

randregret: A command for fitting random regret minimization models using Stata

UK Stata Meeting - London, 2020. Presenter: Álvaro A. Gutiérrez Vargas

- Álvaro A. Gutiérrez Vargas (💟, 🗭, 🛅)'
- Michel Meulders
- Martina Vandebroek
- Research Centre for Operations Research and Statistics (ORSTAT)

1 Introduction

- 2 Differences between RUM and RRM models.
- **3** Extensions of the Classical RRM model
- 4 Relationships among the different models
- **6** Implementation
- 6 Download
- Ø Bibliography

1 Outline

- Introduction RUM vs RRM Classical Regret
- 2 Differences between RUM and RRM models.
- **3** Extensions of the Classical RRM model
- 4 Relationships among the different models
- **6** Implementation

From Utility to Regret.

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one
- Individuals are assumed to minimize regret.

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one
- Individuals are assumed to minimize regret.

Table: Hypothetical Choice Situation

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3
Travel Time	23 min.	27 min.	35 min.
Travel Cost	6 euros	4 euros	3 euros

If we chose alternative 2:

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one
- Individuals are assumed to minimize regret.

Table: Hypothetical Choice Situation

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3
Travel Time	23 min.	27 min.	35 min.
Travel Cost	6 euros	4 euros	3 euros

If we chose alternative 2:

Alternative 1 is faster...

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one
- Individuals are assumed to minimize regret.

Table: Hypothetical Choice Situation

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3
Travel Time	23 min.	27 min.	35 min.
Travel Cost	6 euros	4 euros	3 euros

If we chose alternative 2:

- Alternative 1 is faster...
- Alternative 3 is cheaper...

- From Utility to Regret.
- Regret: Situation where a non-chosen alternative ends up being more attractive than the chosen one
- Individuals are assumed to minimize regret.

Table: Hypothetical Choice Situation

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3
Travel Time	23 min.	27 min.	35 min.
Travel Cost	6 euros	4 euros	3 euros

If we chose alternative 2:

- ► Alternative 1 is faster...
- Alternative 3 is cheaper...

 \Rightarrow RRM models will (formalize and) minimize this notion of regret!

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3	
Travel Time	23 min.	27 min.	35 min.	
Travel Cost	6 euros	4 euros	3 euros	

Table: Hypothetical Choice Situation

We will denote in the following:

Decision-makers (referred to n).

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3	
Travel Time	23 min.	27 min.	35 min.	
Travel Cost	6 euros	4 euros	3 euros	

Table: Hypothetical Choice Situation

We will denote in the following:

- Decision-makers (referred to n).
- ▶ They decide among *J* alternatives (referred to *i* or *j* indistinctly).

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3	
Travel Time	23 min.	27 min.	35 min.	
Travel Cost	6 euros	4 euros	3 euros	

Table: Hypothetical Choice Situation

We will denote in the following:

- Decision-makers (referred to n).
- ▶ They decide among *J* alternatives (referred to *i* or *j* indistinctly).
- Where each alternative is described in terms of the value of M attributes (referred to m).

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3	
Travel Time	23 min.	27 min.	35 min.	
Travel Cost	6 euros	4 euros	3 euros	

Table: Hypothetical Choice Situation

We will denote in the following:

- Decision-makers (referred to n).
- ▶ They decide among J alternatives (referred to i or j indistinctly).
- Where each alternative is described in terms of the value of M attributes (referred to m).

 \Rightarrow the value of attribute m of alternative i of individual n is denoted by $\frac{x_{imn}}{x_{imn}}$.

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1	2	3	
Travel Time	23 min.	27 min.	35 min.	
Travel Cost	6 euros	4 euros	3 euros	

Table: Hypothetical Choice Situation

We will denote in the following:

- Decision-makers (referred to n).
- ▶ They decide among J alternatives (referred to i or j indistinctly).
- Where each alternative is described in terms of the value of M attributes (referred to m).

 \Rightarrow the value of attribute m of alternative i of individual n is denoted by $\frac{x_{imn}}{x_{imn}}$.

y_{in} is the response variable that takes the value of 1 when alternative i is chosen and 0 otherwise.

Random Utility Maximization (RUM)

Random Utility Maximization (RUM)

$$U_{in} = V_{in} + \varepsilon_{in}$$

Random Utility Maximization (RUM)

$$U_{in} = V_{in} + \varepsilon_{in}$$
$$= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$$

Random Utility Maximization (RUM) Systematic Utility

$$U_{in} = V_{in} + \varepsilon_{in}$$
$$= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$$

Random Utility Maximization (RUM) Systematic Utility

Utility
$$\leftarrow U_{in} = V_{in} + \varepsilon_{in}$$

= $\beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$

Random Utility Maximization (RUM) Systematic Utility Utility $U_{in} = V_{in} + \varepsilon_{in}$ $= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$

Random Regret Minimization (RRM)

Random Utility Maximization (RUM) \rightarrow Systematic Utility Utility $U_{in} = V_{in} + \varepsilon_{in}$ $= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$

Random Regret Minimization (RRM)

$$RR_{in} = R_{in} + \varepsilon_{in}$$
$$= \sum_{j \neq i}^{J} R_{i \leftrightarrow j, tn} + \sum_{j \neq i}^{J} R_{i \leftrightarrow j, cn} + \varepsilon_{in}$$

Random Utility Maximization (RUM) \rightarrow Systematic Utility Utility $\leftarrow U_{in} = V_{in} + \varepsilon_{in}$ $= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$

► Random Regret Minimization (RRM) Systematic Regret $RR_{in} = R_{in} + \varepsilon_{in}$ $= \sum_{j \neq i}^{J} R_{i \leftrightarrow j, tn} + \sum_{j \neq i}^{J} R_{i \leftrightarrow j, cn} + \varepsilon_{in}$

Random Utility Maximization (RUM) Systematic Utility Utility $U_{in} = V_{in} + \varepsilon_{in}$ $= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$

Random Regret Minimization (RRM) Systematic Regret

$$\begin{array}{l} \text{Regret} \leftarrow RR_{in} = R_{in} + \varepsilon_{in} \\ = \sum_{j \neq i}^{J} R_{i \leftrightarrow j, tn} + \sum_{j \neq i}^{J} R_{i \leftrightarrow j, cn} + \varepsilon_{in} \end{array}$$

Random Utility Maximization (RUM) Systematic Utility Utility $U_{in} = V_{in} + \varepsilon_{in}$ $= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$

Random Regret Minimization (RRM) Systematic Regret

 $\begin{array}{c} \mathsf{Regret} \longleftarrow RR_{in} = R_{in} + \varepsilon_{in} \\ \\ = \sum_{j \neq i}^{J} R_{i \leftrightarrow j, tn} + \sum_{j \neq i}^{J} R_{i \leftrightarrow j, cn} + \varepsilon_{in} \end{array}$

• The notion of *regret* is characterize by the systematic regret R_{in} .

Random Utility Maximization (RUM) Systematic Utility Utility $U_{in} = V_{in} + \varepsilon_{in}$ $= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$

Random Regret Minimization (RRM) Systematic Regret

 $\begin{array}{l} \mathsf{Regret} \longleftarrow RR_{in} = R_{in} + \varepsilon_{in} \\ = \sum_{j \neq i}^{J} R_{i \leftrightarrow j, tn} + \sum_{j \neq i}^{J} R_{i \leftrightarrow j, cn} + \varepsilon_{in} \end{array}$

- The notion of *regret* is characterize by the systematic regret R_{in} .
- R_{in} is described in terms of *attribute level regret* $(R_{i \leftrightarrow j,mn})$.

Random Utility Maximization (RUM) Systematic Utility Utility $U_{in} = V_{in} + \varepsilon_{in}$ $= \beta_t x_{itn} + \beta_c x_{icn} + \varepsilon_{in}$

Random Regret Minimization (RRM) Systematic Regret

 $\begin{array}{l} \mathsf{Regret} \longleftarrow RR_{in} = R_{in} + \varepsilon_{in} \\ = \sum_{j \neq i}^{J} R_{i \leftrightarrow j, tn} + \sum_{j \neq i}^{J} R_{i \leftrightarrow j, cn} + \varepsilon_{in} \end{array}$

- The notion of *regret* is characterize by the systematic regret R_{in} .
- R_{in} is described in terms of *attribute level regret* $(R_{i \leftrightarrow j,mn})$.

1 The Attribute level regret $R_{i \leftrightarrow j,mn}$

$Attribute \setminus Route$	1	2	3
Travel Time	23 min.	27 min.	35 min.
Travel Cost	6 euros	4 euros	3 euros

► R_{i↔j,mn} describes the pairwise combinations of regret derived from alternatives.

1 The Attribute level regret $R_{i \leftrightarrow j,mn}$

$Attribute \setminus Route$	1	2	3
Travel Time	23 min.	27 min.	35 min.
Travel Cost	6 euros	4 euros	3 euros

► R_{i↔j,mn} describes the pairwise combinations of regret derived from alternatives.

$(x_{jm} - x_{im})$	$Attribute \setminus Route$	j = 1	j = 2	j = 3
$(x_{jm} - x_{1t})$	Travel Time	0	4	12
$(x_{jm} - x_{1c})$	Travel Cost	0	-2	-3
$(x_{jm} - x_{2t})$	Travel Time	-4	0	8
$(x_{jm} - x_{2c})$	Travel Cost	2	0	-1
$(x_{jm} - x_{3t})$	Travel Time	-12	-8	0
$(x_{jm} - x_{3c})$	Travel Cost	3	1	0

1 The Attribute level regret $R_{i \leftrightarrow j,mn}$

$Attribute \setminus Route$	1	2	3	
Travel Time	23 min.	27 min.	35 min.	
Travel Cost	6 euros	4 euros	3 euros	

R_{i↔j,mn} describes the pairwise combinations of regret derived from alternatives.

$(x_{jm} - x_{im})$	$Attribute \setminus Route$	j = 1	j = 2	j = 3
$(x_{jm} - x_{1t})$	Travel Time	0	4	12
$(x_{jm} - x_{1c})$	Travel Cost	0	-2	-3
$(x_{jm} - x_{2t})$	Travel Time	-4	0	8
$(x_{jm} - x_{2c})$	Travel Cost	2	0	-1
$(x_{jm} - x_{3t})$	Travel Time	-12	-8	0
$(x_{jm} - x_{3c})$	Travel Cost	3	1	0

Takeaway: We will define $R_{i \leftrightarrow j,mn}$ in terms of the attribute differences.

Chorus, 2010) proposed the following attribute level regret:

$$R_{i\leftrightarrow j,mn} = \ln\left[1 + \exp\left\{\beta_m \cdot (x_{jmn} - x_{imn})\right\}\right]$$

 \triangleright $R_{i \leftrightarrow j,mn}$ compares alternative *i* with alternative *j* in attribute *m*.

Chorus, 2010) proposed the following attribute level regret:

$$R_{i \leftrightarrow j,mn} = \ln\left[1 + \exp\left\{\beta_m \cdot (x_{jmn} - x_{imn})\right\}\right]$$

 \triangleright $R_{i \leftrightarrow j,mn}$ compares alternative *i* with alternative *j* in attribute *m*.

 $\triangleright \sum_{i \neq i} R_{i \leftrightarrow j,mn}$ is the equivalent to $x_{imn} \cdot \beta_m$ in an utilitarian model.

Chorus, 2010) proposed the following attribute level regret:

$$R_{i\leftrightarrow j,mn} = \ln\left[1 + \exp\left\{\beta_m \cdot (x_{jmn} - x_{imn})\right\}\right]$$

▶ $R_{i \leftrightarrow j,mn}$ compares alternative *i* with alternative *j* in attribute *m*.

 $\triangleright \sum_{j \neq i} R_{i \leftrightarrow j,mn}$ is the equivalent to $x_{imn} \cdot \beta_m$ in an utilitarian model.

• β_m is the taste parameter of attribute m.

• (Chorus, 2010) proposed the following systematic regret:

$$R_{in} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,mn} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln\left[1 + \exp\left\{\beta_m \cdot (x_{jmn} - x_{imn})\right\}\right]$$
(1)

• (Chorus, 2010) proposed the following systematic regret:

Attribute level regret.

$$R_{in} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,mn} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln\left[1 + \exp\left\{\beta_m \cdot (x_{jmn} - x_{imn})\right\}\right]$$
(1)

• (Chorus, 2010) proposed the following systematic regret:

Attribute level regret.

$$R_{in} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,mn} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left[1 + \exp \left\{ \beta_m \cdot (x_{jmn} - x_{imn}) \right\} \right]$$
(1)
Linear sum of all attribute level regret.
1 Classical RRM (Chorus, 2010)

• (Chorus, 2010) proposed the following systematic regret:

Attribute level regret.

$$R_{in} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,mn} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left[1 + \exp \left\{ \beta_m \cdot (x_{jmn} - x_{imn}) \right\} \right]$$
(1)
Linear sum of all attribute level regret.

• From our example: $\mathcal{M} = \{t, c\}, J = 3.$

1 Classical RRM (Chorus, 2010)

• (Chorus, 2010) proposed the following systematic regret:

Attribute level regret.

$$R_{in} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,mn} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left[1 + \exp \left\{ \beta_m \cdot (x_{jmn} - x_{imn}) \right\} \right]$$
(1)
Linear sum of all attribute level regret.

- From our example: $\mathcal{M} = \{t, c\}, J = 3.$
- Regret of alternative 1 (R_1) will be described by:

1 Classical RRM (Chorus, 2010)

• (Chorus, 2010) proposed the following systematic regret:

Attribute level regret.

$$R_{in} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,mn} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left[1 + \exp \left\{ \beta_m \cdot (x_{jmn} - x_{imn}) \right\} \right]$$
(1)
Linear sum of all attribute level regret.

From our example: M = {t, c}, J = 3.
Regret of alternative 1 (R₁) will be described by:

$$R_{1} = \sum_{j \neq i}^{3} \sum_{m \in \mathcal{M}} \ln \left[1 + \exp \left\{ \beta_{m} (x_{jm} - x_{im}) \right\} \right]$$

= $\ln \left[1 + \exp \left\{ \beta_{t} (x_{2t} - x_{1t}) \right\} \right] + \ln \left[1 + \exp \left\{ \beta_{c} (x_{2c} - x_{1c}) \right\} \right]$
+ $\ln \left[1 + \exp \left\{ \beta_{t} (x_{3t} - x_{1t}) \right\} \right] + \ln \left[1 + \exp \left\{ \beta_{c} (x_{3c} - x_{1c}) \right\} \right]$

1 Defining $RR_{in} = R_{in} + \varepsilon_{in}$, where ε_{in} is a type I Extreme Value i.i.d. error.

- 1 Defining $RR_{in} = R_{in} + \varepsilon_{in}$, where ε_{in} is a type I Extreme Value i.i.d. error.
- 2 Acknowledging that the minimization of the random regret is mathematically equivalent to maximizing the negative of the regret.

- 1 Defining $RR_{in} = R_{in} + \varepsilon_{in}$, where ε_{in} is a type I Extreme Value i.i.d. error.
- 2 Acknowledging that the minimization of the random regret is mathematically equivalent to maximizing the negative of the regret.
- 3 Hence, the probabilities may be derived using the Multinomial Logit:

$$P_{in} = \frac{\exp(-R_{in})}{\sum_{j=1}^{J} \exp(-R_{jn})}$$
 for $i = 1, ..., J$ (2)

- 1 Defining $RR_{in} = R_{in} + \varepsilon_{in}$, where ε_{in} is a type I Extreme Value i.i.d. error.
- 2 Acknowledging that the minimization of the random regret is mathematically equivalent to maximizing the negative of the regret.
- 3 Hence, the probabilities may be derived using the Multinomial Logit:

$$P_{in} = \frac{\exp(-R_{in})}{\sum_{j=1}^{J} \exp(-R_{jn})}$$
 for $i = 1, ..., J$ (2)

4 Consequently, the log-likelihood will be described by:

$$\ln L = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln (P_{in})$$
$$= -\sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} R_{in} - \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln \left(\sum_{j=1}^{J} \exp \left(-R_{jn} \right) \right)$$
(3)

2 Outline

Introduction

2 Differences between RUM and RRM models. Taste Parameter Interpretation in RRM models Semi-compensatory Behavior and the Compromise Effect

3 Extensions of the Classical RRM model

4 Relationships among the different models

6 Implementation

6 Download

RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret associated with comparing a considered alternative with another alternative in terms of the attribute, caused by one unit change in a particular attribute level.

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret associated with comparing a considered alternative with another alternative in terms of the attribute, caused by one unit change in a particular attribute level.
 - For instance: $\widehat{\beta}_m > 0$
 - suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative

KU LEUVEI

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret associated with comparing a considered alternative with another alternative in terms of the attribute, caused by one unit change in a particular attribute level.
 - For instance: $\hat{\beta}_m > 0$
 - suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret associated with comparing a considered alternative with another alternative in terms of the attribute, caused by one unit change in a particular attribute level.
 - For instance: β_m > 0 suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).
 - For instance: $\hat{\beta}_m < 0$ suggests that regret decreases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret associated with comparing a considered alternative with another alternative in terms of the attribute, caused by one unit change in a particular attribute level.
 - For instance: β_m > 0 suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).
 - For instance: $\hat{\beta}_m < 0$ suggests that regret decreases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Total Time).

- RUM: parameters are interpreted as the change in utility caused by an increase of a particular attribute level.
- RRM: parameters represent the *potential* change in regret associated with comparing a considered alternative with another alternative in terms of the attribute, caused by one unit change in a particular attribute level.
 - For instance: $\widehat{\beta}_m > 0$
 - suggests that regret increases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Comfortable level).
 - For instance: $\hat{\beta}_m < 0$ suggests that regret decreases as the level of that attribute increases in a non-chosen alternative, in comparison to the level of the same attribute in the chosen alternative (e.g: Total Time).

KU LEUVE

All in all. the parameters in RUM and RRM, are expected to have the same sign, even though their interpretation is dramatically different.

• Attribute level regret $R_{i\leftrightarrow j,mn}$ with $\beta_m = 1$.

• Attribute level regret $R_{i\leftrightarrow j,mn}$ with $\beta_m = 1$.

(A) = rejoice and (B) = regret on an equal difference of attribute level.

- Attribute level regret $R_{i \leftrightarrow j,mn}$ with $\beta_m = 1$.
- (A) = rejoice and (B) = regret on an equal difference of attribute level.
- For an equal difference of the attribute levels ⇒ regret >>> rejoice

- Attribute level regret $R_{i \leftrightarrow j,mn}$ with $\beta_m = 1$.
- (A) = rejoice and (B) = regret on an equal difference of attribute level.
- For an equal difference of the attribute levels ⇒ regret >>> rejoice
- ► Linear RUM models ⇒ fully-compensatory model.

• Attribute level regret $R_{i \leftrightarrow j,mn}$ with $\beta_m = 1$.

(A) = rejoice and (B) = regret on an equal difference of attribute level.

- For an equal difference of the attribute levels ⇒ regret >>> rejoice
- ► Linear RUM models ⇒ fully-compensatory model.
- Compromise Effect: Alternatives with "balanced" performance in all attributes are more attractive than alternatives with a severe poor performance in one attribute.

3 Outline

Introduction

② Differences between RUM and RRM models.

 Sextensions of the Classical RRM model Generalized RRM (Chorus, 2014) μRRM (van Cranenburgh et al., 2015) Pure RRM (van Cranenburgh et al., 2015)

4 Relationships among the different models

6 Implementation

The extensions of the classical regret model (Chorus, 2010) are derived using modified versions of the *attribute level regret* $R_{i \leftrightarrow j,mn}$.

The extensions of the classical regret model (Chorus, 2010) are derived using modified versions of the *attribute level regret* $R_{i \leftrightarrow j,mn}$.

The extensions of the classical regret model (Chorus, 2010) are derived using modified versions of the *attribute level regret* $R_{i \leftrightarrow j,mn}$.

 $\blacktriangleright \Rightarrow$ all the steps described in order to obtain the log-likelihood of the model remain constant.

The extensions of the classical regret model (Chorus, 2010) are derived using modified versions of the *attribute level regret* $R_{i \leftrightarrow j,mn}$.

- $\blacktriangleright \Rightarrow$ all the steps described in order to obtain the log-likelihood of the model remain constant.
- All we need to do is replace the new attribute level regret from the extended model to compute the new log-likelihood.

(Chorus, 2014) proposed a new attribute level regret:

$$R_{in}^{\text{GRRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,mn}^{\text{GRRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln\left[\gamma + \exp\left\{\beta_m \left(x_{jmn} - x_{imn}\right)\right\}\right]$$
(4)

(Chorus, 2014) proposed a new attribute level regret:

$$R_{in}^{\mathsf{GRRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j, mn}^{\mathsf{GRRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left\{ \gamma + \exp \left\{ \beta_m \left(x_{jmn} - x_{imn} \right) \right\} \right]$$
(4)

The regret function (R^{GRRM}_{in}) (again) is just the sum of those *attribute level regret* (R^{GRRM}_{i+j,mn}) across attributes.

(Chorus, 2014) proposed a new attribute level regret:

$$R_{in}^{\mathsf{GRRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j, mn}^{\mathsf{GRRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left\{ \gamma + \exp \left\{ \beta_m \left(x_{jmn} - x_{imn} \right) \right\} \right]$$
(4)

- The regret function (R^{GRRM}_{in}) (again) is just the sum of those attribute level regret (R^{GRRM}_{i↔ i,mn}) across attributes.
- The new parameter (\(\gamma\)) alters the shape of the regret, and the degree of asymmetries between regret and rejoice.

(Chorus, 2014) proposed a new attribute level regret:

$$R_{in}^{\mathsf{GRRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j, mn}^{\mathsf{GRRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \ln \left\{ \gamma + \exp \left\{ \beta_m \left(x_{jmn} - x_{imn} \right) \right\} \right]$$
(4)

- ► The regret function (R^{GRRM}_{in}) (again) is just the sum of those attribute level regret (R^{GRRM}_{i↔ i,mn}) across attributes.
- The new parameter (\u03c6) alters the shape of the regret, and the degree of asymmetries between regret and rejoice.
- Model generalized the original RRM model and also the RUM model! (how?)

3 $R_{i\leftrightarrow j,mn}^{\rm GRRM}$ at different values of γ conditional on $\beta_m = 1$.

▶ $\gamma = 1 \Rightarrow$ Classic RRM.

3 $R_{i\leftrightarrow j,mn}^{\rm GRRM}$ at different values of γ conditional on $\beta_m = 1$.

 $\gamma = 1 \Rightarrow$ Classic RRM.
 $\gamma \in]0,1[$ asymmetries are present but smaller than with $\gamma = 1$.

3 $R_{i\leftrightarrow j,mn}^{\text{GRRM}}$ at different values of γ conditional on $\beta_m = 1$.

 $\gamma = 1 \Rightarrow$ Classic RRM. $\gamma \in]0,1[$ asymmetries are present but smaller than with $\gamma = 1$. $\gamma = 0$, no convexity ⇒ fully compensatory behavior (RUM!).

• (van Cranenburgh et al., 2015) proposed the following systematic regret:

$$R_{in}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot R_{i \leftrightarrow j,mn}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot \ln\left[1 + \exp\left\{(\beta_m/\mu)\left(x_{jmn} - x_{imn}\right)\right\}\right]$$
(5)

N

• (van Cranenburgh et al., 2015) proposed the following systematic regret:

$$R_{in}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot R_{i \leftrightarrow j,mn}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot \ln\left[1 + \exp\left\{(\beta_m/\mu)\left(x_{jmn} - x_{imn}\right)\right\}\right]$$

ew parameter... (5)

N

• (van Cranenburgh et al., 2015) proposed the following systematic regret:

$$R_{in}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot R_{i \leftrightarrow j,mn}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot \ln\left[1 + \exp\left\{\left(\beta_m/\mu\right)\left(x_{jmn} - x_{imn}\right)\right\}\right]$$

ew parameter... (5)

Ν

• (van Cranenburgh et al., 2015) proposed the following systematic regret:

$$R_{in}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot R_{i \leftrightarrow j,mn}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot \ln\left[1 + \exp\left\{\left(\beta_{m}/\mu\right)\left(x_{jmn} - x_{imn}\right)\right\}\right]$$

ew parameter... (5)

The scale parameter is not identified in the RUM context.
N

• (van Cranenburgh et al., 2015) proposed the following systematic regret:

$$R_{in}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot R_{i \leftrightarrow j,mn}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot \ln\left[1 + \exp\left\{\left(\beta_m/\mu\right)\left(x_{jmn} - x_{imn}\right)\right\}\right]$$

ew parameter... (5)

- The scale parameter is not identified in the RUM context.
- However, RRM models can describe a semi-compensatory behavior \Rightarrow identification of the μ parameter.

• (van Cranenburgh et al., 2015) proposed the following systematic regret:

$$R_{in}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot R_{i \leftrightarrow j,mn}^{\mu \mathsf{RRM}} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \mu \cdot \ln\left[1 + \exp\left\{\left(\beta_m/\mu\right)\left(x_{jmn} - x_{imn}\right)\right\}\right]$$

New parameter... (5)

- The scale parameter is not identified in the RUM context.
- However, RRM models can describe a semi-compensatory behavior \Rightarrow identification of the μ parameter.
- µ is informative of the degree of regret imposed by the model, stated otherwise, how much semi-compensatory behavior we are observing in the decision makers choice behavior.

3 $R_{i\leftrightarrow j,mn}^{\mu { m RRM}}$ at different values of μ conditional on $\beta_m=1$

3 $R_{i\leftrightarrow j,mn}^{\mu \text{RRM}}$ at different values of μ conditional on $\beta_m = 1$

▶ $\mu = 1 \Rightarrow$ Classic RRM model.

3 $R_{i\leftrightarrow j,mn}^{\mu \text{RRM}}$ at different values of μ conditional on $\beta_m = 1$

▶ $\mu = 1 \Rightarrow$ Classic RRM model.

• $\mu \to \infty \Rightarrow$ the smaller the ratio $(\beta_m/\mu) \Rightarrow$ the smaller the asymmetries.

3 $R_{i\leftrightarrow j,mn}^{\mu \text{RRM}}$ at different values of μ conditional on $\beta_m = 1$

▶ $\mu = 1 \Rightarrow$ Classic RRM model.

- $\mu \to \infty \Rightarrow$ the smaller the ratio $(\beta_m/\mu) \Rightarrow$ the smaller the asymmetries.
 - The model collapses into a RUM model.

3 $R_{i\leftrightarrow j,mn}^{\mu { m RRM}}$ at different values of μ conditional on $\beta_m=1$

▶ $\mu = 1 \Rightarrow$ Classic RRM model.

- $\mu \to \infty \Rightarrow$ the smaller the ratio $(\beta_m/\mu) \Rightarrow$ the smaller the asymmetries.
 - The model collapses into a RUM model.
- $\mu \to 0 \Rightarrow$ the higher the ratio (β_m/μ) , \Rightarrow the higher the asymmetries.

3 $R_{i\leftrightarrow j,mn}^{\mu {\sf RRM}}$ at different values of μ conditional on $\beta_m = 1$

▶ $\mu = 1 \Rightarrow$ Classic RRM model.

- $\mu \to \infty \Rightarrow$ the smaller the ratio $(\beta_m/\mu) \Rightarrow$ the smaller the asymmetries.
 - The model collapses into a RUM model.
- $\mu \to 0 \Rightarrow$ the higher the ratio (β_m/μ) , \Rightarrow the higher the asymmetries.

KU LEUVEN

• The model collapses into a new model: Pure RRM.

► For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu \text{RRM}} = R_{in}^{\text{PRRM}}$

18 Gutiérrez, Meulders & Vandebroek: Random regret minimization models using Stata

► For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu \text{RRM}} = R_{in}^{\text{PRRM}}$

$$R_{in}^{\mathsf{PRRM}} = \sum_{m=1}^{M} \beta_m x_{imn}^{\mathsf{PRRM}}$$

$$x_{imn}^{\mathsf{PRRM}} = \begin{cases} \sum_{\substack{j \neq i \\ j \neq i }}^{J} \max\left\{0, x_{jmn} - x_{imn}\right\} & \text{if } \beta_m > 0 \\ \sum_{\substack{j \neq i \\ j \neq i }}^{J} \min\left\{0, x_{jmn} - x_{imn}\right\} & \text{if } \beta_m < 0 \end{cases}$$
(6)

For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu \text{RRM}} = R_{in}^{\text{PRRM}}$

$$R_{in}^{\text{PRRM}} = \sum_{m=1}^{M} \beta_m x_{imn}^{\text{PRRM}}$$

$$x_{imn}^{\text{PRRM}} = \begin{cases} \sum_{j \neq i}^{J} \max\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m > 0\\ \sum_{j \neq i}^{J} \min\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m < 0 \end{cases}$$
(6)
(7)

For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu \text{RM}} = R_{in}^{\text{PRRM}}$ $R_{in}^{\text{PRRM}} = \sum_{m=1}^{M} \beta_m x_{imn}^{\text{PRRM}}$ (6) $x_{imn}^{\text{PRRM}} = \begin{cases} \sum_{j \neq i}^{J} \max \left\{ 0, x_{jmn} - x_{imn} \right\} & \text{if } \beta_m > 0 \\ \sum_{j \neq i}^{J} \min \left\{ 0, x_{jmn} - x_{imn} \right\} & \text{if } \beta_m < 0 \end{cases}$ (7)

 $^{\downarrow}$...with transformed attributes

For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu \text{RRM}} = R_{in}^{\text{PRRM}}$ $R_{in}^{\text{PRRM}} = \sum_{m=1}^{M} \beta_m x_{imn}^{\text{PRRM}} \text{ for "positive" attributes }$ $x_{imn}^{\text{PRRM}} = \begin{cases} \sum_{j \neq i}^{J} \max\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m > 0 \\ \sum_{j \neq i}^{J} \min\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m < 0 \end{cases}$ (6)
(7)

 $^{\downarrow}$...with transformed attributes

For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu \text{RM}} = R_{in}^{\text{PRRM}}$ $R_{in}^{\text{PRRM}} = \sum_{m=1}^{M} \beta_m x_{imn}^{\text{PRRM}} \text{ for "positive" attributes }$ $x_{imn}^{\text{PRRM}} = \begin{cases} \sum_{j \neq i}^{J} \max\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m > 0 \\ \sum_{j \neq i}^{J} \min\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m < 0 \end{cases}$ (6) $x_{imn}^{\text{PRRM}} = \begin{cases} \sum_{j \neq i}^{J} \max\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m > 0 \\ \sum_{j \neq i}^{J} \min\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m < 0 \end{cases}$ (7) $\dots \text{ with transformed attributes}$

For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu RM} = R_{in}^{PRRM}$ $R_{in}^{PRRM} = \sum_{m=1}^{M} \beta_m x_{imn}^{PRRM}$ for "positive" attributes $x_{imn}^{PRRM} = \begin{cases} \sum_{j \neq i}^{J} \max\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m > 0\\ \sum_{j \neq i}^{J} \min\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m < 0 \end{cases}$ (6)
(7)
(7)
(7)
(7)
(7)

We need to know the sign of the attributes a priori!

For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu \text{RRM}} = R_{in}^{\text{PRRM}}$ $R_{in}^{\text{PRRM}} = \sum_{m=1}^{M} \beta_m x_{imn}^{\text{PRRM}}$ for "positive" attributes $x_{imn}^{\text{PRRM}} = \begin{cases} \sum_{j \neq i}^{J} \max\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m > 0\\ \sum_{j \neq i}^{J} \min\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m < 0 \end{cases}$ (6)

We need to know the sign of the attributes a priori!

In some situations, this requisite is not very restrictive (e.g. price, cost).

For arbitrary small values of μ : $\lim_{\mu \to 0} R_{i \leftrightarrow j,mn}^{\mu \text{RRM}} = R_{in}^{\text{PRRM}}$ $R_{in}^{\text{PRRM}} = \sum_{m=1}^{M} \beta_m x_{imn}^{\text{PRRM}}$ for "positive" attributes $x_{imn}^{\text{PRRM}} = \begin{cases} \sum_{j \neq i}^{J} \max\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m > 0 \\ \sum_{j \neq i}^{J} \min\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m < 0 \end{cases}$ (6) $x_{imn}^{\text{PRRM}} = \begin{cases} \sum_{j \neq i}^{J} \max\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m > 0 \\ \sum_{j \neq i}^{J} \min\{0, x_{jmn} - x_{imn}\} & \text{if } \beta_m < 0 \end{cases}$ with transformed attributes

- We need to know the sign of the attributes a priori!
- In some situations, this requisite is not very restrictive (e.g. price, cost).
- This model yields the strongest semi-compensatory behavior among all the RRM family

4 Outline

Introduction

2 Differences between RUM and RRM models.

- **3** Extensions of the Classical RRM model
- 4 Relationships among the different models
- **6** Implementation

6 Download

Bibliography

4 Relationships among the different models

Figure: Interrelationship among the models based on parameters

4 Relationships among the different models

Models	Hypothesis	LR statistic	Distribution under H_0
RRM v.s GRRM	$H_0: \gamma = 1$ $H_1: \gamma < 1$	$2\left\{\ell(\widehat{\theta}_{GRRM})-\ell(\widehat{\theta}_{RRM})\right\}$	$0.5(\chi_0^2+\chi_1^2)$
RUM v.s GRRM	$H_0: \gamma = 0$ $H_1: \gamma > 0$	$2\left\{\ell(\widehat{\theta}_{GRRM})-\ell(\widehat{\theta}_{RUM})\right\}$	$0.5(\chi_0^2 + \chi_1^2)$
RRM v.s μ RRM	$ \begin{aligned} H_0: \mu &= 1 \\ H_1: \mu \neq 1 \end{aligned} $	$2\left\{\ell(\widehat{\theta}_{\muRRM})-\ell(\widehat{\theta}_{RRM})\right\}$	χ^2_1

Table: LR test for model comparison.

▶ $\ell(.)$ represents the loglikelihood of the model, and $\hat{\theta}_{\text{RRM}}$, $\hat{\theta}_{\text{GRRM}}$, $\hat{\theta}_{\mu\text{RRM}}$, $\hat{\theta}_{\mu\text{RRM}}$, $\hat{\theta}_{\text{RUM}}$ represent the full set of parameters of the classical RRM, GRRM, μ RRM and linear RUM model, respectively.

4 Relationships among the different models

Models	Hypothesis	LR statistic	Distribution under H_0	
RRM v.s GRRM	$H_0: \gamma = 1$ $H_1: \gamma < 1$	$2\left\{\ell(\widehat{\theta}_{GRRM})-\ell(\widehat{\theta}_{RRM})\right\}$	$0.5(\chi_0^2 + \chi_1^2)$	
RUM v.s GRRM	$H_0: \gamma = 0$ $H_1: \gamma > 0$	$2\left\{\ell(\widehat{\theta}_{GRRM})-\ell(\widehat{\theta}_{RUM})\right\}$	$0.5(\chi_0^2 + \chi_1^2)$	
RRM v.s μ RRM	$\begin{aligned} H_0: \mu &= 1\\ H_1: \mu \neq 1 \end{aligned}$	$2\left\{\ell(\widehat{\theta}_{\muRRM})-\ell(\widehat{\theta}_{RRM})\right\}$	χ_1^2	

Table: LR test for model comparison.

- ▶ $\ell(.)$ represents the loglikelihood of the model, and $\hat{\theta}_{\text{RRM}}$, $\hat{\theta}_{\text{GRRM}}$, $\hat{\theta}_{\mu\text{RRM}}$, $\hat{\theta}_{\mu\text{RRM}}$, $\hat{\theta}_{\text{RUM}}$ represent the full set of parameters of the classical RRM, GRRM, μ RRM and linear RUM model, respectively.
- The fact that the two first hypotheses follow a different distribution from the traditional χ_1^2 , is because we are testing a null hypothesis on the boundary of the parametric space of γ (Gutierrez et al., 2001).

5 Outline

Introduction

2 Differences between RUM and RRM models.

- **3** Extensions of the Classical RRM model
- 4 Relationships among the different models
- 5 Implementation Syntax Outputs

5 Syntax

randregret is implemented as a Mata-based d0 ml evaluator. The command allows to implement four different regret functions in logit form.

```
randregret depvar [indepvars] [if] [in] group(varname)
alternative(varname) rrmfn(string) [, basealternative(string)
noconstant uppermu(#) negative(varlist) positive(varlist) show
notrl initgamma initmu robust cluster(varname) level(#)
maximize_options]
```

5 Syntax

randregret is implemented as a Mata-based d0 ml evaluator. The command allows to implement four different regret functions in logit form.

```
randregret depvar [indepvars] [if] [in] group(varname)
alternative(varname) rrmfn(string) [, basealternative(string)
noconstant uppermu(#) negative(varlist) positive(varlist) show
notrl initgamma initmu robust cluster(varname) level(#)
maximize_options]
```

The command randregretpred can be used following randregret to obtain predicted choice probabilities. It is also possible to recover the linear prediction of the systematic regret from equations (1), (4) (5) or (6).

```
randregretpred newvar [if] [in] group(varname)
alternatives(varname) [, proba xb]
```

▶ Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list obs altern choice id tt tc in 1/6, sepby(obs)

	obs	altern	choice	id	tt	tc
1.	1	First	0	1	23	6
2.	1	Second	0	1	27	4
3.	1	Third	1	1	35	3
4.	2	First	0	1	27	5
5.	2	Second	1	1	35	4
6.	2	Third	0	1	23	6

▶ Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list obs altern choice id tt tc in 1/6, sepby(obs)

	obs	altern	choice	id	tt	tc
1.	1	First	0	1	23	6
2.	1	Second	0	1	27	4
3.	1	Third	1	1	35	3
4.	2	First	0	1	27	5
5.	2	Second	1	1	35	4
6.	2	Third	0	1	23	6

• Three unlabeled route alternatives (J = 3).

▶ Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list obs altern choice id tt tc in 1/6, sepby(obs)

	obs	altern	choice	id	tt	tc
1.	1	First	0	1	23	6
2.	1	Second	0	1	27	4
3.	1	Third	1	1	35	3
4.	2	First	0	1	27	5
5.	2	Second	1	1	35	4
6.	2	Third	0	1	23	6

• Three unlabeled route alternatives (J = 3).

Described by Travel Cost (tc) and Travel Time (tt) (M = 2).

▶ Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list obs altern choice id tt tc in 1/6, sepby(obs)

	obs	altern	choice	id	tt	tc
1.	1	First	0	1	23	6
2.	1	Second	0	1	27	4
3.	1	Third	1	1	35	3
4.	2	First	0	1	27	5
5.	2	Second	1	1	35	4
6.	2	Third	0	1	23	6

- Three unlabeled route alternatives (J = 3).
- Described by Travel Cost (tc) and Travel Time (tt) (M = 2).
- Each respondent (*id*) answered a total of 10 choice situations.

Data from van Cranenburgh (2018): Stated Choice (SC) experiment.

. list obs altern choice id tt tc in 1/6, sepby(obs)

	obs	altern	choice	id	tt	tc
1.	1	First	0	1	23	6
2.	1	Second	0	1	27	4
3.	1	Third	1	1	35	3
4.	2	First	0	1	27	5
5.	2	Second	1	1	35	4
6.	2	Third	0	1	23	6

- Three unlabeled route alternatives (J = 3).
- Described by Travel Cost (tc) and Travel Time (tt) (M = 2).
- Each respondent (*id*) answered a total of 10 choice situations.
- Variable choice together with variable altern allows us identify choices.

5 Classic RRM Estimation + Cluster

```
. randregret choice tc tt, gr(obs) alt(altern) rrmfn(classic) ///
```

> nocons cluster(id)

Fitting Classic RRM Model

initial:	log likeliho	od = -1164	1.529				
alternative:	log likeliho	od = -1156	.5784				
rescale:	log likeliho	od = -112	21.29				
Iteration 0:	log likeliho	od = -112	21.29				
Iteration 1:	log likeliho	od = -1118	.4843				
Iteration 2:	log likeliho	od = -1118	.4784				
Iteration 3:	log likeliho	od = -1118	.4784				
RRM: Classic F	landom Regret	Minimizatio	on Model				
Case ID variab	le: obs			Number of	f cases	=	1060
Alternative va	riable: alter	'n		Number of	f obs	=	3180
				Wald chi	2(2)	=	40.41
Log likelihood	l = -1118.4784			Prob > cl	hi2	=	0.0000
		(Std. Err.	adjusted	for 106	cluster	' <mark>s in</mark>	id)
		Robust					
choice	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
RRM							
tc	417101	.068059	-6.13	0.000	5504	943	2837078
tt	102813	.0182526	-5.63	0.000	1385	874	0670386

5 Generalized RRM Estimation + Cluster

. randregret choice tc tt , gr(obs) alt(altern) rrmfn(gene) ///
> nocons cluster(id)

Fitting Classic RRM for Initial Values

initial:		log	likelihood	=	-1164.529
alternativ	e:	log	likelihood	=	-1156.5784
rescale:		log	likelihood	=	-1121.29
Iteration	0:	log	likelihood	=	-1121.29
Iteration	1:	log	likelihood	=	-1118.4843
Iteration	2:	log	likelihood	=	-1118.4784
Iteration	3:	log	likelihood	=	-1118.4784

Fitting Conditional Logit as a Restricted Model (gamma=0) for LR test

Fitting Generalized RRM Model

initial: rescale:	<pre>log likelihood = -1120.7001 log likelihood = -1120.7001</pre>				
rescale eq:	log likelihood = -1120.7001				
Iteration 0:	log likelihood = -1120.7001				
Iteration 1:	log likelihood = -1118.5366				
Iteration 2:	log likelihood = -1118.3484				
Iteration 3:	log likelihood = -1118.3307				
Iteration 4:	log likelihood = -1118.3302	1			
Iteration 5:	log likelihood = -1118.3302	!			
GRRM: Generaliz	ed Random Regret Minimizati	on Model			
Case ID variabl	.e: obs	Number of cases	=	1060	

KU LEUVEN

26 Gutiérrez, Meulders & Vandebroek: Random regret minimization models using Stata

5 Generalized RRM Estimation + Cluster (nolog)

. randregret choice tc tt , gr(obs) alt(altern) rrmfn(gene) ///
> nocons cluster(id) nolog

Fitting Classic RRM for Initial Values

Fitting Conditional Logit as a Restricted Model (gamma=0) for LR test

Fitting Generalized RRM Model

GRRM: Generalized Random Regret Minimization Model

Case ID variable: obs		Number of ca	ases	=	1060
Alternative variable: altern		Number of ob	os	=	3180
		Wald chi2(2))	=	10.23
Log likelihood = -1118.3302		Prob > chi2		=	0.0060
•	(Std. Err	. adjusted for	106	clusters	in id)

	choice	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
RRM							
	tc	3904872	.1248997	-3.13	0.002	6352861	1456884
	tt	0967528	.0307009	-3.15	0.002	1569255	03658
	gamma	<mark>.7843392</mark>	<mark>. 5588736</mark>			.0055712	<mark>.9995766</mark>
LR te LR te	est of gar est of gar	nma=0: chibar: nma=1: chibar:	2(01) = 9.41 2(01) = 0.30			Prob >= chiba Prob >= chiba	r2 = 0.001 r2 = 0.293

5 μ **RRM Estimation + Cluster**

```
. randregret choice tc tt, gr(obs) alt(altern) rrm(mu) ///
> nocons cluster(id)
```

Fitting Classic RRM for Initial Values

initial:	log likelihood = -1164.529
alternative:	log likelihood = -1156.5784
rescale:	log likelihood = -1121.29
Iteration 0:	log likelihood = -1121.29
Iteration 1:	log likelihood = -1118.4843
Iteration 2:	log likelihood = -1118.4784
Iteration 3:	log likelihood = -1118.4784

Fitting muRRM Model

initial:	<pre>log likelihood =</pre>	-1119.8154			
rescale:	log likelihood =	-1119.8154			
rescale eq:	<pre>log likelihood =</pre>	-1119.8154			
Iteration 0:	<pre>log likelihood =</pre>	-1119.8154 (not concave)		
Iteration 1:	<pre>log likelihood =</pre>	-1118.4346			
Iteration 2:	<pre>log likelihood =</pre>	-1118.3965			
Iteration 3:	<pre>log likelihood =</pre>	-1118.3965			
muRRM: Mu-Rando	om Regret Minimiza	tion Mode			
Case ID variabl	le: obs		Number of cases	=	1060
Alternative var	riable: altern		Number of obs	=	3180
			Wald chi2(2)	=	66.95
Log likelihood	= -1118.3965		Prob > chi2	=	0.0000
		(Std. Err.	adjusted for 106	clusters	in id

28 Gutiérrez, Meulders & Vandebroek: Random regret minimization models using Stata

5 μ RRM Estimation + Cluster (nolog)

```
. randregret choice tc tt, gr(obs) alt(altern) rrm(mu) ///
> nocons cluster(id) nolog
```

Fitting Classic RRM for Initial Values

Fitting muRRM Model

muRRM: Mu-Random Regret Minimization Model

Case ID variable: obs Alternative variable: altern

Log likelihood = -1118.3965

		Numbe	r of	cas	es	=	10	060
		Numbe	r of	obs		=	31	80
		Wald	chi2	(2)		=	66.	95
		Prob	> chi	i2		=	0.00	000
(Std.	Err.	adjust	ed fo	or	106	clusters	in	id)

	choice	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
RRM							
	tc	428041	.0557747	-7.67	0.000	5373574	3187246
	tt	1059437	.0152902	-6.93	0.000	135912	0759754
	mu	<mark>1.186166</mark>	<mark>.8271011</mark>			.2464176	3.255421
LR test of mu=1: chi2(1) =0.16					Prob >= chiba	r2 = 0.686	

5 PRRM Estimation + Cluster

. randregret choice , neg(tc tt) gr(obs) al	t(altern) <mark>rrmfn(pu</mark>	<mark>111) ///</mark>	
> nocons cluster(id)			
PRRM: Pure Random Regret Minimization Model			
Case ID variable: obs	Number of cases	=	1060
Alternative variable: altern	Number of obs	=	3180
	Wald chi2(2)	=	21.06
Log likelihood = -1128.3777	Prob > chi2	=	0.0000
(Std. Err.	adjusted for 106	clusters	in id)

choice	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
choice						
tc	285628	.0647545	-4.41	0.000	4125446	1587114
tt	0661575	.0169355	-3.91	0.000	0993505	0329645

The Pure-RRM uses a transformation of the original regressors using options positive() and negative() as detailed in S. van Cranenburgh et. al (2015) Afterward, randregret invokes clogit using these transormed regressors.
5 Prediction

- . qui randregret choice tc tt , gr(obs) alt(altern) rrmfn(classic) nocons nolog
- . randregretpred prob,gr(obs) alt(altern) prob
- . randregretpred xb ,gr(obs) alt(altern) xb
- . list obs altern choice id tt tc prob xb in 1/6, sepby(obs)

	obs	altern	choice	id	tt	tc	prob	xb
1.	1	First	0	1	23	6	.22354907	3.4618503
2.	1	Second	0	1	27	4	.54655027	2.567855
3.	1	Third	1	1	35	3	.22990067	3.4338339
4.	2	First	0	1	27	5	.43840211	2.7134208
5.	2	Second	1	1	35	4	.19128045	3.5428166
6.	2	Third	0	1	23	6	.37031744	2.8821967

Introduction

2 Differences between RUM and RRM models.

- **3** Extensions of the Classical RRM model
- 4 Relationships among the different models
- **6** Implementation

Bibliography

6 Download

- The repository with the source code is available on Github at: https://github.com/alvarogutyerrez/randregret
- A dofile with the complete example listed here is also available on the repository.

Introduction

2 Differences between RUM and RRM models.

3 Extensions of the Classical RRM model

4 Relationships among the different models

6 Implementation

6 Download

Bibliography

34 Gutiérrez, Meulders & Vandebroek: Random regret minimization models using Stata

8 Bibliography

- Chorus, C. G. (2010). A new model of random regret minimization. European Journal of Transport and Infrastructure Research, 10(2):181–196.
- Chorus, C. G. (2014). A generalized random regret minimization model. *Transportation Research Part* B: Methodological, 68:224 238.
- Gutierrez, R. G., Carter, S., and Drukker, D. M. (2001). On boundary-value likelihood-ratio tests. *Stata Technical Bulletin*, 10(60).
- van Cranenburgh, S. (2018). Small value-of-time experiment, netherlands. 4TU.Centre for Research Data, Dataset https://doi.org/10.4121/uuid:1ccca375-68ca-4cb6-8fc0-926712f50404.
- van Cranenburgh, S., Guevara, C. A., and Chorus, C. G. (2015). New insights on random regret minimization models. *Transportation Research Part A: Policy and Practice*, 74:91 – 109.

- 8 Additional Outputs
- O Technical Details
- Analitical Gradients

9 μ RRM Estimation + Cluster (nolog) + show

. randregret choice tc tt, gr(obs) alt(altern) rrm(mu) ///

> nocons show cluster(id) nolog

Fitting Classic RRM for Initial Values

muRDM, Mu-Bondom Bogmot Minimigration Model

Fitting muRRM Model

managers in nandom negree ninimizacio	ii nou						
Case ID variable: obs			Number of c	ases	=	106	30
Alternative variable: altern			Number of o	bs	=	318	30
			Wald chi2(2)	=	66.9) 5
Log likelihood = -1118.3965			Prob > chi2		=	0.000)(
	(Std.	Err.	adjusted for	106	clusters	in i	ĹĊ

	choice	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Intervall	
			5001 2111		11 121	200% 00111		
RRM								
	tc	428041	.0557747	-7.67	0.000	5373574	3187246	
	tt	1059437	.0152902	-6.93	0.000	135912	0759754	
mu_sta	c							
	_cons	-1.167909	.9141582	-1.28	0.201	-2.959626	. 6238083	
	mu	1.186166	.8271011			.2464176	3.255421	
LR test	t of mu=	=1: chi2(1) =(0.16		Prob >= chibar2 = 0.686			

I)

9 Generalized RRM Estimation + Cluster + show

. randregret choice tc tt , gr(obs) alt(altern) rrmfn(gene) ///
> nocons cluster(id) show nolog

Fitting Classic RRM for Initial Values

Fitting Conditional Logit as a Restricted Model (gamma=0) for LR test

Fitting Generalized RRM Model

GRRM: Generalized Random Regret Minimization Model

Case ID variable: obs			Number of	cases	=	1060
Alternative variable: altern			Number of	obs	=	3180
			Wald chi2((2)	=	10.23
Log likelihood = -1118.3302			Prob > chi	.2	=	0.0060
	(Std.	Err.	adjusted fo	r 106	cluster	s in id)

nterval
.1456884
03658
7.766832
.9995766
= 0.001

8 Additional Outputs

Technical Details
 Alternative Specific Constants
 Robust Standard Errors

Analitical Gradients

10 Alternative Specific Constants (ASC)

- Let R^{*}_{in} denote a generic systematic regret of alternative i as defined in equation (1), (4), (5) or (6).
- We denote by α_i ASC of alternative *i* in equation (8).

$$R_{in}^{*} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,mn}^{*} + \alpha_{i}$$
(8)

- The inclusion of the ASC serves the same purpose as in RUM models: to account for *omitted attributes for a particular alternative*.
- As usual, for identification purposes, we need to exclude one of the ASC from the model specification.

10 Robust Standard Errors

We can write our maximum-likelihood estimation equations as in equation (9). Where θ is the full set of parameters, $S(\theta; y_n, x_n) = \partial \ln L_n / \partial \theta$ represents the score functions, $\ln L_n$ is the log likelihood of observation n, x_n is the full set of attributes, and y_n is the response variable that takes the value of 1 when alternative i is selected and 0 otherwise.

$$G(\boldsymbol{\theta}) = \sum_{n=1}^{N} \boldsymbol{S}(\boldsymbol{\theta}; y_n, \boldsymbol{x}_n) = \boldsymbol{0}$$
(9)

We can compute the robust variance estimator of θ using equation (10), where $D = -H^{-1}$ is the negative of the inverse of the hessian resulting from the optimization procedure, and $u_n = S(\hat{\theta}; y_n, x_n)$ are row vectors that contains the score functions evaluated at $\hat{\theta}$.

$$\widehat{V}(\widehat{\boldsymbol{\theta}}) = \boldsymbol{D}\left(\frac{n}{n-1}\sum_{n=1}^{N}\boldsymbol{u}_{n}^{\prime}\boldsymbol{u}_{n}\right)\boldsymbol{D}$$
(10)

10 Cluster Robust Standard Errors

Equation (10) is appropriate only if the observations are independent. However, when several choice situations are answered by the same individual, we can expect some degree of correlation of these choices. When such a structure is present in the data the correct cluster robust variance estimator is given by equation (11), where C_k contains the indices of all observations belonging to the same individual k for $k = 1, 2, \ldots, n_c$ with n_c the total number of different individuals present in the data set.

$$\widehat{V}(\widehat{\boldsymbol{\theta}}) = \boldsymbol{D} \left\{ \frac{n_c}{n_c - 1} \sum_{k=1}^{n_c} \left(\sum_{n \in C_k} \boldsymbol{u}_n \right)' \left(\sum_{n \in C_k} \boldsymbol{u}_n \right) \right\} \boldsymbol{D}$$
(11)

Details on the analytical form of the scores by each model presented in this presentation are provided from slide number 43 on. Additionally, randregret command is able to compute corrected standard errors using the analytical form of the score functions without relying in numerical approximations.

8 Additional Outputs

O Technical Details

Analitical Gradients

Generic Scores Functions for RRM models Scores functions for the classical RRM model Scores functions for GRRM model Scores functions for μ RRM model Scores Functions for PRRM model

11 Generic Scores Functions for RRM models

1

Without loss of generality, we can state that the log-likelihood of the four RRM models presented in this presentation can be represented by equation (12). In particular, when R_{in}^* is replaced by equations (1), (4), (5) or (6), we can fit respectively the classical RRM, the GRRM, the μ RRM, and the PRRM model.

$$n L = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln (P_{in}^{*})$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln \left(\frac{\exp(-R_{in}^{*})}{\sum_{j=1}^{J} \exp(-R_{jn}^{*})} \right)$$

$$= -\sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} R_{in}^{*} - \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln \left(\sum_{j=1}^{J} \exp(-R_{jn}^{*}) \right)$$
(12)

11 Generic Scores Functions for RRM models

Furthermore, any partial derivative of the log-likelihood with respect to any parameter $\theta \in \theta$, where θ stands for the full set of parameters of the model, can be expressed as in equation (13). The rank of θ will depend on the particular model.

$$\frac{\partial \ln L}{\partial \theta} = -\sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \frac{\partial R_{in}^*}{\partial \theta} + \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \left(\sum_{j=1}^{J} P_{jn} \frac{\partial R_{jn}^*}{\partial \theta} \right)$$
$$= -\sum_{n=1}^{N} \sum_{i=1}^{J} \left(y_{in} - P_{in} \right) \left(\frac{\partial R_{in}^*}{\partial \theta} \right)$$
(13)

In the next slides, we will list the partial derivatives, also known as scores functions, per type of parameter in each type of model. Additionally, it is crucial to notice that, in any case, we can check that $\partial R_{in}^* / \partial \alpha_i = 1$, where α_i represents the coefficient associated with the ASC of alternative i.

11 Scores functions for the classical RRM model

In order to obtain the loglikelihood of the classic RRM model we need to substitute R_{in}^* in equation (12) by equation (1). Accordingly, the set of parameters θ is now given by $\theta = (\beta, \alpha)'$. Here β is a $m \times 1$ vector of alternative-specific regression coefficients and α is a $(J-1) \times 1$ vector of ASC. Subsequently, the scores functions of the classical RRM model will be described as follows:

$$\frac{\partial \ln L}{\partial \boldsymbol{\theta}} = \left(\frac{\partial \ln L}{\partial \beta_1}, \dots, \frac{\partial \ln L}{\partial \beta_M}, \frac{\partial \ln L}{\partial \alpha_1}, \dots, \frac{\partial \ln L}{\partial \alpha_{J-1}}\right)$$
$$= \left(\frac{\partial \ln L}{\partial \boldsymbol{\beta}}, \frac{\partial \ln L}{\partial \boldsymbol{\alpha}}\right)$$

Finally, to obtain the expression for $\partial \ln L/\partial \beta_m$ we need to replace equation (14) into equation (13).

$$\frac{\partial R_{in}}{\partial \beta_m} = \sum_{j \neq i}^J \left(\frac{\exp\left\{\beta_m \left(x_{jmn} - x_{imn}\right)\right\} \cdot \left(x_{jmn} - x_{imn}\right)}{1 + \exp\left\{\beta_m \left(x_{jmn} - x_{imn}\right)\right\}} \right)$$
(14)

11 Scores functions for GRRM model

The log-likelihood of the GRRM model can be constructed by replacing the term R_{in}^* in equation (12) by equation (4). Hence, the full set of parameters θ is now given by $\theta = (\beta, \alpha, \gamma^*)'$. Here, β is a $m \times 1$ vector of alternative-specific regression coefficients, α is a $(J-1) \times 1$ vector of ASC and γ^* is a scalar equal to the parameter γ in the logit scale. Hence, the corresponding scores functions are described by:

$$\frac{\partial \ln L}{\partial \boldsymbol{\theta}} = \left(\frac{\partial \ln L}{\partial \beta_1}, \dots, \frac{\partial \ln L}{\partial \beta_M}, \frac{\partial \ln L}{\partial \alpha_1}, \dots, \frac{\partial \ln L}{\partial \alpha_{J-1}}, \frac{\partial \ln L}{\partial \gamma^*}\right)$$
$$= \left(\frac{\partial \ln L}{\partial \boldsymbol{\beta}}, \frac{\partial \ln L}{\partial \boldsymbol{\alpha}}, \frac{\partial \ln L}{\partial \gamma^*}\right)$$

Additionally, in order to obtain the expression for $\partial \ln L/\partial \beta_m$ we need to replace equation (15) into equation (13).

$$\frac{\partial R_{in}^{\mathsf{GRRM}}}{\partial \beta_m} = \sum_{j \neq i}^{J} \left(\frac{\exp\left\{\beta_m \left(x_{jmn} - x_{imn}\right)\right\} \cdot \left(x_{jmn} - x_{imn}\right)\right\}}{\gamma + \exp\left\{\beta_m \left(x_{jmn} - x_{imn}\right)\right\}} \right)$$
(15)

KU LEUVE

46 Gutiérrez, Meulders & Vandebroek: Random regret minimization models using Stata

11 Scores functions for GRRM model

However, the score function of the parameter γ^* needs a slightly different treatment. As mentioned earlier, the optimization procedure does not directly fit the parameter γ , but instead, it fits the model using an ancillary parameter: $\gamma^* = \text{logit}(\gamma)$ (referred as gamma_star in the output when using show option). Hence, we model the parameter γ in the logit scale. This fact has a direct impact on the score function of parameter γ^* . Using the chain rule, we can state:

$$\frac{\partial \ln L}{\partial \gamma} = \frac{\partial \ln L}{\partial \gamma^*} \cdot \frac{\partial \gamma^*}{\partial \gamma}$$

Subsequently, solving $\partial \gamma^* / \partial \gamma$ and rearranging terms, we see in equation (16), that in order to compute the score function of the parameter γ^* , we need to adjust the partial derivative from the log-likelihood with respect to γ by a factor of $\gamma(1 - \gamma)$.

$$\frac{\partial \ln L}{\partial \gamma^*} = \frac{\partial \ln L}{\partial \gamma} \cdot \gamma (1 - \gamma)$$
(16)

11 Scores functions for GRRM model

The expression for $\partial \ln L/\partial \gamma$ can be computed replacing equation (17) into equation (13), which together with equation (16) gives us the required expression for $\partial \ln L/\partial \gamma^*$.

$$\frac{\partial R_{in}^{\text{GRRM}}}{\partial \gamma} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} \left(\frac{1}{\gamma + \exp\left\{\beta_m \left(x_{jmn} - x_{imn}\right)\right\}} \right)$$
(17)

11 Scores functions for μ RRM model

The μ RRM model has a log-likelihood that is a particular case of equation (13), where R_{in}^* is replaced by equation (5). Thus, the full set of parameters θ is now described by $\theta = (\beta, \alpha, \mu^*)'$. Here β is a $m \times 1$ vector of alternative-specific regression coefficients, α is a $(J-1) \times 1$ vector of ASC and μ^* is a scalar equal to the μ parameter in a transformed scale. Thus, the corresponding scores functions can be represented by:

$$\frac{\partial \ln L}{\partial \boldsymbol{\theta}} = \left(\frac{\partial \ln L}{\partial \beta_1}, \dots, \frac{\partial \ln L}{\partial \beta_M}, \frac{\partial \ln L}{\partial \alpha_1}, \dots, \frac{\partial \ln L}{\partial \alpha_{J-1}}, \frac{\partial \ln L}{\partial \mu^*}\right) \\
= \left(\frac{\partial \ln L}{\partial \boldsymbol{\beta}}, \frac{\partial \ln L}{\partial \boldsymbol{\alpha}}, \frac{\partial \ln L}{\partial \mu^*}\right)$$
(18)

First, by replacing equation (19) back into equation (13) we can easily obtain the expression for $\partial \ln L/\partial \beta_m$.

$$\frac{\partial R_{in}^{\mu \mathsf{RRM}}}{\partial \beta_m} = \sum_{j \neq i}^J \left(\frac{\exp\left[(\beta_m/\mu) \cdot (x_{jmn} - x_{imn}) \right] \cdot (x_{jmn} - x_{imn})}{\mu \cdot (1 + \exp\left[(\beta_m/\mu) \cdot (x_{jmn} - x_{imn}) \right])} \right)$$
(19)

KU LEUVE

49 Gutiérrez, Meulders & Vandebroek: Random regret minimization models using Stata

11 Scores functions for μ RRM model

The μ RRM model, similarly to the GRRM model, also fits the parameter μ using an unbounded ancillary parameter: $\mu^* = \ln(\mu/(M-\mu))$ (referred as mu_star in the output when using show option). Accordingly, this transformation needs to be taken into account when computing the score function of the parameter μ^* . Using the chain rule, we can state:

$$\frac{\partial \ln L}{\partial \mu} = \frac{\partial \ln L}{\partial \mu^*} \cdot \frac{\partial \mu^*}{\partial \mu}$$

Solving for $\partial \mu^* / \partial \mu$ and rearranging terms, we can see that the score function of the parameter μ^* is the same as the partial derivative of the log-likelihood with respect to μ multiplied by a factor equal to $\mu (M - \mu) / M$.

$$\frac{\partial \ln L}{\partial \mu^*} = \frac{\partial \ln L}{\partial \mu} \cdot \frac{\mu \left(M - \mu\right)}{M} \tag{20}$$

11 Scores functions for μ RRM model

Finally, the expression for $\partial \ln L/\partial \mu$ can be obtained replacing equations (21) and (22) into equation (13), which together with equation (20), provides the required expression for $\partial \ln L/\partial \mu^*$.

$$\frac{\partial R_{in}^{\mu \mathsf{RRM}}}{\partial \mu} = \sum_{j \neq i}^{J} \sum_{m=1}^{M} R_{i \leftrightarrow j,m}^{\mu \mathsf{RRM}} + \mu \cdot \sum_{j \neq i}^{J} \sum_{m=1}^{M} \frac{\partial R_{i \leftrightarrow j,m}^{\mu \mathsf{RRM}}}{\partial \mu}$$
(21)
$$\frac{\partial R_{i \leftrightarrow j,m}^{\mu \mathsf{RRM}}}{\partial \mu} = \left(\frac{\exp\left\{(\beta_m/\mu) \cdot (x_{jmn} - x_{imn})\right\} \cdot (x_{jmn} - x_{imn}) \cdot \beta_m}{\mu^2 \cdot (1 + \exp\left\{(\beta_m/\mu) \cdot (x_{jmn} - x_{imn})\right\})}\right)$$
(22)

11 Scores Functions for PRRM model

We can recover the log-likelihood of the PRRM model replacing the expression R_{in}^* in equation (12) by equation (6). Thus, the full set of parameters θ is now described by $\theta = (\beta, \alpha)'$. Here β is a $m \times 1$ vector of alternative-specific regression coefficients and α is a $(J-1) \times 1$ vector of ASC. Consequently, the scores functions are then:

$$\frac{\partial \ln L}{\partial \boldsymbol{\theta}} = \left(\frac{\partial \ln L}{\partial \beta_1}, \dots, \frac{\partial \ln L}{\partial \beta_M}, \frac{\partial \ln L}{\partial \alpha_1}, \dots, \frac{\partial \ln L}{\partial \alpha_{J-1}}\right)$$
$$= \left(\frac{\partial \ln L}{\partial \boldsymbol{\beta}}, \frac{\partial \ln L}{\partial \boldsymbol{\alpha}}\right)$$

Accordingly, we can obtain the expression for $\partial \ln L/\partial \beta_m$ by replacing equation (23) into equation (13).

$$\frac{\partial R_{in}^{\mathsf{PURE}}}{\partial \beta_m} = x_{imn}^{\mathsf{PURE}} \tag{23}$$