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WHAT IS THE CAUSAL EFFECT?

- Often interest lies in examining associations between
exposures and an outcome e.g. whether a treatment improves
survival time.

 An association does not necessarily imply causality.

+ Causal inference methods provide the conceptual framework
and algorithmic tools needed for formalising such
investigations (including the required identification
assumptions).

+ Using the counterfactual outcomes framework, we focus on
the average causal effect in the total population, e.g.
difference in probabilities of death:

E[F(t|X =1,2Z)] - E[F(t|X =0, Z)]
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WHAT ARE COMPETING EVENTS?

Events that prevent the occurrence of the event of interest may be
present, so-called competing events.

[cancer death]
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with competing events. Stats Med, 39:1199-1236, 2020

Stensrud et al. Separable effects for causal inference in the presence of competing events.)

Am Stat Assoc, 2020. 2 of 14



ESTIMATION WITH REGRESSION STANDARDISATION
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||Mz

Command standsurv can be used to obtain estimates with
regression standardisation and it can be installed by running:

ssc install standsurv, replace
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ILLUSTRATIVE EXAMPLE

- Data from a trial on prostate cancer with individuals that
were randomly assigned estrogen therapy.

+ We restrict our analysis to high-dose estrogen therapy arm
(DES) and placebo

- Data available at https://hbiostat.org/data

We fit cause-specific models:

// For death due to prostate cancer

stset dtime, failure(eventType==1) exit(time 60)

stpm2 rx normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(4) ///
tve(rx) dftvc(2)

estimates store prostate

// For death due to other causes

stset dtime, failure(eventType==2) exit(time 60)

stpm2 rx normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(3)

estimates store other

// Also, create timevar for predictions

range timevar @ 60 121
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TOTAL EFFECTS (OR CRUDE)

Total effects accommodate competing events.

- Refer to a real-world setting where competing events are
present.

- They are highly relevant for patients and health professionals.
- Can also aid in policy decisions e.g. on resource allocation.

Examples of total effects are:

- Cause-specific cumulative incidence functions

- Expected loss in life due to a specific cause of death before
time ¢* (using option rmft in standsurv)
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CAUSE-SPECIFIC CUMULATIVE INCIDENCE FUNCTION (CIF)

The marginal CIF for death due to prostate cancer in the presence
of death due to other causes when setting treatment to X = x:

E[F.({|X =z, Z)] [/Su|X-xZ) (X =z, Z)du

The average causal difference:

E[Fc(t|X = 172)] - E[Fc(t‘X =0, Z)]
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EXAMPLE - CIFs
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DIRECT EFFECTS

« The total effect provides no information about whether part
of the treatment effect on the event of interest is due to the
treatment effect on the competing event.

- Instead, the direct effect quantifies an effect of treatment on
the event of interest that is not mediated by the competing
event.

- Direct effects are useful for comparing populations without
any possible distortions from competing causes of death.

 They can also be applied to explore temporal trends or to
study the aetiology of a disease.

Consider a hypothetical intervention that eliminates the
competing deaths due to other causes.
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NET PROBABILITY OF DEATH

The marginal counterfactual probability of death from prostate
cancer under an intervention of eliminating competing events
when setting X = x:

E[FN(t|X—xZ [/S (u|lX =z, Z)h.(u|X =z, Z)du

The average causal difference:
BIFYN(tX =1,2)] - E[FY({{X = 0, Z)]
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EXAMPLE - NET PROBABILITY OF DEATH
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SEPARABLE EFFECTS

Suppose that the treatment X can be conceptualised as having
two binary components that act through different causal
pathways: one component X¢ that affects the cancer of interest
and one component X° that affects the competing event.

+ The separable direct effect of treatment on the probability of
death from cancer is defined as

E[F.(|X°=1,X° = 2,2)] — E[F.({X¢ = 0,X° = 2, Z)]

 The separable indirect effect of treatment on the probability
of death from cancer as

E[F.(t|X¢=2,X°=1,Z)] - E[F.(t|X° = 2,X° =0, Z)]
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SEPARABLE EFFECTS IN STATA

gen rx_c = rx
gen rx_o = rx

// Prostate cancer

stset dtime, failure(eventType==1) exit(time 60)

stpm2 rx_c normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(4) ///
tve(rx_c) dftvc(2)

estimates store prostate

// Other causes

stset dtime, failure(eventType==2) exit(time 60)

stpm2 rx_o normalAct ageCat2 ageCat3 hx hgBinary, scale(hazard) df(3)
estimates store other

standsurv, crmodels(prostate other) cif ///
timevar(timevar) contrast(difference) ci ///
atli(rx_c 1 rx_o 1) ///
at2(rx_c 1 rx_o @) ///
at3(rx_c @ rx_o @) ///
atvars(F_rx11 F_rx1@ F_rx@e) ////
contrastvars(F_diff_indirect F_diff_total)
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EXAMPLE - SEPARABLE INDIRECT EFFECT

Cumulative incidence
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FINAL POINTS

- Estimates of interest can also be obtained after fitting more
complex FPMs e.g. non-linear effects and interactions.
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* Preprint available at: https://arxiv.org/abs/2109.03628
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