Estimating Compulsory Schooling Impacts on Labour Market Outcomes in Mexico
Fuzzy Regression Discontinuity Design (RDD) with parametric and non-parametric analyses

Erendira Leon
University of Westminster

2022 UK Stata Conference
Outline

- Applied economics
- Fuzzy RDD
- RDD validity
- Non-parametric analysis
- Parametric analysis
- Conclusions
Analysis of educational policies on **earnings**

- Long debate whether schooling is linked to long-run labour market outcomes
- Measuring the sole impact of education is challenging
- **Endogeneity** between schooling and labour market outcomes: education and earnings are jointly determined
- **Imperfect compliance** with the policy: some factors could affect the exposure to the policy
 - a. people not treated that should be treated
 - b. people should not be treated and are actually treated

Robust methodology for measuring impact evaluation or the effectiveness of different policies
Fuzzy RDD in spirit of Grenet (2013) and Aydemir and Kirdar (2017)

- Non-parametric analysis
- Parametric analysis

Shed light of the impacts of the 1993 compulsory schooling on labour market outcomes in Mexico: earnings and employment sectoral choices

- Raise compulsory school-leaving age from 12 to 15 years
- Encourage children to accumulate human capital

The fuzziness addresses imperfect compliance with the policy

- Use the random assignment of the exposure to the policy
Fuzzy Regression Discontinuity Design (RDD)

- Age cohort discontinuities measured in **months of birth**
- **Exogenous extra-compulsory schooling** faced by different birth cohorts
- Compare people **treated with untreated** by the policy
- **Running variable** is the age in months of birth from the cohort born in September 1981

\[Treatment_i \begin{cases} 1, & \text{if cohort born } \geq \text{ September 1981} \\ 0, & \text{if cohort born } < \text{ September 1981} \end{cases} \]
RDD validity - Discontinuity plots

Years of schooling

Men born between 1975 and 1987

Distance in months from the 12th birthday

Sample average within bin Polynomial fit of order 2
RDD validity - Discontinuity plots

Log of hourly earnings

Men born between 1975 and 1987

Distance in months from the 12th birthday

- Sample average within bin
- Polynomial fit of order 2
RDD validity - Discontinuity plots

`rdplot` implements several data-driven regression-discontinuity (RD) plots, using either evenly spaced or quantile-spaced partitioning.

```
rdplot depvar runvar [if] [in] [, c(cutoff) p(pvalue) binselect(binmethod) graph_options(gphopts)]
```

where `depvar` is the dependent variable, and `runvar` is the running variable (also known as the score or forcing variable).

`c(cutoff)` specifies the RD cutoff. The default is `c(0)`.
RDD validity - Discontinuity plots

`rdplot` implements several data-driven regression-discontinuity (RD) plots, using either evenly spaced or quantile-spaced partitioning.

```
rdplot depvar runvar [if] [in] [, c(cutoff) p(pvalue) binselect(binmethod) graph_options(gphopts)]
```

where `depvar` is the dependent variable, and `runvar` is the running variable (also known as the score or forcing variable).

`c(cutoff)` specifies the RD cutoff. The default is `c(0)`.

`p(pvalue)` for the order of the global polynomial used to approximate the population conditional mean functions. The default is `p(4)`.
RDD validity - Discontinuity plots

rdplot implements several data-driven regression-discontinuity (RD) plots, using either evenly spaced or quantile-spaced partitioning.

\[
\text{rdplot } \text{depvar runvar [if] [in] [, } \text{c(cutoff)} \text{ p(pvalue)} \text{ binselect(binmethod)} \text{ graph_options(gphopts)}]\]

where *depvar* is the dependent variable, and *runvar* is the running variable (also known as the score or forcing variable).

- **c(cutoff)** specifies the RD cutoff. The default is c(0).
- **p(pvalue)** for the order of the global polynomial used to approximate the population conditional mean functions. The default is p(4).
- **binselect(binmethod)** for selecting the number of bins. E.g., es specifies the optimal evenly spaced method using spacings estimators.
- **graph_options(gphopts)** graphical options.
RDD validity - McCrary test

McCrary test

-75 -60 -45 -30 -15 0 15 30 45 60 75
RDD validity - McCrary test

DCdensity implements standard sufficient conditions for identification in the regression discontinuity design. Continuity of the conditional expectation of counterfactual outcomes in the running variable.

```stata
DCdensity Z, breakpoint(0) generate(Xj Yj r0 fhat se_fhat) graph-name(DCdensity_example.eps)
```

where Z is the running variable

breakpoint for the threshold/cutoff value in the running var, which determines the two samples (e.g., control and treatment units in RD settings). The default is (0)

local linear smoother on the scatterplot (Xj, Yj), $r0$ for the values above and below the running var, $fhat$ estimation of the density function, and se_fhat the standard errors of the estimation of the density function.
Stata in applied economics: Fuzzy RDD

Fuzzy Regression Discontinuity Design (RDD)

First stage

\[\text{Years of Schooling}_i = \alpha_0 + \alpha_1 (\text{Treatment}_i) + \alpha_2 F(\text{Age in months}_i) + \alpha_3 X_i + \varepsilon_i \]

Reduced-form

\[\text{LMkt outcomes}_i = \beta_0 + \beta_1 (\text{Treatment}_i) + \beta_2 F(\text{Age in months}_i) + \beta_3 X_i + \omega_i \]

Second stage: 2SLS

\[\text{LMkt outcomes}_i = \delta_0 + \delta_1 (\text{Years of Schooling}_i) + \delta_2 F(\text{Age in months}_i) + \delta_3 X_i + \mu_i \]

\(X_i \) survey year dummies, birth states dummies, urban status, economic sector
Non-parametric analysis: rdbwselect and rdrobust

`rdbwselect` implements bandwidth selectors for local-polynomial RD estimators proposed in Calonico, Cattaneo, and Titiunik (2014). It also computes the bandwidth selection procedures:

```
rdbwselect depvar runvar [if] [in] [,c(cutoff) p(pvalue) q(qvalue) rho(rhovalue) kernel(kernelfn) bwselect(bwmethod) vce(vcemethod) all]
```
Non-parametric analysis: rdbwselect and rdrobust

rdbwselect implements bandwidth selectors for local-polynomial RD estimators proposed in Calonico, Cattaneo, and Titiunik (2014). It also computes the bandwidth selection procedures

```
rdbwselect depvar runvar [if] [in] [,c(cutoff) p(pvalue) q(qvalue) rho(rhovalue) kernel(kernelfn) bwselect(bwmethod) vce(vcemethod) all]
```

rdrobust implements local-polynomial RD point estimators with robust confidence intervals proposed in Calonico, Cattaneo, and Titiunik (2014)

```
rdrobust depvar runvar [if] [in] [,c(cutoff) p(pvalue) q(qvalue) fuzzy(fuzzyvar) kernel(kernelfn) h(hvalue) b(bvalue) rho(rhovalue) bwselect(bwmethod) delta(deltavalue) vce(vcemethod) level(level) all]
```
Non-parametric analysis: `rdbwselect` and `rdrobust`

`q(qvalue)` for the order of the local polynomial used to construct the bias correction. The default is `q(2)` (local quadratic regression).

`rho(rhovalue)` sets the pilot bandwidth, `b_n`, equal to `h_n/rho`, where `h_n` is computed using the method and options chosen below.

`kernel(kernelfn)` specifies the kernel function used to construct the local polynomial estimators. Options are triangular, epanechnikov, and uniform. The default is `kernel(triangular)`

`fuzzy(fuzzyvar)` for the treatment status variable implementing fuzzy RD estimation. The default is sharp RD design. For fuzzy RD designs, bandwidths are estimated using sharp RD bandwidth selectors for the reduced-form outcome equation.
Non-parametric analysis: Results

The evidence suggests that although the policy raises years of schooling it did not exert impacts on labour market earnings

<table>
<thead>
<tr>
<th>Estimation method</th>
<th>Dependent variable</th>
<th>First-stage</th>
<th>Reduced-form</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Years of schooling</td>
<td>Log of hourly earnings</td>
<td>Log of hourly earnings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td>0.288** 0.277* 0.275** 0.236*</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.142) (0.145) (0.125) (0.132)</td>
<td>(0.020)</td>
<td>(0.021)</td>
</tr>
</tbody>
</table>

| Eff. Number of obs. | | 37,447 35,442 47,611 39,454 | 37,447 35,442 47,611 39,454 | 37,447 35,442 47,611 39,454 |
| Optimal bandwidth | | 32.13 31.25 38.64 33.90 | 32.13 31.25 38.64 33.90 | 32.13 31.25 38.64 33.90 |

Survey year dummies	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
Birth region dummies	No	No	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes
Urban status	No	No	No	Yes	No	No	No	Yes	No	No	No	Yes

Notes: *p<0.1, ** p<0.05, *** p<0.01

Parametric analysis: 2SLS, reg, iveg2

Similar to a Two-Stage Least-Squares regression (2SLS)

- **First stage**

`regress` performs ordinary least-squares linear regression. It can also compute robust and cluster-robust standard errors.

```
regress depvar [indepvars] [if] [in] [weight] [, options]
```

where `depvar` is the dependent variable, the exogenous variable or instrument: *years of schooling*

`indepvars` are independent variables: the running variable, and interacted quadratic specifications for the running variable with the treatment variable on both sides of the threshold

`options` for the type of standard error reported. E.g., `robust`, `cluster`, etc.
Parametric analysis: 2SLS, reg, ivreg2

- Reduced-form

Similar...

```
regress depvar [indepvars] [if] [in] [weight] [, options]
```

- IV 2SLS

`ivreg2` implements a range of single-equation estimation methods for the linear regression model: ordinary least squares (OLS), instrumental variables (IV, also known as two-stage least squares, 2SLS), the generalized method of moments (GMM), etc

```
ivreg2 depvar [varlist1] (varlist2 = varlist_iv) [if] [in] [weight] [,options]
```
Parametric analysis: 2SLS, reg, iveg2

\textit{varlist1} are the exogenous regressors or included instruments

\textit{varlist_iv} are the exogenous variables excluded from the regression or excluded instruments

\textit{varlist2} the endogenous regressors that are being instrumented, the treatment group
Parametric analysis: Results

There is no empirical evidence to suggest that the policy exerts impacts on labour market earnings.

<table>
<thead>
<tr>
<th></th>
<th>2SLS</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.110</td>
</tr>
<tr>
<td>(0.075)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.106</td>
</tr>
<tr>
<td>Years of schooling</td>
<td>0.109</td>
<td>0.110</td>
<td>0.106</td>
<td>0.080</td>
<td>0.094</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimation method</th>
<th>First-stage</th>
<th>Reduced-form</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>Year of schooling</td>
<td>Log of hourly wages</td>
<td>Log of hourly wages</td>
</tr>
<tr>
<td>Treatment</td>
<td>0.147*</td>
<td>0.016</td>
<td>0.110</td>
</tr>
<tr>
<td>(0.082)</td>
<td>0.137*</td>
<td>0.016</td>
<td>0.109</td>
</tr>
<tr>
<td>Years of schooling</td>
<td>0.116</td>
<td>0.015</td>
<td>0.110</td>
</tr>
<tr>
<td>(0.079)</td>
<td></td>
<td>0.011</td>
<td>0.080</td>
</tr>
</tbody>
</table>

- *p<0.1, ** p<0.05, *** p<0.01

Robust standard errors correction as recommended by Kolesár and Rothe (2018)
Conclusions

- Fuzzy RDD implemented with Stata to analyse policy impacts

- Different tests can be applied with Stata for validating the implementation of Fuzzy RDD
 - RDD plots (rdplot)
 - Mccrary test (DCdensity)

- Stata allows the non-parametric and parametric analysis
 - rdrobust
 - rdbwselect
 - ivreg2
Thank you!

https://eml.berkeley.edu/~jmccrary/mccrary2006_DCdensity.pdf
https://eml.berkeley.edu/~jmccrary/DCdensity/
Data

National Employment Survey (ENOE) from 2009 to 2017

- Report, *inter alia*, age in months, years of schooling, earnings, etc
- Male observations aged between 24 to 40 years when surveyed
- Born between 1975 and 1987 and aged in a range of 6-18 years at the time of the reform
Example: Non-parametric Stata commands

foreach var of varlist lg_inc {
 2. rdbwselect `var' arecen if $sample2b, fuzzy(year_sch) kernel(tri) all
 vce(hc2) bwselect(mserd)
 3. global `var'_bw1 = e(b_mserd)
 4. global `var'_bw2 = e(h_mserd)
 5.
 . forvalues z=1(1)1 {
 6. local n= `z' + 1
 7.
 . rdrobust `var' arecen if $sample2b, fuzzy(year_sch) kernel(tri) all
 vce(hc2) bwselect(mserd) h($(`var'_bw\`n'}) b($(`var'_bw\`z'}) p(2)
 8. test Conventional
 9. test Bias
 10. test Robust
 11.
 12.}
Example: Non-parametric Stata output

Bandwidth estimators for fuzzy RD local polynomial regression.

<table>
<thead>
<tr>
<th>Cutoff c = 0</th>
<th>Left of c</th>
<th>Right of c</th>
<th>Number of obs = 148964</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of obs</td>
<td>74618</td>
<td>74346</td>
<td>Kernel Triangular</td>
</tr>
<tr>
<td>Min of arecen</td>
<td>-75.000</td>
<td>0.000</td>
<td>VCE method = HC2</td>
</tr>
<tr>
<td>Max of arecen</td>
<td>-1.000</td>
<td>75.000</td>
<td></td>
</tr>
<tr>
<td>Order est. (p)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Order bias (q)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>BW est. (h)</th>
<th>BW bias (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left of c</td>
<td>Right of c</td>
</tr>
<tr>
<td>mserd</td>
<td>25.747</td>
<td>25.747</td>
</tr>
<tr>
<td>msetwo</td>
<td>16.950</td>
<td>28.188</td>
</tr>
<tr>
<td>msesum</td>
<td>20.930</td>
<td>20.930</td>
</tr>
<tr>
<td>msecomb1</td>
<td>20.930</td>
<td>20.930</td>
</tr>
<tr>
<td>msecomb2</td>
<td>20.930</td>
<td>25.747</td>
</tr>
<tr>
<td>cerrd</td>
<td>14.193</td>
<td>14.193</td>
</tr>
<tr>
<td>certwo</td>
<td>9.344</td>
<td>15.539</td>
</tr>
<tr>
<td>cersum</td>
<td>11.538</td>
<td>11.538</td>
</tr>
<tr>
<td>cercomb1</td>
<td>11.538</td>
<td>11.538</td>
</tr>
<tr>
<td>cercomb2</td>
<td>11.538</td>
<td>14.193</td>
</tr>
</tbody>
</table>
Example: Non-parametric Stata output

Fuzzy RD estimates using local polynomial regression.

<table>
<thead>
<tr>
<th>Cutoff c = 0</th>
<th>Left of c</th>
<th>Right of c</th>
<th>Number of obs = 148964</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of obs</td>
<td>74618</td>
<td>74346</td>
<td></td>
</tr>
<tr>
<td>Eff. Number of obs</td>
<td>25876</td>
<td>27383</td>
<td></td>
</tr>
<tr>
<td>Order est. (p)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Order bias (q)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BW est. (h)</td>
<td>25.747</td>
<td>25.747</td>
<td></td>
</tr>
<tr>
<td>BW bias (b)</td>
<td>44.446</td>
<td>44.446</td>
<td></td>
</tr>
<tr>
<td>rho (h/b)</td>
<td>0.579</td>
<td>0.579</td>
<td></td>
</tr>
</tbody>
</table>

| Method | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------------|--------|-----------|---------|--------|---------------------|
| Conventional | .24941 | .11274 | 2.2124 | 0.027 | .028454 | .470372 |
| Bias-corrected | .26205 | .11274 | 2.3245 | 0.020 | .041094 | .483012 |
| Robust | .26205 | .12038 | 2.1769 | 0.029 | .02611 | .497996 |

| Method | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------------|--------|-----------|---------|--------|---------------------|
| Conventional | .06596 | .06214 | 1.0615 | 0.288 | -.055834 | .187763 |
| Bias-corrected | .05903 | .06214 | 0.9498 | 0.342 | -.062773 | .180824 |
| Robust | .05903 | .06641 | 0.8888 | 0.374 | -.071138 | .189189 |
Example: Non-parametric Stata output

Sharp RD estimates using local polynomial regression.

<table>
<thead>
<tr>
<th>Cutoff c = 0</th>
<th>Left of c</th>
<th>Right of c</th>
<th>Number of obs = 148964</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>74618</td>
<td>74346</td>
<td></td>
</tr>
<tr>
<td>Eff. Number of obs</td>
<td>25876</td>
<td>27383</td>
<td></td>
</tr>
<tr>
<td>Order est. (p)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Order bias (q)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BW est. (h)</td>
<td>25.747</td>
<td>25.747</td>
<td></td>
</tr>
<tr>
<td>BW bias (b)</td>
<td>44.446</td>
<td>44.446</td>
<td></td>
</tr>
<tr>
<td>rho (h/b)</td>
<td>0.579</td>
<td>0.579</td>
<td></td>
</tr>
</tbody>
</table>

| Method | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|--------|-----------|---------|---------|---------------------|
| Conventional | 0.01645| 0.01721 | 0.9558 | 0.339 | -.017284 .050188 |
| Bias-corrected | 0.01556| 0.01721 | 0.9037 | 0.366 | -.018181 .049292 |
| Robust | 0.01556| 0.01839 | 0.8458 | 0.398 | -.020492 .051603 |
Example: Parametric Stata commands

*First stage
*Spline - Quadratic specification
reg year_sch aTER arecenaTER arecen2aTER arecen2aTER_UT arecen2aTER_UT, robust

*Reduced form
*Spline - Quadratic specification
reg lg_inc aTER arecenaTER arecen2aTER arecen2aTER_UT arecen2aTER_UT, robust

*Second stage
*Spline Quadratic specification
ivreg2 lg_inc (year_sch = aTER) arecenaTER arecen2aTER arecen2aTER_UT arecen2aTER_UT, robust endog (year_sch)
Example: Parametric Stata output

First stage

Linear regression

Number of obs = 82,125
F(5, 82119) = 37.97
Prob > F = 0.0000
R-squared = 0.0023
Root MSE = 4.0209

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------|-----------|------------------|------|-------|---------------------|
| year_sch | | | | | |
| aTER | 0.1658821 | 0.0854494 | 1.94 | 0.052 | -0.015982 to 0.333624 |
| arecenaTER | 0.0033887 | 0.0065208 | 0.52 | 0.603 | -0.0093921 to 0.0161695 |
| arecen2aTER | 0.0000339 | 0.0001599 | 0.21 | 0.832 | -0.0002795 to 0.0003473 |
| arecenaTER_UT | -0.0006796 | 0.0074534 | -0.09 | 0.927 | -0.0152881 to 0.013929 |
| arecen2aTER_UT | -0.0002252 | 0.0001806 | -1.25 | 0.212 | -0.0005793 to 0.0001288 |
| _cons | 10.3233 | 0.0648346 | 159.23 | 0.000 | 10.19622 to 10.45037 |
Example: Parametric Stata output

Reduced-form

Linear regression

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------------------|-------|-----------|-------|--------|-----------------------|
| lg_inc | | | | | |
| aTER | 0.0170504 | 0.013021 | 1.311 | 0.190 | -0.0084706, 0.0425714 |
| arecenaTER | -0.0007443 | 0.0009899 | -0.752 | 0.452 | -0.0026846, 0.0011959 |
| arecen2aTER | -0.0000159 | 0.0002444 | -0.655 | 0.514 | -0.0000636, 0.0000318 |
| arecenaTER_UT | -0.000218 | 0.001136 | -0.192 | 0.848 | -0.0024446, 0.0020086 |
| arecen2aTER_UT | 8.67e-06 | 0.000276 | 0.309 | 0.754 | -0.0000455, 0.0000628 |
| _cons | 3.111498 | 0.0098806 | 314.91| 0.000 | 3.092132, 3.130864 |

Number of obs = 82,125
F(5, 82119) = 9.21
Prob > F = 0.0000
R-squared = 0.0005
Root MSE = 0.61498
Example: Parametric Stata output

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity

Number of obs = 82125
F(5, 82119) = 10.35
Prob > F = 0.0000

Centered R2 = 0.1278
Uncentered R2 = 0.9672
Root MSE = 0.5745

| lg_inc | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-------|-----------|------|-----|----------------------|
| year_sch | 0.1027862 | 0.0731135 | 1.41 | 0.160 | -0.0408136 to 0.246086 |
| arecena2TER | -0.0010927 | 0.0010853 | -1.01 | 0.314 | -0.003198 to 0.0010845 |
| arecena2aTER | -0.0000194 | 0.0000219 | -0.89 | 0.375 | -0.0000623 to 0.0000235 |
| arecenaTER_UT | -0.0001482 | 0.0010205 | -0.15 | 0.885 | -0.0021484 to 0.001852 |
| arecena2TER_UT | 0.0000318 | 0.0000209 | 1.52 | 0.128 | -0.913e-06 to 0.0000728 |
| cons | 2.855406 | 0.7617748 | 2.69 | 0.007 | 1.5573543 to 3.543457 |

Underidentification test (Kleibergen-Paap rk LM statistic): 3.768
Chi-sq(1) P-val = 0.0523

Weak identification test (Kleibergen-Paap rk Wald F statistic): 3.769
Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38
15% maximal IV size 8.96
20% maximal IV size 6.66
25% maximal IV size 5.53

NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.

Hansen J statistic (overidentification test of all instruments): 0.000
(equation exactly identified)
-endog- option:
Endogeneity test of endogenous regressors: 0.273
Chi-sq(1) P-val = 0.6015

Regressors tested: year_sch

Instrumented: year_sch
Included instruments: arecenaTER arecena2aTER arecenaTER_UT arecena2aTER_UT
Excluded instruments: aTER