
Analyzing conjoint 

experiments in Stata

The -conjoint- command

Michael J. Frith12

1 Research Fellow, Dept. of Sociology and Human Geography (UiO)
2 Honorary Research Fellow, Dept. of Security and Crime Science (UCL)

michael.frith@ucl.ac.uk / michael.frith@sosgeo.uio.no

mailto:michael.frith@ucl.ac.uk
mailto:michael.frith@sosgeo.uio.no


Goals and contribution of -conjoint-

• Conjoint analysis itself is not overly complicated

• For most, can simply use -regress-

• ‘Constraints’ make it a bit more complex

• There are commands available in R (and potentially other software):

• cjoint (Barari et al., 2018)

• cregg (Leeper and Barnfield, 2020)

• Shared bits of Stata code:

• e.g. in Hainmueller et al. 2013

• No simple command in Stata

• -conjoint- was made for Stata-only (or preferring) users, to maintain a consistent workflow...

• I am looking to maintain but also improve it in the future!
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• Developed in mathematical psychology

(e.g. Luce and Tukey, 1964)

• Popular in various disciplines

• Including in political science (e.g. 

Hainmueller et al., 2014, Ghosn et al., 

2021a)

• But also market research, 

environmental economics, health care, 

etc.

• Share alot of similarities with discrete 

choice experiments (e.g. see Louviere et 

al., 2010)

• Choice-based conjoints (but there are

other types)

Conjoint Experiments
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• Survey experiment tool to elicit how  

people choose between different options 

(alternatives) that vary in different 

(multidimensional) ways?

• How much do people value different 

attributes (of alternatives) and the trade-

off between them

• Measuring preferences without directly 

asking them

• Can estimate the causal impact of 

different levels (of attributes) on choices 

(Hainmueller et al. 2014)

Conjoint Experiments
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A B

Colour Green Orange

Skin texture Smooth Rough

Price per kg £2.70 £2.25

Vitamin C 

content

Low High

Calcium 

content

Low High



• Another fictional example (semi-based 

on an ‘Apple vs Samsung’ patent trial in 

2012)

Conjoint Experiments
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• Another fictional example (semi-based on 

an ‘Apple vs Samsung’ patent trial in 

2012)

• Use a paired-profile design (each 

participant shown two profiles at a time)
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Mobile Phone A Mobile Phone B

Screen size

Weight

Internal memory

Slide to unlock

Autocorrect

Price
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Screen size 4.7’’, 5.5’’, 6.7’’

Weight 150g, 175g, 200g

Internal memory 32gb, 64gb, 128gb

Slide to unlock No, Yes

Autocorrect No, Yes

Price £150, £300, £500
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Mobile Phone A Mobile Phone B

Screen size 4.7’’ 5.5’’

Weight 175g 200g

Internal memory 64gb 64gb

Slide to unlock Yes Yes

Autocorrect No Yes

Price £300 £300
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Screen size 4.7’’, 5.5’’, 6.7’’
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Internal memory 32gb, 64gb, 128gb
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Average marginal component effect (Hainmueller et 
al., 2014)

Without constraints
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• Complete randomization

• Every level for every attribute is independent of the levels of all other attributes

• Difference in the average choice probabilities between the ‘treatment’ and ‘control’ (two levels)

• AMCE can be computed simply by a regression of the observed choices on D-1 dummy variables 

for the levels of each attribute

• Estimated coefficient is the difference in probabilities of a profile being selected (relative to the 

baseline)
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• With constraints - levels of one attribute 

are restricted on the basis of another

Average marginal component effect (Hainmueller et 
al., 2014)

With constraints
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• With constraints - levels of one attribute 

are restricted on the basis of another 

• e.g. phone weight and screen size -- it 

might be infeasible for a 6.7” screen on a 

150g phone

• Distribution of (phone) weight is 

dependent on the screen size, but 

conditionally independent of all other 

attributes (e.g. internal memory)

Mobile Phone A Mobile Phone B

Screen size 6.7’’ 4.7’’

Weight 150g 150g

Internal memory 32gb 128gb

Slide to unlock Yes Yes

Autocorrect Yes Yes

Price £500 £150

Average marginal component effect (Hainmueller et 
al., 2014)

With constraints



• AMCE can be computed by:

• For combinations of levels where there are 

conditional independence

• Calculate the difference in choice outcomes across 

these strata

• Calculate the (weighted) average

• E.g. for effect of 6.7’’ relative to 4.7’’ screen:

(6.7’’#175g – 4.7’’#175g) + (6.7’’#200g – 4.7’’#200g)

• AMCE can be computed by:

• For each level, take the combinations 

with other levels where they (and the 

baseline level) appear

• Calculate the overall difference in 

choice outcomes across these strata
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Mobile Phone A Mobile Phone B

Screen size 6.7’’ 4.7’’

Weight 150g 150g

Internal memory 32gb 128gb

Slide to unlock Yes Yes

Autocorrect Yes Yes

Price £500 £150

Average marginal component effect (Hainmueller et 
al., 2014)

With constraints
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Mobile Phone A Mobile Phone B

Screen size 6.7’’ 4.7’’

Weight 150g 150g

Internal memory 32gb 128gb

Slide to unlock Yes Yes

Autocorrect Yes Yes

Price £500 £150

Average marginal component effect (Hainmueller et 
al., 2014)

With constraints



From Leeper et al., 2020
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• AMCEs are the effect relative to the 

baselevel (control)

• No constraints: choice of baselevel can 

impact the visualization of the results

• With constraints, can directly impact the 

results

• With subgroups, e.g. males versus 

females, becomes a bit more complicated

• Particularly when preferences for 

reference level diverges

• Interpretation has to be careful

Average marginal component effect (Hainmueller et 
al., 2014)



Marginal Means (Leeper et al., 2020)
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• Rather than marginal effect of one 

level relative to another (AMCE)

• Represent as the (marginal) mean 

effect

• The average probability of a profile 

being selected given an attribute level, 

the level of favorability

• Does not depend on the choice of 

base or reference level

• Can be estimated using -regress- and 

-margins- commands

From Leeper et al., 2020



• Two well known R packages:

• cjoint (Barari et al., 2018)

• Estimate AMCEs

• Lots of other functionality

• Two-way constraints between each pair of 

levels must be specified

• cregg (Leeper and Barnfield, 2020)

• Estimate AMCEs and MMs

• Two-way constraints between levels are 

automatically detected

• Lots of other functionality

• No ‘simple’ function in Stata (as far as I know)

Analysing conjoints
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Replicate conjoint analysis functionality in a 

simple command

Can estimate AMCEs and MMs

(Theoretically) can include unlimited-way 

constraints between levels

The combinations of constrained levels are 

automatically detected through 

conjoint…constraint(x#y)

Can pass the results to -coefplot- for plotting

Limited other functionality…

Comparisons of effects of baselevel choices

Comparing attribute-levels

…

-conjoint-
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cjoint (Barari et al., 2018)
Estimate AMCEs

Lots of other functionality

Two-way constraints between pairs of levels must be specified

cregg (Leeper and Barnfield, 2020)
Estimate AMCEs and MMs

Two-way constraints between levels are automatically detected

Lots of other functionality



• Relatively simple

• Has a replay function

• Cleaning/preparation function

• Split into a ‘estimate mm’ (marginal means) and 

‘estimate amce’ (average marginal component 

effects) functions

• A display function

• How amazing Statalist is (e.g. the optional 

arguments code)!

-conjoint-

23



conjoint Chosen_Immigrant Country_of_Origin Reason_for_Application Education, est(amce) 

id(CaseID) constraint(Country_of_Origin#Reason_for_Application Education#Job)

conjoint_prep

• Checks for various issues

• Cleans constraint list (variables in constraint list do

need to be an IV and vice versa)

-conjoint-
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conjoint Chosen_Immigrant Country_of_Origin Reason_for_Application Education, est(amce) 

id(CaseID) constraint(Country_of_Origin#Reason_for_Application Education#Job)

conjoint_amce

• Uses -regress-

• Uses r(error) table to identify constraints/empty 

cells (combinations of levels)

• Uses -lincom- when constraints to calculate 

difference

• String can be too long – can be calculated 

manually in future version

-conjoint-
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conjoint Chosen_Immigrant Country_of_Origin Reason_for_Application Education, est(amce) 

id(CaseID) constraint(Country_of_Origin#Reason_for_Application Education#Job)

conjoint_disp

• Displays results table

• Sends a string to -coefplot- if graph 

option specified

• ereturns some results

-conjoint-
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From Simon et al., 2021

Conjoint Example #1

Refugee resettlement preferences conjoint 

(Simon et al., 2021, Braithwaite et al., 2020)

• 402 Syrian refugees asked for their 

relocation preferences

• Two alternatives, “Country A” and “Country 

B”

• Varied by:

• Level of abuse

• Ease of finding work

• Size of diaspora

• Legality (of move)

• Completely randomised
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From Simon et al., 2021

Conjoint Example #1

Refugee resettlement preferences conjoint 

(Simon et al., 2021, Braithwaite et al., 2020)

• cjoint (R)

• amce(chosen ~ abuse + easework + diaspora + 

legality, cluster=TRUE, respondent.id=“ID"

data=resettle_conjoint)

• cregg (R)

• cj(data=resettle_conjoint, chosen ~ abuse + easework

+ diaspora + legality, id = ~ ID, estimate = "amce“)

• cj(data=resettle_conjoint, chosen ~ abuse + easework

+ diaspora + legality, id = ~ ID, estimate = “mm“)

• conjoint (Stata)

• conjoint chosen abuse easework diaspora legality, 

est(amce) id(ID)

• conjoint chosen abuse easework diaspora legality, 

est(mm) id(ID)
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And when adding subgroups (here 

3 models depending on their 

evaluations of different agencies) and a 

little bit of extra code to merge the plots



From Hainmueller et al 2014

Conjoint Example #2

Immigration conjoint (Hainmueller et al., 2014)

• Asked between 2 immigrants, which they would 

prefer to be admitted to the United States

• Prior trips to the US

• Reason for application

• Country of origin

• English skills

• Profession

• Job Experience

• Employment Plans

• Education Level

• Gender
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Conjoint Example #2

Immigration conjoint (Hainmueller et al., 2014)

• cjoint (R)

attribute_list <- list()

attribute_list[["Country of Origin"]] <- ("Germany", "France", 

"Mexico", "Philippines", "Poland", "India", "China", "Sudan", 

"Somalia", "Iraq")

attribute_list[["Reason for Application"]] <- c("reunite with family", 

"seek better job", "escape persecution")

constraint_list<-list()

constraint_list[[1]] <- list()

constraint_list[[1]][["Reason for Application"]] <- c("escape 

persecution")

constraint_list[[1]][["Country of Origin"]] <- c("Germany", "France", 

"Mexico", "Philippines", "Poland", "India")

immigrationdesign <- makeDesign(type='constraints', 

attribute.levels=attribute_list, constraints=constraint_list)

immigrationdesign <- makeDesign(type='constraints', 

attribute.levels=attribute_list, constraints=constraint_list)
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• cjoint (R)

• amce(Chosen_Immigrant ~ Country_of_Origin + 

Reason_for_Application + data=immigrationconjoint, 

cluster=TRUE, respondent.id="CaseID“, 

design=immigrationdesign)

• cregg (R)

• cj(data= immigrationconjoint, Chosen_Immigrant ~ 

Country_of_Origin * Reason_for_Application, id = ~ CaseID, 

estimate = "amce“)

• conjoint (Stata)

• conjoint Chosen_Immigrant Country_of_Origin

Reason_for_Application, est(amce) id(CaseID) 

constraint(Country_of_Origin#Reason_for_Application)

Defining the 

constraints 

for cjoint (R)



Conjoint Example #2
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• cjoint (R)

• amce(Chosen_Immigrant ~ Country_of_Origin + 

Reason_for_Application + data=immigrationconjoint, 

cluster=TRUE, respondent.id="CaseID“, 

design=immigrationdesign)

• cregg (R)

• cj(data= immigrationconjoint, Chosen_Immigrant ~ 

Country_of_Origin * Reason_for_Application, id = ~ CaseID, 

estimate = "amce“)

• conjoint (Stata)

• conjoint Chosen_Immigrant Country_of_Origin

Reason_for_Application, est(amce) id(CaseID) 

constraint(Country_of_Origin#Reason_for_Application)

Defining the 

constraints 

for cjoint (R)



Conjoint Example #2

cjoint (R) - plot(results) Conjoint (Stata) - conjoint, graph

Page 33

Immigration conjoint (Hainmueller et al., 2014)



Limited extra functionality…

Comparisons of effects of baselevel choices

Comparing attribute-levels

Compare model (fits)

Customizability of plots

Manually specify constraints

Weights

Passing results to e(b) and e(V)

…

Reliance on lincom where string can be too long 

(can be fixed soon)

Integrate with survey software (e.g. Kobo Toolbox 

and equivalents)

…

What -conjoint- cant do (yet)
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From Leeper et al., 2020
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