

### Estimating causal effects in the presence of competing events using regression standardisation with the Stata command standsurv

## Elisavet Syriopoulou

Joint work with Sarwar I Mozumder, Mark J Rutherford, Paul C Lambert

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet

E-mail: elisavet.syriopoulou@ki.se

9<sup>th</sup> September 2021

## WHAT IS THE CAUSAL EFFECT?

- Often interest lies in examining associations between exposures and an outcome e.g. whether a treatment improves survival time.
- An association does not necessarily imply causality.
- Causal inference methods provide the conceptual framework and algorithmic tools needed for formalising such investigations (including the required identification assumptions).
- Using the counterfactual outcomes framework, we focus on the average causal effect in the total population, e.g. difference in probabilities of death:

$$E[F(t|X = 1, \mathbf{Z})] - E[F(t|X = 0, \mathbf{Z})]$$

## WHAT IS THE CAUSAL EFFECT?

- Often interest lies in examining associations between exposures and an outcome e.g. whether a treatment improves survival time.
- An association does not necessarily imply causality.
- Causal inference methods provide the conceptual framework and algorithmic tools needed for formalising such investigations (including the required identification assumptions).
- Using the counterfactual outcomes framework, we focus on the average causal effect in the total population, e.g. difference in probabilities of death:

$$E[F(t|\boldsymbol{X}=1,\boldsymbol{Z})] - E[F(t|\boldsymbol{X}=0,\boldsymbol{Z})]$$

## WHAT ARE COMPETING EVENTS?

Events that prevent the occurrence of the event of interest may be present, so-called competing events.



## WHAT ARE COMPETING EVENTS?

Events that prevent the occurrence of the event of interest may be present, so-called competing events.



Depending on whether the competing events are accommodated or eliminated, various causal effects can be defined:

- Total effects
- Direct effects
- Separable effects

## WHAT ARE COMPETING EVENTS?

Events that prevent the occurrence of the event of interest may be present, so-called competing events.



Depending on whether the competing events are accommodated or eliminated, various causal effects can be defined:

- Total effects
- Direct effects
- Separable effects

Young *et al.* A causal framework for classical statistical estimands in failure-time settings with competing events. Stats Med, 39:1199–1236, 2020 Stensrud *et al.* Separable effects for causal inference in the presence of competing events.J Am Stat Assoc, 2020. 2 of 14

1. Fit a survival model such as flexible parametric model.

1. Fit a survival model such as flexible parametric model.

2. Obtain predictions for each individual in the population by setting X = x.

1. Fit a survival model such as flexible parametric model.

2. Obtain predictions for each individual in the population by setting X = x.

3. Calculate an average of the individual specific predictions in a population of  ${\cal N}$  patients and form the relevant contrast.

1. Fit a survival model such as flexible parametric model.

2. Obtain predictions for each individual in the population by setting X = x.

3. Calculate an average of the individual specific predictions in a population of  ${\cal N}$  patients and form the relevant contrast.

The marginal all-cause probability of death can be estimated by

$$E[\widehat{F}(t|X=x, \boldsymbol{Z})] = \frac{1}{N} \sum_{i=1}^{N} \widehat{F}(t|X=x, \boldsymbol{Z}=\boldsymbol{z_i})]$$

1. Fit a survival model such as flexible parametric model.

2. Obtain predictions for each individual in the population by setting X = x.

3. Calculate an average of the individual specific predictions in a population of  ${\cal N}$  patients and form the relevant contrast.

The marginal all-cause probability of death can be estimated by

$$E[\widehat{F}(t|X=x, \boldsymbol{Z})] = \frac{1}{N} \sum_{i=1}^{N} \widehat{F}(t|X=x, \boldsymbol{Z}=\boldsymbol{z_i})]$$

Command standsurv can be used to obtain estimates with regression standardisation and it can be installed by running:

ssc install standsurv, replace

### ILLUSTRATIVE EXAMPLE

- Data from a trial on prostate cancer with individuals that were randomly assigned estrogen therapy.
- We restrict our analysis to high-dose estrogen therapy arm (DES) and placebo
- Data available at https://hbiostat.org/data

### We fit cause-specific models:

```
// For death due to prostate cancer
stset dtime, failure(eventType==1) exit(time 60)
stpm2 rx normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(4) ///
    tvc(rx) dftvc(2)
estimates store prostate
// For death due to other causes
stset dtime, failure(eventType==2) exit(time 60)
stpm2 rx normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(3)
estimates store other
// Also, create timevar for predictions
range timevar 0 60 121
```

# TOTAL EFFECTS (OR CRUDE)

- Total effects accommodate competing events.
- Refer to a real-world setting where competing events are present.
- They are highly relevant for patients and health professionals.
- Can also aid in policy decisions e.g. on resource allocation.

Examples of total effects are:

- · Cause-specific cumulative incidence functions
- Expected loss in life due to a specific cause of death before time t\* (using option rmft in standsurv)

The marginal CIF for death due to prostate cancer in the presence of death due to other causes when setting treatment to X = x:

$$E\left[F_c(t|X=x, \mathbf{Z})\right] = E\left[\int_0^t S(u|X=x, \mathbf{Z})h_c(u|X=x, \mathbf{Z})du\right]$$

$$E\left[F_c(t|X=1, \boldsymbol{Z})\right] - E\left[F_c(t|X=0, \boldsymbol{Z})\right]$$

The marginal CIF for death due to prostate cancer in the presence of death due to other causes when setting treatment to X = x:

$$E\left[F_c(t|X=x, \mathbf{Z})\right] = E\left[\int_0^t S(u|X=x, \mathbf{Z})h_c(u|X=x, \mathbf{Z})du\right]$$

$$E[F_c(t|X=1, \boldsymbol{Z})] - E[F_c(t|X=0, \boldsymbol{Z})]$$

```
standsurv, crmodels(prostate other) cif ///
at1(rx 0) at2(rx 1) timevar(timevar) ///
contrast(difference) ci ///
atvars(CIF0 CIF1) contrastvars(CIF_diff)
```

The marginal CIF for death due to prostate cancer in the presence of death due to other causes when setting treatment to X = x:

$$E\left[F_c(t|X=x, \mathbf{Z})\right] = E\left[\int_0^t S(u|X=x, \mathbf{Z})h_c(u|X=x, \mathbf{Z})du\right]$$

$$E[F_c(t|X=1, \boldsymbol{Z})] - E[F_c(t|X=0, \boldsymbol{Z})]$$

```
standsurv, crmodels(prostate other) cif ///
    at1(rx 0) at2(rx 1) timevar(timevar) ///
    contrast(difference) ci ///
    atvars(CIF0 CIF1) contrastvars(CIF_diff)
```

The marginal CIF for death due to prostate cancer in the presence of death due to other causes when setting treatment to X = x:

$$E\left[F_c(t|X=x, \mathbf{Z})\right] = E\left[\int_0^t S(u|X=x, \mathbf{Z})h_c(u|X=x, \mathbf{Z})du\right]$$

$$E[F_c(t|X=1, \boldsymbol{Z})] - E[F_c(t|X=0, \boldsymbol{Z})]$$

```
standsurv, crmodels(prostate other) cif ///
at1(rx 0) at2(rx 1) timevar(timevar) ///
contrast(difference) ci ///
atvars(CIF0 CIF1) contrastvars(CIF_diff)
```

The marginal CIF for death due to prostate cancer in the presence of death due to other causes when setting treatment to X = x:

$$E\left[F_c(t|X=x, \mathbf{Z})\right] = E\left[\int_0^t S(u|X=x, \mathbf{Z})h_c(u|X=x, \mathbf{Z})du\right]$$

$$E[F_c(t|X=1, \boldsymbol{Z})] - E[F_c(t|X=0, \boldsymbol{Z})]$$

```
standsurv, crmodels(prostate other) cif ///
at1(rx 0) at2(rx 1) timevar(timevar) ///
contrast(difference) ci ///
atvars(CIF0 CIF1) contrastvars(CIF_diff)
```

The marginal CIF for death due to prostate cancer in the presence of death due to other causes when setting treatment to X = x:

$$E\left[F_c(t|X=x, \mathbf{Z})\right] = E\left[\int_0^t S(u|X=x, \mathbf{Z})h_c(u|X=x, \mathbf{Z})du\right]$$

$$E[F_c(t|X=1, \boldsymbol{Z})] - E[F_c(t|X=0, \boldsymbol{Z})]$$

```
standsurv, crmodels(prostate other) cif ///
at1(rx 0) at2(rx 1) timevar(timevar) ///
contrast(difference) ci ///
atvars(CIF0 CIF1) contrastvars(CIF_diff)
```

The marginal CIF for death due to prostate cancer in the presence of death due to other causes when setting treatment to X = x:

$$E\left[F_c(t|X=x, \mathbf{Z})\right] = E\left[\int_0^t S(u|X=x, \mathbf{Z})h_c(u|X=x, \mathbf{Z})du\right]$$

$$E[F_c(t|X=1, \boldsymbol{Z})] - E[F_c(t|X=0, \boldsymbol{Z})]$$

```
standsurv, crmodels(prostate other) cif ///
at1(rx 0) at2(rx 1) timevar(timevar) ///
contrast(difference) ci ///
atvars(CIF0 CIF1) contrastvars(CIF_diff)
```

## **EXAMPLE - CIFS**



## DIRECT EFFECTS

- The total effect provides no information about whether part of the treatment effect on the event of interest is due to the treatment effect on the competing event.
- Instead, the direct effect quantifies an effect of treatment on the event of interest that is not mediated by the competing event.
- Direct effects are useful for comparing populations without any possible distortions from competing causes of death.
- They can also be applied to explore temporal trends or to study the aetiology of a disease.

Consider a hypothetical intervention that eliminates the competing deaths due to other causes.

### NET PROBABILITY OF DEATH

The marginal counterfactual probability of death from prostate cancer under an intervention of eliminating competing events when setting X = x:

$$E\left[F_c^N(t|X=x,\boldsymbol{Z})\right] = E\left[\int_0^t S_c(u|X=x,\boldsymbol{Z})h_c(u|X=x,\boldsymbol{Z})du\right]$$

$$E[F_c^N(t|X=1, \mathbf{Z})] - E[F_c^N(t|X=0, \mathbf{Z})]$$

### NET PROBABILITY OF DEATH

The marginal counterfactual probability of death from prostate cancer under an intervention of eliminating competing events when setting X = x:

$$E\left[F_c^N(t|X=x,\boldsymbol{Z})\right] = E\left[\int_0^t S_c(u|X=x,\boldsymbol{Z})h_c(u|X=x,\boldsymbol{Z})du\right]$$

The average causal difference:

$$E[F_c^N(t|X=1, \mathbf{Z})] - E[F_c^N(t|X=0, \mathbf{Z})]$$

estimates restore prostate

```
standsurv, failure at1(rx 0) at2(rx 1) ///
timevar(timevar) contrast(difference) ci ///
atvars(F_net_prostate0 F_net_prostate1) ///
contrastvars(F_net_prostate_diff)
```

EXAMPLE - NET PROBABILITY OF DEATH



10 of 14

## SEPARABLE EFFECTS

Suppose that the treatment X can be conceptualised as having two binary components that act through different causal pathways: one component  $X^c$  that affects the cancer of interest and one component  $X^o$  that affects the competing event.

• The separable direct effect of treatment on the probability of death from cancer is defined as

$$E[F_c(t|X^c = 1, X^o = x, \mathbf{Z})] - E[F_c(t|X^c = 0, X^o = x, \mathbf{Z})]$$

• The separable indirect effect of treatment on the probability of death from cancer as

$$E[F_c(t|X^c = x, X^o = 1, \mathbf{Z})] - E[F_c(t|X^c = x, X^o = 0, \mathbf{Z})]$$

## SEPARABLE EFFECTS

Suppose that the treatment X can be conceptualised as having two binary components that act through different causal pathways: one component  $X^c$  that affects the cancer of interest and one component  $X^o$  that affects the competing event.

• The separable direct effect of treatment on the probability of death from cancer is defined as

$$E[F_c(t|X^c = 1, X^o = x, Z)] - E[F_c(t|X^c = 0, X^o = x, Z)]$$

• The separable indirect effect of treatment on the probability of death from cancer as

$$E[F_c(t|X^c = x, X^o = 1, Z)] - E[F_c(t|X^c = x, X^o = 0, Z)]$$

## SEPARABLE EFFECTS IN STATA

estimates store other

```
gen rx_c = rx
gen rx_o = rx
// Prostate cancer
stset dtime, failure(eventType==1) exit(time 60)
stpm2 rx_c normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(4) ///
    tvc(rx_c) dftvc(2)
estimates store prostate
// Other causes
stset dtime, failure(eventType==2) exit(time 60)
stpm2 rx_o normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(3)
```

```
standsurv, crmodels(prostate other) cif ///
  timevar(timevar) contrast(difference) ci ///
  at1(rx_c 1 rx_o 1) ///
  at2(rx_c 1 rx_o 0) ///
  at3(rx_c 0 rx_o 0) ///
  atvars(F_rx11 F_rx10 F_rx00) ////
  contrastvars(E diff indirect E diff total)
```

## SEPARABLE EFFECTS IN STATA

```
gen rx_c = rx
gen rx_o = rx
// Prostate cancer
stset dtime, failure(eventType==1) exit(time 60)
stpm2 rx_c normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(4) ///
        tvc(rx_c) dftvc(2)
estimates store prostate
```

```
// Other causes
stset dtime, failure(eventType==2) exit(time 60)
stpm2 rx_o normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(3)
estimates store other
```

```
standsurv, crmodels(prostate other) cif ///
timevar(timevar) contrast(difference) ci ///
at1(rx_c 1 rx_o 1) ///
at2(rx_c 1 rx_o 0) ///
at3(rx_c 0 rx_o 0) ///
atvars(F_rx11 F_rx10 F_rx00) ////
contrastvars(F_diff_indirect F_diff_total)
```

## SEPARABLE EFFECTS IN STATA

```
gen rx_c = rx
gen rx_o = rx
// Prostate cancer
stset dtime, failure(eventType==1) exit(time 60)
stpm2 rx_c normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(4) ///
        tvc(rx_c) dftvc(2)
estimates store prostate
// Other causes
stset dtime, failure(eventType==2) exit(time 60)
```

```
stpm2 rx_o normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(3) estimates store other
```

```
standsurv, crmodels(prostate other) cif ///
timevar(timevar) contrast(difference) ci ///
at1(rx_c 1 rx_o 1) ///
at2(rx_c 1 rx_o 0) ///
at3(rx_c 0 rx_o 0) ///
atvars(F_rx11 F_rx10 F_rx00) ////
contrastvars(F_diff_indirect F_diff_total)
```

### **EXAMPLE - SEPARABLE INDIRECT EFFECT**



13 of 14

• Estimates of interest can also be obtained after fitting more complex FPMs e.g. non-linear effects and interactions.

- Estimates of interest can also be obtained after fitting more complex FPMs e.g. non-linear effects and interactions.
- In principle, any contrast can be obtained with standsurv by creating a user-defined mata function which can be called in the option userfunction() instead of the contrast().

- Estimates of interest can also be obtained after fitting more complex FPMs e.g. non-linear effects and interactions.
- In principle, any contrast can be obtained with standsurv by creating a user-defined mata function which can be called in the option userfunction() instead of the contrast().
- standsurv can also be used to obtain non-marginalised estimates: by specifying the entire covariate pattern so that the predictions are not averaged over any covariate distribution.

- Estimates of interest can also be obtained after fitting more complex FPMs e.g. non-linear effects and interactions.
- In principle, any contrast can be obtained with standsurv by creating a user-defined mata function which can be called in the option userfunction() instead of the contrast().
- standsurv can also be used to obtain non-marginalised estimates: by specifying the entire covariate pattern so that the predictions are not averaged over any covariate distribution.
- Preprint available at: https://arxiv.org/abs/2109.03628