlinear multilevel models;
- SEM-type models;
- joint longitudinal and survival models; and, more generally,
- multivariate (multiple-equation) linear and nonlinear multilevel models.
- New multivariate normal prior distributions for random effects with specialized covariance matrices such as exchangeable and identity
- Exchangeable covariance structures, covariance(exchangeable), are now supported with bayes:mixed.
- Gibbs sampling for normally-distributed random effects with multilevel models with normal error terms.

What is a Bayesian multilevel model?

What is a Bayesian multilevel model?

- Multilevel models are regression models that incorporate group-specific effects at different levels of hierarchy.
- Group-specific effects at different hierarchical levels may be nested or crossed.
- Group-specific effects are assumed to vary randomly across groups according to some a priori distribution, commonly a normal distribution.
- This assumption makes multilevel models natural candidates for Bayesian analysis.
- Bayesian multilevel models additionally assume that other model parameters such as regression coefficients and variance components—variances of group-specific effects—are also random.

Why Bayesian multilevel models?

Why Bayesian multilevel models?

- You might want to use Bayesian analysis:
 - to incorporate external prior information;
 - when it is more natural to express a research objective using probability statements such as how likely a product is to fail under warranty.
 - to compute an actual probability for a hypothesis of interest;and more.
- In addition to standard reasons for Bayesian analysis, Bayesian multilevel modeling is often used when the number of groups is small or in the presence of many hierarchical levels.
- Various Bayesian information criteria are popular for comparing multilevel models.
- When the comparison of groups is of main interest, Bayesian multilevel modeling can provide entire distributions of group-specific effects.
- Also, variances of group-specific effects incorporate the uncertainty about all estimated model parameters!

School data

School data

• Consider data from Mortimore et al. (1988) on 887 math scores of pupils in the third and fifth years from 48 different schools in inner London.

webuse	mathscores

. describe

```
Contains data from https://www.stata-press.com/data/r17/mathscores.dta
```

Observations: Variables:		887 3		9 May 2020 23:31		
Variable name	Storage type	Display format	Value label	Variable label		
school math3 math5	float float float	%9.0g %9.0g %9.0g		School ID Year 3 math score Year 5 math score		

Sorted by:

• Let's examine the first 10 schools:

- . sort school math3
- . graph twoway (scatter math5 math3, mlabel(school)) (lfit math5 math3) if school<=10

School data

Random-intercept (panel-data) model

Classical inference

Linear random-intercept model

- Suppose we are interested in estimating school-specific effects.
- We can fit a linear random-intercept model:

$$\begin{split} \mathtt{math5}_{ij} &= \beta_0 + u_{0j} + \beta_1 \mathtt{math3}_{ij} + \epsilon_{ij} \\ \epsilon_{ij} &\sim \mathrm{Normal}(0, \sigma^2) \\ u_{0j} &\sim \mathrm{Normal}(0, \sigma_0^2) \end{split}$$

for j = 1, ..., 48 schools and $i = 1, ..., n_j$ pupils in school j.

- u_{0j} is a random effect (intercept) at the school level, and represents an upward or downward shift in performance from the overall regression line.
- σ^2 represents the within-school variability and σ_0^2 —the between-school variability.

Random-intercept (panel-data) model

Classical inference

• Let's first use mixed to fit this model:

. mixed math5	math3 school	:							
Mixed-effects	Mixed-effects ML regression Number of obs = 887								
Group variable	e: school			Number	of groups =	48			
-				Obs per	group:				
				-	min =	5			
						18.5			
					max =	62			
				Wald ch	i2(1) =	347.92			
Log likelihood	1 = -2767.8923			Prob >	chi2 =	0.0000			
math5	Coefficient St	td. err.	z	P> z	[95% conf	. interval]			
math3	.6088066 .0	0326392 1	8.65	0.000	.5448349	.6727783			
_cons	30.36495 .3	3491544 8	6.97	0.000	29.68062	31.04928			
Random-effec	cts parameters	Estimate	Std	. err.	[95% conf	. interval]			
school: Identi	school: Identity								
	<pre>var(_cons)</pre>	4.026853	1.1	89895	2.256545	7.186004			
	var(Residual)	28.12721	1.	37289	25.5611	30.95094			
LR test vs. li	inear model: chil	par2(01) = 5	6.38	P	rob >= chiba	r2 = 0.0000			

Random-intercept (panel-data) model

Classical inference

- We can predict the random (school) effects and their standard errors after fitting mixed:
 - . predict re, reffects reses(se)

. sort school

. list school re se if school!=school[_n+1] & school<10

	school	re	se
25. 35. 43. 67.	1 2 3 4	-2.676116 0152072 1.058414 -2.122366	.9377579 1.286861 1.370049 .9527702
92. L05.	6	.6523949	1.186348
15. 41. 62.	7 8 9	1.536003 .4360111 -1.988043	1.286861 .9234335 1.002539

- In the above, we listed only the first nine schools.
- The reported random-effects standard errors are conditional on the estimated regression coefficients and variance components.

- To fit a Bayesian random-intercept model, we need to formulate prior distributions in addition to the likelihood model.
- Let's consider the following prior distributions:

$$eta_i \sim ext{Normal}(0,10000), \ i = 0, 1$$

 $\sigma^2 \sim ext{InvGamma}(0.01, 0.01)$
 $\sigma_0^2 \sim ext{InvGamma}(0.01, 0.01)$

• To fit the model, we simply prefix mixed with bayes:.

. set seed 12345			
 bayes, melabel: mixed math5 math3 school: note: Gibbs sampling is used for regression coef components. 	ficients and vari	ance	
Burn-in 2500 aaaaaaaa1000aaaaaaa2000aaaaa dor Simulation 10000	e 3000	4000 .10000	5 done
Bayesian multilevel regression	MCMC iterations	=	12,500
Metropolis-Hastings and Gibbs sampling	Burn-in	=	2,500
	MCMC sample size	=	10,000
Group variable: school	Number of groups	=	48
	Obs per group:		
	min	=	5
	avg	=	18.5
	max	=	62
	Number of obs	=	887
	Acceptance rate	=	.8102
	Efficiency: min	=	.03923
	avg	=	.3628
Log marginal-likelihood	max	=	.7226

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
math5						
math3	.6081648	.0327236	.000428	.6077114	.5450497	.6728088
_cons	30.36912	.3570318	.018026	30.36653	29.67139	31.08675
school						
var(_cons)	4.314708	1.337713	.041102	4.146655	2.215281	7.493345
var(Residual)	28.26249	1.387124	.016318	28.22386	25.67543	31.11543

Note: Default priors are used for model parameters.

- We used option melabel to obtain output similar to that of mixed for easier comparison of the results.
- The reported estimates of posterior means and posterior standard deviations for model parameters are similar to the corresponding MLEs and standard errors reported by mixed.

• Here is the output from bayes:mixed without the melabel option.

```
. bayes
```

Multilevel structure

school

{UO}: random intercepts

```
Model summary
```

(1) Parameters are elements of the linear form xb_math5.

Bayesian multilevel regression	MCMC iterations =	12,500
Metropolis-Hastings and Gibbs sampling	Burn-in =	2,500
	MCMC sample size =	10,000
Group variable: school	Number of groups =	48
	Obs per group:	
	min =	5
	avg =	18.5
	max =	62
	Number of obs =	887
	Acceptance rate =	.8102
	Efficiency: min =	.03923
	avg =	.3628
Log marginal-likelihood	max =	.7226

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
math5						
math3	.6081648	.0327236	.000428	.6077114	.5450497	.6728088
_cons	30.36912	.3570318	.018026	30.36653	29.67139	31.08675
school						
U0:sigma2	4.314708	1.337713	.041102	4.146655	2.215281	7.493345
e.math5						
sigma2	28.26249	1.387124	.016318	28.22386	25.67543	31.11543

Note: Default priors are used for model parameters.

• Let's describe it in pieces.

. bayes

Multilevel structure

school

{UO}: random intercepts

Model summary

```
Likelihood:

math5 ~ normal(xb_math5,{e.math5:sigma2})

Priors:

{math5:math3 _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)

{e.math5:sigma2} ~ igamma(.01,.01)

Hyperprior:

{U0:sigma2} ~ igamma(.01,.01)
```

(1) Parameters are elements of the linear form xb_math5.

- The header includes additional information about the fitted Bayesian model.
- Parameter {U0} represents random intercepts in the model.
- Regression coefficients {math5:math3} and {math5:_cons} are assigned default normal priors with zero means and variances of 10,000.
- The variance component for schools {U0:sigma2} and error variance {e.math5:sigma2} are assigned default inverse-gamma priors with 0.01 for both the shape and scale parameters.

• The rest of the header is the same as with option melabel.

Bayesian multilevel regression	MCMC iterations =	12,500
Metropolis-Hastings and Gibbs sampling	Burn-in =	2,500
	MCMC sample size =	10,000
Group variable: school	Number of groups =	48
	Obs per group:	
	min =	5
	avg =	18.5
	max =	62
	Number of obs =	887
	Acceptance rate =	.8102
	Efficiency: min =	.03923
	avg =	.3628
Log marginal-likelihood	max =	.7226

• In the output table, the results are the same, but the parameter labels are different.

					Equal-tailed	
	Mean	Std. dev.	MCSE	Median	[95% cred.	interval]
math5						
math3	.6081648	.0327236	.000428	.6077114	.5450497	.6728088
_cons	30.36912	.3570318	.018026	30.36653	29.67139	31.08675
school						
U0:sigma2	4.314708	1.337713	.041102	4.146655	2.215281	7.493345
e.math5						
sigma2	28.26249	1.387124	.016318	28.22386	25.67543	31.11543

Note: Default priors are used for model parameters.

- Without option melabel, bayes:mixed displays results using parameter names as you would use when referring to these parameters in bayes's options or during postestimation.
- For example, you would use {U0:sigma2} to refer to the variance component for schools and {e.math5:sigma2} to refer to the error variance.

- Bayesian random-intercept model
 - Random-effects parameters

Random-effects parameters

- The term *random effects*, representing subject-specific effects, is not well suited for Bayesian multilevel models, because all effects or parameters are considered random within the Bayesian framework. But we will use it for consistency with classical multilevel models.
- Unlike frequentist multilevel models, Bayesian multilevel models do not integrate "random effects" out but estimate them together with other model parameters.
- Thus, random effects are treated as model parameters just like regression coefficients and variance components.
- The bayes prefix does not report them by default because there are often too many of them.
- But you can display them during or after estimation.

• Let's replay the estimation, adding option showreffects() to display the estimates of the first nine random intercepts.

. bayes, showreffects({U0[1/9]})

(header omitted)

					Equal-	tailed
	Mean	Std. dev.	MCSE	Median	[95% cred.	interval]
math5						
math3	.6081648	.0327236	.000428	.6077114	.5450497	.6728088
_cons	30.36912	.3570318	.018026	30.36653	29.67139	31.08675
U0[school]						
1	-2.701971	1.007584	.033658	-2.688302	-4.677831	7650245
2	0929602	1.323015	.031586	0791454	-2.6954	2.444911
3	1.083833	1.367884	.03335	1.078927	-1.577482	3.887134
4	-2.143734	.9656367	.029863	-2.107032	-4.124594	2722371
5	0531935	1.00176	.031622	0485564	-2.078467	1.801151
6	.69567	1.178609	.030849	.7392095	-1.686727	2.894298
7	1.552796	1.352609	.033462	1.595416	-1.145189	4.14544
8	.4141391	.9612695	.030266	.391018	-1.505493	2.302713
9	-1.992744	1.086797	.032749	-1.969235	-4.130665	.124332
school						
U0:sigma2	4.314708	1.337713	.041102	4.146655	2.215281	7.493345
e.math5						
sigma2	28.26249	1.387124	.016318	28.22386	25.67543	31.11543

Note: Default priors are used for model parameters.

Bayesian random-intercept model

Random-effects parameters

- Posterior mean estimates of random effects are similar to the ones predicted after mixed.
- Posterior standard deviations tend to be larger than the corresponding standard errors of the random effects predicted after mixed because they incorporate the uncertainty about the estimated regression coefficients and variance components.

- Bayesian random-intercept model
 - Random-effects parameters
 - We can even plot the posterior distributions of the random effects. For example, let's look at the posterior distributions of the random intercepts for the first nine schools.

. bayesgraph histogram {U0[1/9]}, byparm

Bayesian random-intercept model

Graphical diagnostics of MCMC convergence

MCMC convergence

- We can check convergence and sampling efficiency of the MCMC for random-effects parameters just like any other model parameter.
- For example, here are graphical MCMC diagnostics for the first random effect:

. bayesgraph diagnostics {U0[1]}

Yulia Marchenko (StataCorp)

Log marginal likelihood

Log marginal likelihood

- Notice from the header that the LML is not reported.
- As I mentioned earlier, Bayesian multilevel models may contain many model parameters, which include random-effects parameters.
- For models with many parameters, the computation of the LML can be time consuming, and its accuracy may become unacceptably low.
- Thus, the LML is not computed by default for multilevel models, but you can specify option remargl during estimation or on replay to compute it.
- LML is needed, for instance, if you want to compare Bayesian models using Bayes factors or using model posterior probabilities.

Log marginal likelihood

• To demonstrate, let's compute the LML on replay.

. bayes, remargl		
(output omitted)		
Bayesian multilevel regression	MCMC iterations =	12,500
Metropolis-Hastings and Gibbs sampling	Burn-in =	2,500
	MCMC sample size =	10,000
Group variable: school	Number of groups =	48
	Obs per group:	
	min =	5
	avg =	18.5
	max =	62
	Number of obs =	887
	Acceptance rate =	.8102
	Efficiency: min =	.03923
	avg =	.3628
Log marginal-likelihood = -2801.7616 (output omitted)	max =	.7226

Convergence diagnostics using multiple chains

Convergence diagnostics using multiple chains

- We can use option nchains() with bayes: or bayesmh to generate multiple chains.
- And we can then use command bayesstats grubin to compute Gelman-Rubin convergence diagnostics for model parameters.
- Continuing with our previous linear random-intercept model, let's generate four chains and check convergence more formally.

Bayesian random-intercept model

Convergence diagnostics using multiple chains

. baves, nchains(4) rseed(12345): mixed math5 math3 || school: note: Gibbs sampling is used for regression coefficients and variance components. Chain 1 Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done Chain 2 Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done Chain 3 Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done Chain 4 Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done (prior information omitted)

Bayesian multilevel regression Metropolis-Hastings and Gibbs sampling	Number of chains Per MCMC chain:	=	4
	Iterations	=	12,500
	Burn-in	=	2,500
	Sample size	=	10,000
Group variable: school	Number of groups	=	48
	Obs per group:		
	min	=	5
	avg	=	18.5
	max	=	62
	Number of obs	=	887
	Avg acceptance rate	=	.812
	Avg efficiency: min	=	.04044
	avg	=	.3583
	max	=	.7284
Log marginal-likelihood	Max Gelman-Rubin Rc	=	1

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
math5						
math3	.6087103	.0325995	.00022	.6085895	.5448259	.672861
_cons	30.36082	.3559451	.00885	30.3587	29.66591	31.07091
school						
U0:sigma2	4.306511	1.336795	.019883	4.124045	2.23513	7.476504
e.math5						
sigma2	28.26538	1.380569	.008088	28.22864	25.68559	31.10292

Note: Default priors are used for model parameters.

Note: Default initial values are used for multiple chains.

Bayesian random-intercept model

Convergence diagnostics using multiple chains

- The summary information in the header and the estimation results are based on the four simulated chains.
- bayes: automatically reported the maximum value of the Gelman-Rubin statistic across all model parameters (excluding random effects).
- This value is less than 1.1, so we do not suspect convergence problems with this model.

- We can use bayesstats grubin to check diagnostics for some of the random effects.
- Let's do this for the first nine random effects, sorted from largest to smallest diagnostic values.

. bayesstats grubi	n {U0[1/9]}, sort
Gelman-Rubin conve	rgence diagnostic
Number of chains	= 4
MCMC size, per cha	in = 10,000
Max Gelman-Rubin R	.c = 1.001297

		Rc
U0[school]		
5		1.001297
4		1.000745
1		1.000586
9		1.000525
3		1.000452
2	2	1.00044
6		1.00034
7		1.000297
8		1.000111

Convergence rule: Rc < 1.1

• All values are less than 1.1.

Bayesian random-intercept model

Convergence diagnostics using multiple chains

• We can also explore all four chains graphically, for say, the first random effect:

. bayesgraph diagnostics {U0[1]}

• The results from all four chains agree.

Bayesian random-coefficients and higher-level models

Bayesian random-coefficients and higher-level models

- Similarly to classical multilevel models, we can fit other more complicated random-effects models by simply prefixing the corresponding mixed command with bayes:.
- A random-coefficient model assuming independence between random intercepts and random coefficients:

. bayes: mixed math5 math3 || school: math3

• A random-coefficient model with an unstructured covariance matrix for random intercepts and random coefficients:

. bayes: mixed math5 math3 || school: math3, covariance(unstructured)

• A three-level random-intercept model:

. bayes: mixed math5 math3 || school: || teacher:

Bayesian multilevel models using bayesmh

Bayesian multilevel models using bayesmh

- bayes: is convenient for fitting Bayesian multilevel models, but it is not as powerful or as flexible as bayesmh.
- For instance, you can relax the assumption of normality for random effects by using bayesmh.
- And now the new multilevel syntax of bayesmh allows you to fit more sophisticated models including nonlinear, multiple-equation linear, and multiple-equation nonlinear multilevel models. (The latter class of models is supported only by bayesmh!)

- Bayesian multilevel models using bayesmh
 - └─ Multilevel syntax of bayesmh

Multilevel syntax of bayesmh

- If you use sem, gsem, or menl, the multilevel syntax of bayesmh is the same, except:
 - you can specify crossed random effects U[id1#id2] in addition to nested random effects U[id1>id2], and
 - you use L[_n] instead of simply L to specify latent factors.
- You can use any capitalized names in place of U and L above to specify random effects and latent factors.
- You can define random effects at various levels of hierarchy, U[id1], U[id1>id2], U[id1>id2>id3] and mix and match nested and crossed factors, U[id1#id2<id3].
- You can interact random intercepts with covariates to include random coefficients: c.age#U_age[id],

1.treat#U_trt1[id1>id2], and so on.

- And you can include random-effects and latent terms in nonlinear expressions!
- See section *Random effects* under *Remarks and examples* in **[BAYES] bayesmh** for details.

- Bayesian multilevel models using bayesmh
 - Random-intercept model using bayesmh

Random-intercept model using bayesmh

• Let's see how we can fit a random-intercept model using bayesmh:

```
. bayesmh math5 math3 U[school], likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var_U var}, igamma(0.01, 0.01) split)
```

- With bayesmh, we must specify the likelihood() model.
- U[school] is a random intercept {U} at the school level.
- By default, it is assumed to have a normal prior with mean 0 and variance {var_U}.
- But you must specify a prior for its variance and all other parameters!
- New suboption split within prior() specifies the same independent priors for the listed parameters.

• Let's fit the random-intercept model using bayesmh.

```
. set seed 12345
. bayesmh math5 math3 U[school], likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var_U var}, igamma(0.01, 0.01) split) dots
Burn-in 2500 aaaaaaaaa1000aaaaaaaa2000aaaa. done
Simulation 10000 ......1000......2000......3000.....4000.....5
> 000......6000......7000......8000.....9000.....10000 done
Model summary
Likelihood:
math5 ~ normal(xb_math5,{var})
Priors:
```

```
{math5:math3 _cons} ~ normal(0,10000) (1)
    {U[school]} ~ normal(0,{var_U}) (1)
    {var} ~ igamma(0.01,0.01)
```

Hyperprior:
 {var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_math5.

MCMC iterati	ons	=	12,500
Burn-in		=	2,500
MCMC sample	size	=	10,000
Number of ob	s	=	887
Acceptance r	ate	=	.2169
Efficiency:	min	=	.01418
	avg	=	.01643
	max	=	.01914

Log marginal-likelihood

Bayesian normal regression

Random-walk Metropolis-Hastings sampling

		Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
math5							
m	ath3	.6073655	.0304029	.002197	.6081756	.546117	.6630448
-	cons	30.36476	.3355963	.027645	30.3647	29.68375	31.00273
v	var var_U	28.23198 4.303251	1.417103 1.265079	.119004 .095186	28.22811 4.142379	25.48952 2.316004	31.08209 7.424923

```
// save MCMC results for later comparison
. bayesmh, saving(ri_nn_mcmc)
note: file ri_nn_mcmc.dta saved.
. estimates store ri nn
```

• The estimates are similar to those from bayes:mixed. We also saved MCMC results for later comparison.

Full Gibbs sampling

• To increase efficiency, we can use Gibbs sampling for all model parameters, including random effects.

```
. set seed 12345
. bayesmh math5 math3 U[school], likelihood(normal({var})) ///
> prior({math5:}, normal(10000)) ///
> prior({var_U var}, igamma(0.01, 0.01) split) dots ///
> block({math5:}, gibbs) block({var var_U U}, gibbs split)
```

```
Burn-in 2500 aaaaaaaaa1000aaaaaaaa2000aaaaa done
Simulation 10000 .......1000.......2000.......3000.......4000......5
> 000.......6000.......7000.......8000......9000......10000 done
Model summary
```

```
Likelihood:

math5 ~ normal(xb_math5,{var})

Priors:

{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)

{var} ~ igamma(0.01,0.01)

Hyperprior:

{var_U} ~ igamma(0.01,0.01)
```

(1) Parameters are elements of the linear form xb_math5.

Bayesian normal regression	MCMC iterations =	12,500
Gibbs sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	887
	Acceptance rate =	1
	Efficiency: min =	.142
	avg =	.5516
Log marginal-likelihood	max =	.8807

Log marginar fikerinood

		Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
math5							
	math3	.6087841	.0325005	.000347	.6088714	.5451194	.6721316
	_cons	30.36373	.3641346	.009664	30.36565	29.63633	31.06866
	var var_U	28.2785 4.343227	1.377501 1.318911	.014678 .023915	28.22166 4.169909	25.72931 2.297055	31.12469 7.386686

• Sampling efficiencies are much higher now for all parameters.

- Bayesian multilevel models using bayesmh
 - Bayesian random-intercept model with Student's *t* errors

Bayesian random-intercept model with Student's t errors

• Let's relax the normality assumption of the error term in our Bayesian random-intercept model:

$$e_{ij} \sim t(0, sc^2, df)$$

where sc is the scale parameter and df is the degrees of freedom.

Bayesian multilevel models using bayesmh

Bayesian random-intercept model with Student's *t* errors

```
. set seed 12345
```

```
. bayesmh math5 math3 U[school], likelihood(t({sc2}, {df}))
```

```
> prior({math5:}, normal(10000))
```

```
> prior({var_U} {sc2}, igamma(0.01, 0.01))
```

```
> prior({df}, uniform(0,1000))
```

```
> block({sc2 df}) saving(ri_nt_mcmc) dots
```

```
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
```

```
Model summary
```

```
Likelihood:

math5 ~ t(xb_math5,{sc2},{df})

Priors:

{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)

{sc2} ~ igamma(0.01,0.01)

{df} ~ uniform(0,1000)

Hyperprior:

{var_U} ~ igamma(0.01,0.01)
```

(1) Parameters are elements of the linear form xb_math5.

Bayesian multilevel models using bayesmh

Bayesian random-intercept model with Student's *t* errors

Bayesian t regression		MCMC iteratio	ons	=	12,500
Random-walk Metropolis-Hastings :	sampling	Burn-in		=	2,500
		MCMC sample :	size	=	10,000
		Number of obs	5	=	887
		Acceptance ra	ate	=	.2713
		Efficiency:	min	=	.01434
			avg	=	.05264
Log marginal-likelihood			max	=	.08265

		Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
math5							
	math3	.5902118	.0322714	.001186	.5903328	.5236286	.6536404
	_cons	30.7968	.3565133	.029768	30.80539	30.06264	31.47062
	sc2	18.66776	1.730679	.060198	18.59467	15.31439	22.07594
	df	5.85193	1.315771	.048748	5.6429	3.887774	8.945624
	var_U	4.124481	1.256536	.090361	3.940338	2.269366	7.121272

file ri_nt_mcmc.dta saved.

. estimates store ri_nt

• The estimate of the df parameter is about 6 with a 95% Crl of (3.9, 8.9), which suggests somewhat heavier tails for the error-term distribution.

Yulia Marchenko (StataCorp)

Bayesian multilevel models using bayesmh

Student's *t* random-effects distribution

Student's t random-effects distribution

- The normal distribution is typically assumed for subject-specific random effects *u*_{0*i*}'s.
- But we can relax this assumption and model random effects using, say, a Student's *t* distribution:

$$u_{0j} \sim t(0, sc_u^2, df_u)$$

where sc_u is the scale parameter and df_u is the degrees of freedom.

Bayesian multilevel models using bayesmh

Student's *t* random-effects distribution

```
. set seed 12345
. bayesmh math5 math3 U[schoo1], likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({U}, t(0,{sc2_U},{df_U}))
> prior({sc2_U var}, igamma(0.01, 0.01) split)
> prior({df_U}, uniform(0,1000))
> block({sc2_U df_U}) saving(ri_tn_mcmc) dots
```

```
Burn-in 2500 aaaaaaaaa1000aaa.....2000..... done
Simulation 10000 .......1000......2000.......3000.......4000......5
> 000.......6000.......7000.......8000......9000......10000 done
Model summary
```

```
Likelihood:

math5 ~ normal(xb_math5,{var})

Priors:

{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ t(0,{sc2_U},{df_U}) (1)

{var} ~ igamma(0.01,0.01)

Hyperpriors:

{sc2_U} ~ igamma(0.01,0.01)

{df_U} ~ uniform(0,1000)
```

(1) Parameters are elements of the linear form xb_math5.

Bayesian multilevel models using bayesmh

Student's t random-effects distribution

Bayesian normal regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	887
	Acceptance rate =	.2233
	Efficiency: min =	.01916
	avg =	.05082
Log marginal-likelihood	max =	.1038

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
math5						
math3	.6096901	.0334464	.001546	.6106509	.5449196	.674595
_cons	30.3634	.3393116	.024514	30.35326	29.70554	31.0354
var	28.22595	1.313612	.06295	28.14754	25.70595	30.85718
sc2_U	4.270535	1.26931	.062858	4.159509	2.202217	7.239853
df_U	517.2	282.73	8.77644	511.7186	36.58858	975.0253

file ri_tn_mcmc.dta saved.

. estimates store ri_tn

• The estimate of df for the random-effects distribution, {df_U}, is about 517. Given its large value, the normal random-effects distribution is preferable to the *t* distribution. Bayesian multilevel models using bayesmh

Student's *t* random-effects and error distributions

Student's t random-effects and error distributions

• We can relax the normality assumption for both random effects and error terms:

$$e_{ij} \sim t(0, sc^2, df)$$

 $u_{0j} \sim t(0, sc_u^2, df_u)$

where sc and sc_u are the respective scale parameters and df and df_u are the degrees-of-freedom parameters.

• From the previous slide, there is no need to use the *t* distribution for random effects in our example, but let's do this for completeness.

Bayesian multilevel models using bayesmh

Student's *t* random-effects and error distributions

```
. set seed 12345
. bayesmh math5 math3 U[school], likelihood(t({sc2},{df}))
> prior({math5:}, normal(10000))
> prior({U}, t(0,{sc2_U},{df_U}))
> prior({u}, t(0,{sc2_U},{df_U}))
> prior({sc2_U sc2}, igamma(0.01, 0.01) split)
> prior({df_U df}, uniform(0,1000))
> block({sc2_U df_U}) block(sc2 df) saving(ri_tt_mcmc) dots
```

```
Likelihood:

math5 ~ t(xb_math5,{sc2},{df})

Priors:

{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ t(0,{sc2_U},{df_U}) (1)

{sc2} ~ igamma(0.01,0.01)

{df} ~ uniform(0,1000)

Hyperpriors:

{sc2_U} ~ igamma(0.01,0.01)

{df_U} ~ uniform(0,1000)
```

Bayesian multilevel models using bayesmh

LStudent's *t* random-effects and error distributions

Bayesian t regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	887
	Acceptance rate =	.2363
	Efficiency: min =	.02143
	avg =	.06284
Log marginal-likelihood	max =	.09383

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
math5						
math3	.592927	.0329479	.001365	.5932803	.5294996	.659188
_cons	30.83308	.3391586	.023171	30.82126	30.17718	31.52452
sc2	18.52484	1.758456	.060697	18.45145	15.37084	22.17011
df	5.843741	1.374977	.047419	5.592489	3.779647	9.112901
sc2_U0	4.006495	1.12213	.059537	3.856532	2.306424	6.635418
df_U0	504.5605	287.3822	9.38173	505.4225	29.11466	970.731

file ri_tt_mcmc.dta saved.

. estimates store ri_tt

Bayesian multilevel models using bayesmh

└─ Model comparison

Model comparison

. bayesstats ic ri_nn ri_tn ri_nt ri_tt, diconly

Deviance information criterion

	DIC
ri_nn	5514.742
ri_tn	5515.442
ri_nt	5477.963
ri_tt	5477.744

- DIC is the smallest for the ri_tt model with both errors and random effects distributed according to t().
- But given the large estimate of the df for the random-effects distribution, the ri_nt model with normal random effects and t() errors would be better in practice.
- In the above, we computed the so-called conditional DIC. But other information criteria might be more suitable for some multilevel models (Merkle, Furr, Rabe-Hesketh 2019).

- Bayesian multilevel models using bayesmh
 - Random-coefficients and higher-level models

Random-coefficients and higher-level models

• A random-coefficient model assuming independence between random intercepts and random coefficients:

```
. bayesmh math5 math3 U0[school] c.math3#U1[school],
> likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var.U0 var.U1 var}, iganma(0.01, 0.01) split)
```

 A random-coefficient model with an unstructured covariance matrix for random intercepts and random coefficients:

```
. bayesmh math5 math3 U0[school] c.math3#U1[school],
> likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var}, igamma(0.01, 0.01))
> prior({U0 U1}, mvn(2,0,0,Sigma,m))
> prior({Sigma,m}, iwishart(2,3,I(2)))
```

• A three-level random-intercept model:

```
. bayesmh math5 math3 U[school] UU[teacher<school],
> likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var.U var.UU var}, igamma(0.01, 0.01) split)
```

Bayesian multilevel models using bayesmh

Nonlinear multilevel models

Nonlinear multilevel models

• Consider the following logistic growth model

$$y_{ij} = \frac{C_i}{1 + d \times C_i \times e^{-B_i \times t_{ij}}} + \epsilon_{ij}$$

for measurements y_{ij} 's on subjects i = 1, 2, ..., I at times t_{ij} for $j = 1, 2, ..., n_i$.

- Error terms $\epsilon_{ij} \sim N(0, \sigma^2)$.
- Random effects $(C_i, B_i) \sim N_2(c, b, \Sigma)$.
- C_i is subject-specific maximum growth.
- B_i is subject-specific growth rate.
- *d* is the initial-growth multiplier.

Bayesian multilevel models using bayesmh

Nonlinear multilevel models

- Jones et al. (2005) used the above formulation to model weight of black-fronted tern chicks.
- Let's see how we could fit this model using bayesmh.
- Suppose id is the chick identifier, y is the weight (g), and time is days since birth.

```
. bayesmh y = ({C[id]}/(1+{d}*{C[id]}*exp(-{B[id]}*time))),
> likelihood(normal({var}))
> prior({d}, exp(1))
> prior({var}, igamma(0.01, 0.01))
> prior({C B}, mvnormal(2,{c},{b},{Sigma,m}))
> prior({C b}, normal(0,100))
> prior({Sigma,m}, iwishart(2,3,I(2)))
> block({d b c}, split) block({Sigma,m}, gibbs)
> initial({c} 100 {d} 1) mcmcsize(2500) rseed(17)
```

Bayesian multilevel models using bayesmh

Nonlinear multilevel models

```
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 2500 ..... 1000..... 2000.... done
Model summary
```

Likelihood:

MCMC iterations	=	5,000
Burn-in	=	2,500
MCMC sample size	=	2,500
Number of obs	=	414
Acceptance rate	=	.4564
Efficiency: min	=	.0305
avg	=	.08921
max	=	.1582

Bayesian normal regression Metropolis-Hastings and Gibbs sampling

Log marginal-likelihood

Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
.7539755	.0006552	.000075	.7538968	.7529732	.7555175
344.227	26.9721	1.35627	342.3408	297.2411	402.3016
49.37715	7.742743	.621674	50.20698	31.32951	62.09946
.3865898	.0805282	.007119	.3918832	.2201669	.5332942
1109.745	531.1578	31.4845	999.7406	483.4897	2451.883
5.357392	3.498629	.220185	4.658808	.567264	14.1419
.0950801	.0363054	.002212	.0882656	.0493029	.1907358
	Mean .7539755 344.227 49.37715 .3865898 1109.745 5.357392 .0950801	Mean Std. dev. .7539755 .0006552 344.227 26.9721 49.37715 7.742743 .3865898 .0805282 1109.745 531.1578 5.357392 3.498629 .0950801 .0363054	Mean Std. dev. MCSE .7539755 .0006552 .000075 344.227 26.9721 1.35627 49.37715 7.742743 .621674 .3865898 .0805282 .007119 1109.745 531.1578 31.4845 5.357392 3.498629 .220185 .0950801 .0363054 .002212	Mean Std. dev. MCSE Median .7539755 .0006552 .000075 .7538968 344.227 26.9721 1.35627 342.3408 49.37715 7.742743 .621674 50.20698 .3865898 .0805282 .007119 .3918832 1109.745 531.1578 31.4845 999.7406 5.357392 3.498629 .220185 4.658808 .0950801 .0363054 .002212 .0882656	Mean Std. dev. MCSE Median Equal- [95% cred. .7539755 .0006552 .000075 .7538968 .7529732 344.227 26.9721 1.35627 342.3408 297.2411 49.37715 7.742743 .621674 50.20698 31.32951 .3865898 .0805282 .007119 .3918832 .2201669 1109.745 531.1578 31.4845 999.7406 483.4897 5.357392 3.498629 .220185 4.658808 .567264 .0950801 .0363054 .002212 .0882656 .0493029

 The estimated average maximum weight {c} is 49 grams but there is certainly variability in maximum weights ({Sigma_1_1}= 1,110) and in weight gain rates ({Sigma_2_2}= .095) among chicks.

Bayesian multilevel models using bayesmh

└─ Multivariate nonlinear multilevel models

Multivariate nonlinear multilevel models

- Jones et al. (2005) actually considered a Bayesian bivariate growth model to study the growth of black-fronted tern chicks.
- A linear growth model was assumed for wing length y₁, and the earlier logistic growth model was assumed for weight y₂:

$$y_{1,ij} = U_i + V_i \times t_{ij} + \epsilon_{1,ij}$$

$$y_{2,ij} = \frac{C_i}{1 + d \times C_i \times e^{-B_i \times t_{ij}}} + \epsilon_{2,ij}$$

- Error terms $(\epsilon_{1,ij}, \epsilon_{2,ij}) \sim N(0, 0, \Sigma_0).$
- Random effects $(U_i, V_i, C_i, B_i) \sim N_4(u, v, c, b, \Sigma)$.
- U_i is chick-specific initial wing length.
- V_i is chick-specific wing growth rate.
- C_i is chick-specific maximum weight.
- B_i is chick-specific weight gain rate.
- *d* is the initial-weight multiplier.

Bayesian multilevel models using bayesmh

Multivariate nonlinear multilevel models

- Suppose id is the chick identifier, y1 is the wing length (mm), y2 is the weight (g), and time is days since birth.
- The corresponding bayesmh specification is

```
. bayesmh (y1 = ({U[id]} + time*{V[id]}))
> (y2 = ({C[id]}/(1+{d}*{C[id]}*exp(-{B[id]}*time)))),
> likelihood(mvnormal({Sigma0,m}))
> prior({U V C B}, mvnormal(4, {u}, {v}, {c}, {b}, {Sigma,m}))
> prior({U v c b}, normal(0, 100))
> prior({Sigma0,m}, iwishart(2,3,I(2)))
> prior({Sigma,m}, iwishart(4,5,I(4)))
> prior({d}, exp(1))
> block({d u v b c}, split) block({Sigma0,m} {Sigma,m}, gibbs split)
> init({U[id] u} -10 {V[id] v} 10 {C[id] c} 100 {d} 1) mcmcsize(2500) rseed(17)
```

Bayesian multilevel models using bayesmh

Multivariate nonlinear multilevel models

MCMC iterati	ons	=	5,000
Burn-in		=	2,500
MCMC sample	size	=	2,500
Number of ob	s	=	414
Acceptance r	ate	=	.4713
Efficiency:	min	=	.01174
	avg	=	.2265
	max	=	.7028

Bayesian multivariate normal regression Metropolis-Hastings and Gibbs sampling

Log marginal-likelihood

	Mean	Std. dev.	MCSE	Median	Equal- [95% cred.	tailed interval]
d	.0634061	.0025888	.000478	.0635744	.0579154	.0680656
u	-12.84796	3.011731	.255283	-12.97586	-18.25202	-6.451113
v	5.977761	.2446379	.023368	5.990374	5.422395	6.404792
с	78.42872	3.602142	.368536	78.7988	70.10973	84.34357
b	.2208688	.0471093	.002637	.2229167	.1242395	.3148616
Sigma0_1_1	7.956314	.5825538	.017417	7.926544	6.871581	9.158582
Sigma0_2_1	2.625951	.6406367	.021819	2.632427	1.430312	3.875557
Sigma0_2_2	18.85203	1.342218	.038113	18.81303	16.36956	21.67296
Sigma_1_1	192.8405	67.11091	2.92639	179.5316	101.754	362.8648
Sigma_2_1	-8.029962	4.209058	.21859	-7.334189	-17.74035	-1.783869
Sigma_3_1	-108.4137	63.18093	3.39159	-97.77067	-258.3206	-18.55377
Sigma_4_1	.4582266	.6998019	.021466	.4405483	8234645	1.983518
Sigma_2_2	1.193545	.4200058	.025011	1.10642	.6352668	2.223882
Sigma_3_2	12.45667	5.664299	.404336	11.29209	5.259565	27.34906
Sigma_4_2	0023492	.0557342	.001842	0034794	1104773	.1078309
Sigma_3_3	234.2312	95.14968	6.93288	212.8518	117.8635	471.0824
Sigma_4_3	2949588	.829987	.032991	2727646	-2.063978	1.386505
Sigma_4_4	.0454308	.0136201	.000325	.0428103	.0257433	.0790052

• The wing-length and weight measurements appear to be correlated.

Summary

Summary

- Bayesian multilevel modeling inherits all of the benefits of generic Bayesian modeling such as
 - incorporating prior information about model parameters into your analysis;
 - providing intuitive and direct interpretations of results by using probability statements about parameters; and
 - providing a way to assign an actual probability to any hypothesis of interest.
- Compared with classical multilevel models, Bayesian multilevel models additionally assume that other model parameters—regression coefficients and variance components—are random.

Summary

Summary (cont.)

- Bayesian multilevel models do not integrate out random effects but estimate them together with other model parameters.
- Bayesian multilevel models provide marginal posterior distributions for all random effects. As such, convergence of MCMC chains for random-effects parameters should also be checked.
- LML is not reported by default for Bayesian multilevel models because its precision decreases as the number of random effects increases. For a moderate number of random effects, you can use option remargl to compute it.

Summary

Summary (cont.)

- High autcorrelation occurs frequently in Bayesian multilevel models. More informative priors or model simplifications are often needed.
- You can use bayes:mixed to fit Bayesian multilevel models to a continuous outcome.
- You can use bayes: mecommand to fit Bayesian multilevel models to other types of outcomes such as binary and ordinal.
- You can use bayesmh to fit more sophisticated Bayesian multilevel models.

- Read more about Bayesian multilevel modeling at stata.com/new-in-stata/bayesian-multilevel-modeling/
- Check out all new Bayesian features at stata.com/new-in-stata/new-in-bayesian-analysis/
- And see the **[BAYES] Bayesian analysis** manual for more examples and details about Bayesian analysis.

References

Jones, G., R. J. Keedwell, A. D. L. Noble, and D. I. Hedderley. 2005. Dating chicks: Calibration and discrimination in a nonlinear multivariate hierarchical growth model. *Journal of Agricultural, Biological, and Environmental Statistics* 10: 306–320.

Merkle, E.C., D. Furr, S. Rabe-Hesketh. 2019. Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods. *Psychometrika* 84, 802–829.

Mortimore, P., P. Sammons, L. Stoll, D. Lewis, and R. Ecob. 1988. *School Matters: The Junior Years*. Wells, Somerset, UK: Open Books.