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Bayesian multilevel modeling using Stata

What’s new?

What’s new in Bayesian multilevel modeling in Stata 17?

New flexible and powerful multilevel syntax in bayesmh allows
you to fit:
nonlinear multilevel models;
SEM-type models;
joint longitudinal and survival models; and, more generally,
multivariate (multiple-equation) linear and nonlinear multilevel
models.
New multivariate normal prior distributions for random effects
with specialized covariance matrices such as exchangeable and
identity
Exchangeable covariance structures,
covariance(exchangeable), are now supported with
bayes:mixed.
Gibbs sampling for normally-distributed random effects with
multilevel models with normal error terms.
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Bayesian multilevel modeling using Stata

What is a Bayesian multilevel model?

What is a Bayesian multilevel model?

Multilevel models are regression models that incorporate
group-specific effects at different levels of hierarchy.
Group-specific effects at different hierarchical levels may be
nested or crossed.
Group-specific effects are assumed to vary randomly across
groups according to some a priori distribution, commonly a
normal distribution.
This assumption makes multilevel models natural candidates
for Bayesian analysis.
Bayesian multilevel models additionally assume that other
model parameters such as regression coefficients and variance
components—variances of group-specific effects—are also
random.
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Bayesian multilevel modeling using Stata

Why Bayesian multilevel models?

Why Bayesian multilevel models?

You might want to use Bayesian analysis:

to incorporate external prior information;
when it is more natural to express a research objective using
probability statements such as how likely a product is to fail
under warranty.
to compute an actual probability for a hypothesis of interest;
and more.

In addition to standard reasons for Bayesian analysis, Bayesian
multilevel modeling is often used when the number of groups
is small or in the presence of many hierarchical levels.
Various Bayesian information criteria are popular for
comparing multilevel models.
When the comparison of groups is of main interest, Bayesian
multilevel modeling can provide entire distributions of
group-specific effects.
Also, variances of group-specific effects incorporate the
uncertainty about all estimated model parameters!
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Bayesian multilevel modeling using Stata

School data

School data
Consider data from Mortimore et al. (1988) on 887 math
scores of pupils in the third and fifth years from 48 different
schools in inner London.

. webuse mathscores

. describe

Contains data from https://www.stata-press.com/data/r17/mathscores.dta
Observations: 887

Variables: 3 9 May 2020 23:31

Variable Storage Display Value
name type format label Variable label

school float %9.0g School ID
math3 float %9.0g Year 3 math score
math5 float %9.0g Year 5 math score

Sorted by:

Let’s examine the first 10 schools:

. sort school math3

. graph twoway (scatter math5 math3, mlabel(school)) (lfit math5 math3) if school<=10
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School data
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Bayesian multilevel modeling using Stata

Random-intercept (panel-data) model

Classical inference

Linear random-intercept model

Suppose we are interested in estimating school-specific effects.

We can fit a linear random-intercept model:

math5ij = β0 + u0j + β1math3ij + εij

εij ∼ Normal(0, σ2)

u0j ∼ Normal(0, σ2
0)

for j = 1, ..., 48 schools and i = 1, ..., nj pupils in school j .

u0j is a random effect (intercept) at the school level, and
represents an upward or downward shift in performance from
the overall regression line.

σ2 represents the within-school variability and σ2
0 —the

between-school variability.
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Bayesian multilevel modeling using Stata

Random-intercept (panel-data) model

Classical inference

Let’s first use mixed to fit this model:

. mixed math5 math3 || school:

Mixed-effects ML regression Number of obs = 887
Group variable: school Number of groups = 48

Obs per group:
min = 5
avg = 18.5
max = 62

Wald chi2(1) = 347.92
Log likelihood = -2767.8923 Prob > chi2 = 0.0000

math5 Coefficient Std. err. z P>|z| [95% conf. interval]

math3 .6088066 .0326392 18.65 0.000 .5448349 .6727783
_cons 30.36495 .3491544 86.97 0.000 29.68062 31.04928

Random-effects parameters Estimate Std. err. [95% conf. interval]

school: Identity
var(_cons) 4.026853 1.189895 2.256545 7.186004

var(Residual) 28.12721 1.37289 25.5611 30.95094

LR test vs. linear model: chibar2(01) = 56.38 Prob >= chibar2 = 0.0000
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Bayesian multilevel modeling using Stata

Random-intercept (panel-data) model

Classical inference

We can predict the random (school) effects and their standard
errors after fitting mixed:

. predict re, reffects reses(se)

. sort school

. list school re se if school!=school[_n+1] & school<10

school re se

25. 1 -2.676116 .9377579
35. 2 -.0152072 1.286861
43. 3 1.058414 1.370049
67. 4 -2.122366 .9527702
92. 5 -.0924746 .9377579

105. 6 .6523949 1.186348
115. 7 1.536003 1.286861
141. 8 .4360111 .9234335
162. 9 -1.988043 1.002539

In the above, we listed only the first nine schools.

The reported random-effects standard errors are conditional on
the estimated regression coefficients and variance components.
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

Bayesian random-intercept model

To fit a Bayesian random-intercept model, we need to
formulate prior distributions in addition to the likelihood
model.

Let’s consider the following prior distributions:

βi ∼ Normal(0,10000), i = 0, 1

σ2 ∼ InvGamma(0.01, 0.01)

σ2
0 ∼ InvGamma(0.01, 0.01)
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To fit the model, we simply prefix mixed with bayes:.

. set seed 12345

. bayes, melabel: mixed math5 math3 || school:
note: Gibbs sampling is used for regression coefficients and variance

components.

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 48

Obs per group:
min = 5
avg = 18.5
max = 62

Number of obs = 887
Acceptance rate = .8102
Efficiency: min = .03923

avg = .3628
Log marginal-likelihood max = .7226

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .6081648 .0327236 .000428 .6077114 .5450497 .6728088
_cons 30.36912 .3570318 .018026 30.36653 29.67139 31.08675

school
var(_cons) 4.314708 1.337713 .041102 4.146655 2.215281 7.493345

var(Residual) 28.26249 1.387124 .016318 28.22386 25.67543 31.11543

Note: Default priors are used for model parameters.



Bayesian multilevel modeling using Stata

Bayesian random-intercept model

We used option melabel to obtain output similar to that of
mixed for easier comparison of the results.

The reported estimates of posterior means and posterior
standard deviations for model parameters are similar to the
corresponding MLEs and standard errors reported by mixed.
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

Here is the output from bayes:mixed without the melabel

option.

. bayes

Multilevel structure

school
{U0}: random intercepts

Model summary

Likelihood:
math5 ~ normal(xb_math5,{e.math5:sigma2})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.math5:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_math5.
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Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 48

Obs per group:
min = 5
avg = 18.5
max = 62

Number of obs = 887
Acceptance rate = .8102
Efficiency: min = .03923

avg = .3628
Log marginal-likelihood max = .7226

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .6081648 .0327236 .000428 .6077114 .5450497 .6728088
_cons 30.36912 .3570318 .018026 30.36653 29.67139 31.08675

school
U0:sigma2 4.314708 1.337713 .041102 4.146655 2.215281 7.493345

e.math5
sigma2 28.26249 1.387124 .016318 28.22386 25.67543 31.11543

Note: Default priors are used for model parameters.



Bayesian multilevel modeling using Stata

Bayesian random-intercept model

Let’s describe it in pieces.

. bayes

Multilevel structure

school
{U0}: random intercepts

Model summary

Likelihood:
math5 ~ normal(xb_math5,{e.math5:sigma2})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
{e.math5:sigma2} ~ igamma(.01,.01)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_math5.
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

The header includes additional information about the fitted
Bayesian model.

Parameter {U0} represents random intercepts in the model.

Regression coefficients {math5:math3} and {math5: cons}

are assigned default normal priors with zero means and
variances of 10,000.

The variance component for schools {U0:sigma2} and error
variance {e.math5:sigma2} are assigned default
inverse-gamma priors with 0.01 for both the shape and scale
parameters.
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

The rest of the header is the same as with option melabel.

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 48

Obs per group:
min = 5
avg = 18.5
max = 62

Number of obs = 887
Acceptance rate = .8102
Efficiency: min = .03923

avg = .3628
Log marginal-likelihood max = .7226
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

In the output table, the results are the same, but the
parameter labels are different.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .6081648 .0327236 .000428 .6077114 .5450497 .6728088
_cons 30.36912 .3570318 .018026 30.36653 29.67139 31.08675

school
U0:sigma2 4.314708 1.337713 .041102 4.146655 2.215281 7.493345

e.math5
sigma2 28.26249 1.387124 .016318 28.22386 25.67543 31.11543

Note: Default priors are used for model parameters.
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

Without option melabel, bayes:mixed displays results using
parameter names as you would use when referring to these
parameters in bayes’s options or during postestimation.

For example, you would use {U0:sigma2} to refer to the
variance component for schools and {e.math5:sigma2} to
refer to the error variance.
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

Random-effects parameters

Random-effects parameters

The term random effects, representing subject-specific effects,
is not well suited for Bayesian multilevel models, because all
effects or parameters are considered random within the
Bayesian framework. But we will use it for consistency with
classical multilevel models.

Unlike frequentist multilevel models, Bayesian multilevel
models do not integrate “random effects” out but estimate
them together with other model parameters.

Thus, random effects are treated as model parameters just
like regression coefficients and variance components.

The bayes prefix does not report them by default because
there are often too many of them.

But you can display them during or after estimation.
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Let’s replay the estimation, adding option showreffects()

to display the estimates of the first nine random intercepts.

. bayes, showreffects({U0[1/9]})

(header omitted)

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .6081648 .0327236 .000428 .6077114 .5450497 .6728088
_cons 30.36912 .3570318 .018026 30.36653 29.67139 31.08675

U0[school]
1 -2.701971 1.007584 .033658 -2.688302 -4.677831 -.7650245
2 -.0929602 1.323015 .031586 -.0791454 -2.6954 2.444911
3 1.083833 1.367884 .03335 1.078927 -1.577482 3.887134
4 -2.143734 .9656367 .029863 -2.107032 -4.124594 -.2722371
5 -.0531935 1.00176 .031622 -.0485564 -2.078467 1.801151
6 .69567 1.178609 .030849 .7392095 -1.686727 2.894298
7 1.552796 1.352609 .033462 1.595416 -1.145189 4.14544
8 .4141391 .9612695 .030266 .391018 -1.505493 2.302713
9 -1.992744 1.086797 .032749 -1.969235 -4.130665 .124332

school
U0:sigma2 4.314708 1.337713 .041102 4.146655 2.215281 7.493345

e.math5
sigma2 28.26249 1.387124 .016318 28.22386 25.67543 31.11543

Note: Default priors are used for model parameters.
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Bayesian random-intercept model

Random-effects parameters

Posterior mean estimates of random effects are similar to the
ones predicted after mixed.

Posterior standard deviations tend to be larger than the
corresponding standard errors of the random effects predicted
after mixed because they incorporate the uncertainty about
the estimated regression coefficients and variance components.
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Bayesian random-intercept model

Random-effects parameters

We can even plot the posterior distributions of the random
effects. For example, let’s look at the posterior distributions
of the random intercepts for the first nine schools.

. bayesgraph histogram {U0[1/9]}, byparm
0

.5

0
.1

.2
.3

0
.1

.2
.3

0
.5

0
.5

0
.2

.4

0
.1

.2
.3

0
.5

0
.1

.2
.3

.4

−6 −4 −2 0 −5 0 5 −5 0 5 10

−6 −4 −2 0 2 −4 −2 0 2 4 −5 0 5

−2 0 2 4 6 −2 0 2 4 −6 −4 −2 0 2

U0[school]:1 U0[school]:2 U0[school]:3

U0[school]:4 U0[school]:5 U0[school]:6

U0[school]:7 U0[school]:8 U0[school]:9

Graphs by parameter

Histograms

Yulia Marchenko (StataCorp) 24 / 65



Bayesian multilevel modeling using Stata

Bayesian random-intercept model

Graphical diagnostics of MCMC convergence

MCMC convergence

We can check convergence and sampling efficiency of the
MCMC for random-effects parameters just like any other
model parameter.

For example, here are graphical MCMC diagnostics for the
first random effect:

. bayesgraph diagnostics {U0[1]}
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

Log marginal likelihood

Log marginal likelihood

Notice from the header that the LML is not reported.

As I mentioned earlier, Bayesian multilevel models may
contain many model parameters, which include random-effects
parameters.

For models with many parameters, the computation of the
LML can be time consuming, and its accuracy may become
unacceptably low.

Thus, the LML is not computed by default for multilevel
models, but you can specify option remargl during
estimation or on replay to compute it.

LML is needed, for instance, if you want to compare Bayesian
models using Bayes factors or using model posterior
probabilities.
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Bayesian random-intercept model

Log marginal likelihood

To demonstrate, let’s compute the LML on replay.

. bayes, remargl

(output omitted )

Bayesian multilevel regression MCMC iterations = 12,500
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: school Number of groups = 48

Obs per group:
min = 5
avg = 18.5
max = 62

Number of obs = 887
Acceptance rate = .8102
Efficiency: min = .03923

avg = .3628
Log marginal-likelihood = -2801.7616 max = .7226

(output omitted )
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Bayesian multilevel modeling using Stata

Bayesian random-intercept model

Convergence diagnostics using multiple chains

Convergence diagnostics using multiple chains

We can use option nchains() with bayes: or bayesmh to
generate multiple chains.

And we can then use command bayesstats grubin to
compute Gelman–Rubin convergence diagnostics for model
parameters.

Continuing with our previous linear random-intercept model,
let’s generate four chains and check convergence more
formally.
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Bayesian random-intercept model

Convergence diagnostics using multiple chains

. bayes, nchains(4) rseed(12345): mixed math5 math3 || school:
note: Gibbs sampling is used for regression coefficients and variance

components.

Chain 1
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000........

> .5000.........6000.........7000.........8000.........9000.........10000 done

Chain 2
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000........

> .5000.........6000.........7000.........8000.........9000.........10000 done

Chain 3
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000........

> .5000.........6000.........7000.........8000.........9000.........10000 done

Chain 4
Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000........

> .5000.........6000.........7000.........8000.........9000.........10000 done

(prior information omitted)
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Bayesian multilevel regression Number of chains = 4
Metropolis--Hastings and Gibbs sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Group variable: school Number of groups = 48
Obs per group:

min = 5
avg = 18.5
max = 62

Number of obs = 887
Avg acceptance rate = .812
Avg efficiency: min = .04044

avg = .3583
max = .7284

Log marginal-likelihood Max Gelman--Rubin Rc = 1

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .6087103 .0325995 .00022 .6085895 .5448259 .672861
_cons 30.36082 .3559451 .00885 30.3587 29.66591 31.07091

school
U0:sigma2 4.306511 1.336795 .019883 4.124045 2.23513 7.476504

e.math5
sigma2 28.26538 1.380569 .008088 28.22864 25.68559 31.10292

Note: Default priors are used for model parameters.
Note: Default initial values are used for multiple chains.
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Bayesian random-intercept model

Convergence diagnostics using multiple chains

The summary information in the header and the estimation
results are based on the four simulated chains.

bayes: automatically reported the maximum value of the
Gelman–Rubin statistic across all model parameters
(excluding random effects).

This value is less than 1.1, so we do not suspect convergence
problems with this model.
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We can use bayesstats grubin to check diagnostics for
some of the random effects.

Let’s do this for the first nine random effects, sorted from
largest to smallest diagnostic values.

. bayesstats grubin {U0[1/9]}, sort

Gelman--Rubin convergence diagnostic

Number of chains = 4
MCMC size, per chain = 10,000
Max Gelman--Rubin Rc = 1.001297

Rc

U0[school]
5 1.001297
4 1.000745
1 1.000586
9 1.000525
3 1.000452
2 1.00044
6 1.00034
7 1.000297
8 1.000111

Convergence rule: Rc < 1.1

All values are less than 1.1.
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Bayesian random-intercept model

Convergence diagnostics using multiple chains

We can also explore all four chains graphically, for say, the
first random effect:

. bayesgraph diagnostics {U0[1]}
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The results from all four chains agree.
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Bayesian random-coefficients and higher-level models

Bayesian random-coefficients and higher-level models

Similarly to classical multilevel models, we can fit other more
complicated random-effects models by simply prefixing the
corresponding mixed command with bayes:.

A random-coefficient model assuming independence between
random intercepts and random coefficients:

. bayes: mixed math5 math3 || school: math3

A random-coefficient model with an unstructured covariance
matrix for random intercepts and random coefficients:

. bayes: mixed math5 math3 || school: math3, covariance(unstructured)

A three-level random-intercept model:

. bayes: mixed math5 math3 || school: || teacher:
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Bayesian multilevel models using bayesmh

Bayesian multilevel models using bayesmh

bayes: is convenient for fitting Bayesian multilevel models,
but it is not as powerful or as flexible as bayesmh.

For instance, you can relax the assumption of normality for
random effects by using bayesmh.

And now the new multilevel syntax of bayesmh allows you to
fit more sophisticated models including nonlinear,
multiple-equation linear, and multiple-equation nonlinear
multilevel models. (The latter class of models is supported
only by bayesmh!)
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Bayesian multilevel models using bayesmh

Multilevel syntax of bayesmh

Multilevel syntax of bayesmh

If you use sem, gsem, or menl, the multilevel syntax of
bayesmh is the same, except:

you can specify crossed random effects U[id1#id2] in
addition to nested random effects U[id1>id2], and
you use L[ n] instead of simply L to specify latent factors.

You can use any capitalized names in place of U and L above
to specify random effects and latent factors.
You can define random effects at various levels of hierarchy,
U[id1], U[id1>id2], U[id1>id2>id3] and mix and
match nested and crossed factors, U[id1#id2<id3].
You can interact random intercepts with covariates to include
random coefficients: c.age#U age[id],
1.treat#U trt1[id1>id2], and so on.
And you can include random-effects and latent terms in
nonlinear expressions!
See section Random effects under Remarks and examples in
[BAYES] bayesmh for details.
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Bayesian multilevel models using bayesmh

Random-intercept model using bayesmh

Random-intercept model using bayesmh

Let’s see how we can fit a random-intercept model using
bayesmh:

. bayesmh math5 math3 U[school], likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var_U var}, igamma(0.01, 0.01) split)

With bayesmh, we must specify the likelihood() model.

U[school] is a random intercept {U} at the school level.

By default, it is assumed to have a normal prior with mean 0
and variance {var U}.

But you must specify a prior for its variance and all other
parameters!

New suboption split within prior() specifies the same
independent priors for the listed parameters.
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Let’s fit the random-intercept model using bayesmh.

. set seed 12345

. bayesmh math5 math3 U[school], likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var_U var}, igamma(0.01, 0.01) split) dots

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaa. done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
math5 ~ normal(xb_math5,{var})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{var} ~ igamma(0.01,0.01)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_math5.



Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 887
Acceptance rate = .2169
Efficiency: min = .01418

avg = .01643
Log marginal-likelihood max = .01914

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .6073655 .0304029 .002197 .6081756 .546117 .6630448
_cons 30.36476 .3355963 .027645 30.3647 29.68375 31.00273

var 28.23198 1.417103 .119004 28.22811 25.48952 31.08209
var_U 4.303251 1.265079 .095186 4.142379 2.316004 7.424923

// save MCMC results for later comparison
. bayesmh, saving(ri_nn_mcmc)
note: file ri_nn_mcmc.dta saved.

. estimates store ri_nn

The estimates are similar to those from bayes:mixed. We
also saved MCMC results for later comparison.



Full Gibbs sampling

To increase efficiency, we can use Gibbs sampling for all model
parameters, including random effects.

. set seed 12345

. bayesmh math5 math3 U[school], likelihood(normal({var})) ///
> prior({math5:}, normal(10000)) ///
> prior({var_U var}, igamma(0.01, 0.01) split) dots ///
> block({math5:}, gibbs) block({var var_U U}, gibbs split)

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
math5 ~ normal(xb_math5,{var})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{var} ~ igamma(0.01,0.01)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_math5.



Bayesian normal regression MCMC iterations = 12,500
Gibbs sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 887
Acceptance rate = 1
Efficiency: min = .142

avg = .5516
Log marginal-likelihood max = .8807

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .6087841 .0325005 .000347 .6088714 .5451194 .6721316
_cons 30.36373 .3641346 .009664 30.36565 29.63633 31.06866

var 28.2785 1.377501 .014678 28.22166 25.72931 31.12469
var_U 4.343227 1.318911 .023915 4.169909 2.297055 7.386686

Sampling efficiencies are much higher now for all parameters.
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Bayesian random-intercept model with Student’s t errors

Bayesian random-intercept model with Student’s t errors

Let’s relax the normality assumption of the error term in our
Bayesian random-intercept model:

eij ∼ t(0, sc2, df )

where sc is the scale parameter and df is the degrees of
freedom.
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Bayesian multilevel models using bayesmh

Bayesian random-intercept model with Student’s t errors

. set seed 12345

. bayesmh math5 math3 U[school], likelihood(t({sc2},{df}))
> prior({math5:}, normal(10000))
> prior({var_U} {sc2}, igamma(0.01, 0.01))
> prior({df}, uniform(0,1000))
> block({sc2 df}) saving(ri_nt_mcmc) dots

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
math5 ~ t(xb_math5,{sc2},{df})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ normal(0,{var_U}) (1)
{sc2} ~ igamma(0.01,0.01)
{df} ~ uniform(0,1000)

Hyperprior:
{var_U} ~ igamma(0.01,0.01)

(1) Parameters are elements of the linear form xb_math5.
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Bayesian random-intercept model with Student’s t errors

Bayesian t regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 887
Acceptance rate = .2713
Efficiency: min = .01434

avg = .05264
Log marginal-likelihood max = .08265

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .5902118 .0322714 .001186 .5903328 .5236286 .6536404
_cons 30.7968 .3565133 .029768 30.80539 30.06264 31.47062

sc2 18.66776 1.730679 .060198 18.59467 15.31439 22.07594
df 5.85193 1.315771 .048748 5.6429 3.887774 8.945624

var_U 4.124481 1.256536 .090361 3.940338 2.269366 7.121272

file ri_nt_mcmc.dta saved.

. estimates store ri_nt

The estimate of the df parameter is about 6 with a 95% CrI
of (3.9, 8.9), which suggests somewhat heavier tails for the
error-term distribution.
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Bayesian multilevel models using bayesmh

Student’s t random-effects distribution

Student’s t random-effects distribution

The normal distribution is typically assumed for
subject-specific random effects u0j ’s.

But we can relax this assumption and model random effects
using, say, a Student’s t distribution:

u0j ∼ t(0, sc2
u , dfu)

where scu is the scale parameter and dfu is the degrees of
freedom.

Yulia Marchenko (StataCorp) 45 / 65



Bayesian multilevel modeling using Stata

Bayesian multilevel models using bayesmh

Student’s t random-effects distribution

. set seed 12345

. bayesmh math5 math3 U[school], likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({U}, t(0,{sc2_U},{df_U}))
> prior({sc2_U var}, igamma(0.01, 0.01) split)
> prior({df_U}, uniform(0,1000))
> block({sc2_U df_U}) saving(ri_tn_mcmc) dots

Burn-in 2500 aaaaaaaaa1000aaa......2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
math5 ~ normal(xb_math5,{var})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ t(0,{sc2_U},{df_U}) (1)
{var} ~ igamma(0.01,0.01)

Hyperpriors:
{sc2_U} ~ igamma(0.01,0.01)
{df_U} ~ uniform(0,1000)

(1) Parameters are elements of the linear form xb_math5.
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Bayesian multilevel models using bayesmh

Student’s t random-effects distribution

Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 887
Acceptance rate = .2233
Efficiency: min = .01916

avg = .05082
Log marginal-likelihood max = .1038

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .6096901 .0334464 .001546 .6106509 .5449196 .674595
_cons 30.3634 .3393116 .024514 30.35326 29.70554 31.0354

var 28.22595 1.313612 .06295 28.14754 25.70595 30.85718
sc2_U 4.270535 1.26931 .062858 4.159509 2.202217 7.239853
df_U 517.2 282.73 8.77644 511.7186 36.58858 975.0253

file ri_tn_mcmc.dta saved.

. estimates store ri_tn

The estimate of df for the random-effects distribution,
{df U}, is about 517. Given its large value, the normal
random-effects distribution is preferable to the t distribution.
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Student’s t random-effects and error distributions

Student’s t random-effects and error distributions

We can relax the normality assumption for both random
effects and error terms:

eij ∼ t(0, sc2, df )

u0j ∼ t(0, sc2
u , dfu)

where sc and scu are the respective scale parameters and df
and dfu are the degrees-of-freedom parameters.

From the previous slide, there is no need to use the t
distribution for random effects in our example, but let’s do
this for completeness.
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Bayesian multilevel models using bayesmh

Student’s t random-effects and error distributions

. set seed 12345

. bayesmh math5 math3 U[school], likelihood(t({sc2},{df}))
> prior({math5:}, normal(10000))
> prior({U}, t(0,{sc2_U},{df_U}))
> prior({sc2_U sc2}, igamma(0.01, 0.01) split)
> prior({df_U df}, uniform(0,1000))
> block({sc2_U df_U}) block(sc2 df) saving(ri_tt_mcmc) dots

Burn-in 2500 aaaaaaaaa1000aaaaaaa..2000..... done
Simulation 10000 .........1000.........2000.........3000.........4000.........5
> 000.........6000.........7000.........8000.........9000.........10000 done

Model summary

Likelihood:
math5 ~ t(xb_math5,{sc2},{df})

Priors:
{math5:math3 _cons} ~ normal(0,10000) (1)

{U[school]} ~ t(0,{sc2_U},{df_U}) (1)
{sc2} ~ igamma(0.01,0.01)
{df} ~ uniform(0,1000)

Hyperpriors:
{sc2_U} ~ igamma(0.01,0.01)
{df_U} ~ uniform(0,1000)
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Student’s t random-effects and error distributions

Bayesian t regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 887
Acceptance rate = .2363
Efficiency: min = .02143

avg = .06284
Log marginal-likelihood max = .09383

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

math5
math3 .592927 .0329479 .001365 .5932803 .5294996 .659188
_cons 30.83308 .3391586 .023171 30.82126 30.17718 31.52452

sc2 18.52484 1.758456 .060697 18.45145 15.37084 22.17011
df 5.843741 1.374977 .047419 5.592489 3.779647 9.112901

sc2_U0 4.006495 1.12213 .059537 3.856532 2.306424 6.635418
df_U0 504.5605 287.3822 9.38173 505.4225 29.11466 970.731

file ri_tt_mcmc.dta saved.

. estimates store ri_tt
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Model comparison

Model comparison

. bayesstats ic ri_nn ri_tn ri_nt ri_tt, diconly

Deviance information criterion

DIC

ri_nn 5514.742
ri_tn 5515.442
ri_nt 5477.963
ri_tt 5477.744

DIC is the smallest for the ri tt model with both errors and
random effects distributed according to t().

But given the large estimate of the df for the random-effects
distribution, the ri nt model with normal random effects and
t() errors would be better in practice.

In the above, we computed the so-called conditional DIC. But
other information criteria might be more suitable for some
multilevel models (Merkle, Furr, Rabe-Hesketh 2019).
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Random-coefficients and higher-level models

Random-coefficients and higher-level models

A random-coefficient model assuming independence between
random intercepts and random coefficients:

. bayesmh math5 math3 U0[school] c.math3#U1[school],
> likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var U0 var U1 var}, igamma(0.01, 0.01) split)

A random-coefficient model with an unstructured covariance
matrix for random intercepts and random coefficients:

. bayesmh math5 math3 U0[school] c.math3#U1[school],
> likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var}, igamma(0.01, 0.01))
> prior({U0 U1}, mvn(2,0,0,Sigma,m))
> prior({Sigma,m}, iwishart(2,3,I(2)))

A three-level random-intercept model:

. bayesmh math5 math3 U[school] UU[teacher<school],
> likelihood(normal({var}))
> prior({math5:}, normal(10000))
> prior({var U var UU var}, igamma(0.01, 0.01) split)
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Nonlinear multilevel models

Nonlinear multilevel models

Consider the following logistic growth model

yij =
Ci

1 + d × Ci × e−Bi×tij
+ εij

for measurements yij ’s on subjects i = 1, 2, . . . , I at times tij
for j = 1, 2, . . . , ni .

Error terms εij ∼ N(0, σ2).

Random effects (Ci ,Bi ) ∼ N2(c , b,Σ).

Ci is subject-specific maximum growth.

Bi is subject-specific growth rate.

d is the initial-growth multiplier.
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Nonlinear multilevel models

Jones et al. (2005) used the above formulation to model
weight of black-fronted tern chicks.

Let’s see how we could fit this model using bayesmh.

Suppose id is the chick identifier, y is the weight (g), and
time is days since birth.

. bayesmh y = ({C[id]}/(1+{d}*{C[id]}*exp(-{B[id]}*time))),
> likelihood(normal({var}))
> prior({d}, exp(1))
> prior({var}, igamma(0.01, 0.01))
> prior({C B}, mvnormal(2,{c},{b},{Sigma,m}))
> prior({c b}, normal(0,100))
> prior({Sigma,m}, iwishart(2,3,I(2)))
> block({d b c}, split) block({Sigma,m}, gibbs)
> initial({c} 100 {d} 1) mcmcsize(2500) rseed(17)
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Nonlinear multilevel models

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 2500 .........1000.........2000..... done

Model summary

Likelihood:
y ~ normal({C[id]}/(1+{d}*{C[id]}*exp(-{B[id]}*time)),{var})

Priors:
{var} ~ igamma(0.01,0.01)

{d} ~ exponential(1)
{C[id] B[id]} ~ mvnormal(2,{c},{b},{Sigma,m})

Hyperpriors:
{c b} ~ normal(0,100)

{Sigma,m} ~ iwishart(2,3,I(2))
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Bayesian normal regression MCMC iterations = 5,000
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 2,500
Number of obs = 414
Acceptance rate = .4564
Efficiency: min = .0305

avg = .08921
Log marginal-likelihood max = .1582

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

d .7539755 .0006552 .000075 .7538968 .7529732 .7555175
var 344.227 26.9721 1.35627 342.3408 297.2411 402.3016

c 49.37715 7.742743 .621674 50.20698 31.32951 62.09946
b .3865898 .0805282 .007119 .3918832 .2201669 .5332942

Sigma_1_1 1109.745 531.1578 31.4845 999.7406 483.4897 2451.883
Sigma_2_1 5.357392 3.498629 .220185 4.658808 .567264 14.1419
Sigma_2_2 .0950801 .0363054 .002212 .0882656 .0493029 .1907358

The estimated average maximum weight {c} is 49 grams but
there is certainly variability in maximum weights
({Sigma 1 1}= 1,110) and in weight gain rates
({Sigma 2 2}= .095) among chicks.
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Multivariate nonlinear multilevel models

Jones et al. (2005) actually considered a Bayesian bivariate
growth model to study the growth of black-fronted tern
chicks.
A linear growth model was assumed for wing length y1, and
the earlier logistic growth model was assumed for weight y2:

y1,ij = Ui + Vi × tij + ε1,ij

y2,ij =
Ci

1 + d × Ci × e−Bi×tij
+ ε2,ij

Error terms (ε1,ij , ε2,ij) ∼ N(0, 0,Σ0).
Random effects (Ui ,Vi ,Ci ,Bi ) ∼ N4(u, v , c , b,Σ).
Ui is chick-specific initial wing length.
Vi is chick-specific wing growth rate.
Ci is chick-specific maximum weight.
Bi is chick-specific weight gain rate.
d is the initial-weight multiplier.
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Multivariate nonlinear multilevel models

Suppose id is the chick identifier, y1 is the wing length
(mm), y2 is the weight (g), and time is days since birth.

The corresponding bayesmh specification is

. bayesmh (y1 = ({U[id]} + time*{V[id]}))
> (y2 = ({C[id]}/(1+{d}*{C[id]}*exp(-{B[id]}*time)))),
> likelihood(mvnormal({Sigma0,m}))
> prior({U V C B}, mvnormal(4,{u},{v},{c},{b},{Sigma,m}))
> prior({u v c b}, normal(0, 100))
> prior({Sigma0,m}, iwishart(2,3,I(2)))
> prior({Sigma,m}, iwishart(4,5,I(4)))
> prior({d}, exp(1))
> block({d u v b c}, split) block({Sigma0,m} {Sigma,m}, gibbs split)
> init({U[id] u} -10 {V[id] v} 10 {C[id] c} 100 {d} 1) mcmcsize(2500) rseed(17)
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Multivariate nonlinear multilevel models

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done
Simulation 2500 .........1000.........2000..... done

Model summary

Likelihood:
y1 y2 ~ mvnormal(2,<expr1>,<expr2>,{Sigma0,m})

Priors:
{Sigma0,m} ~ iwishart(2,3,I(2))

{U[id] V[id] C[id] B[id]} ~ mvnormal(4,{u},{v},{c},{b},{Sigma,m})
{d} ~ exponential(1)

Hyperpriors:
{u v c b} ~ normal(0,100)
{Sigma,m} ~ iwishart(4,5,I(4))

Expressions:
expr1 : {U[id]} + time*{V[id]}
expr2 : {C[id]}/(1+{d}*{C[id]}*exp(-{B[id]}*time))
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Bayesian multivariate normal regression MCMC iterations = 5,000
Metropolis--Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 2,500
Number of obs = 414
Acceptance rate = .4713
Efficiency: min = .01174

avg = .2265
Log marginal-likelihood max = .7028

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

d .0634061 .0025888 .000478 .0635744 .0579154 .0680656
u -12.84796 3.011731 .255283 -12.97586 -18.25202 -6.451113
v 5.977761 .2446379 .023368 5.990374 5.422395 6.404792
c 78.42872 3.602142 .368536 78.7988 70.10973 84.34357
b .2208688 .0471093 .002637 .2229167 .1242395 .3148616

Sigma0_1_1 7.956314 .5825538 .017417 7.926544 6.871581 9.158582
Sigma0_2_1 2.625951 .6406367 .021819 2.632427 1.430312 3.875557
Sigma0_2_2 18.85203 1.342218 .038113 18.81303 16.36956 21.67296
Sigma_1_1 192.8405 67.11091 2.92639 179.5316 101.754 362.8648
Sigma_2_1 -8.029962 4.209058 .21859 -7.334189 -17.74035 -1.783869
Sigma_3_1 -108.4137 63.18093 3.39159 -97.77067 -258.3206 -18.55377
Sigma_4_1 .4582266 .6998019 .021466 .4405483 -.8234645 1.983518
Sigma_2_2 1.193545 .4200058 .025011 1.10642 .6352668 2.223882
Sigma_3_2 12.45667 5.664299 .404336 11.29209 5.259565 27.34906
Sigma_4_2 -.0023492 .0557342 .001842 -.0034794 -.1104773 .1078309
Sigma_3_3 234.2312 95.14968 6.93288 212.8518 117.8635 471.0824
Sigma_4_3 -.2949588 .829987 .032991 -.2727646 -2.063978 1.386505
Sigma_4_4 .0454308 .0136201 .000325 .0428103 .0257433 .0790052

The wing-length and weight measurements appear to be
correlated.
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Summary

Summary

Bayesian multilevel modeling inherits all of the benefits of
generic Bayesian modeling such as

incorporating prior information about model parameters into
your analysis;
providing intuitive and direct interpretations of results by using
probability statements about parameters; and
providing a way to assign an actual probability to any
hypothesis of interest.

Compared with classical multilevel models, Bayesian multilevel
models additionally assume that other model
parameters—regression coefficients and variance
components—are random.
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Summary (cont.)

Bayesian multilevel models do not integrate out random
effects but estimate them together with other model
parameters.

Bayesian multilevel models provide marginal posterior
distributions for all random effects. As such, convergence of
MCMC chains for random-effects parameters should also be
checked.

LML is not reported by default for Bayesian multilevel models
because its precision decreases as the number of random
effects increases. For a moderate number of random effects,
you can use option remargl to compute it.
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Summary (cont.)

High autcorrelation occurs frequently in Bayesian multilevel
models. More informative priors or model simplifications are
often needed.

You can use bayes:mixed to fit Bayesian multilevel models
to a continuous outcome.

You can use bayes:mecommand to fit Bayesian multilevel
models to other types of outcomes such as binary and ordinal.

You can use bayesmh to fit more sophisticated Bayesian
multilevel models.
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Additional resources

Read more about Bayesian multilevel modeling at
stata.com/new-in-stata/bayesian-multilevel-modeling/

Check out all new Bayesian features at
stata.com/new-in-stata/new-in-bayesian-analysis/

And see the [BAYES] Bayesian analysis manual for more
examples and details about Bayesian analysis.
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