Fancy graphics #1

Force-directed diagrams

Philippe Van Kerm
University of Luxembourg and LISR

2020 e-London Stata user group meeting
September 11, 2020
Examples

Principles and mechanics

Implementation
Examples

Principles and mechanics

Implementation
My starting point...
Network visualisation (as a force-directed diagram)

- The matrix is a network
- Each sector is a node
- Sectors with strong ‘bedroom association’ located near each other
- (See Thomas Grund’s **nwcommands** for serious network analysis with Stata; Corten (SJ, 2011), Miura (SJ, 2012).)
Network visualisation (as a force-directed diagram)

- The matrix is a network
- Each sector is a node
- Sectors with strong ‘bedroom association’ located near each other
- (See Thomas Grund’s nwcommands for serious network analysis with Stata; Corten (SJ, 2011), Miura (SJ, 2012).)
Another network visualisation (as a force-directed diagram)
Another network visualisation (as a force-directed diagram)
Another network visualisation package in the making

\[
\text{fdnetgraph } \text{varname} \ [\text{if}] \ [\text{in}] \ , \ \text{links(fromvar tovar [strengthvar]} \ [\text{showlinks(...)} \ \text{varcolor(varname)} \ \ldots] \\
\]

(too many options to discuss here (fiddling with the construction and display options; see below))
Other force-directed diagrams: ‘beeswarm’ plots
Other force-directed diagrams: ‘beeswarm’ plots

Worried about the economy?

Worried about the economy in general?
Other force-directed diagrams: ‘beeswarm’ plots

Worried your own finances?
Other force-directed diagrams: ‘beeswarm’ plots

Worried your health?

Worried about your own health?

Not at all (left) A lot (right) Worried about your own health?
Other force-directed diagrams: ‘beeswarm’ plots

Worried about your friend and family’s health?

Worried about health of friends and family?

[Beeswarm plots showing distribution of worry levels]
Variations on the same theme: other ‘beeswarm’ plots

The evolution of employment: telework, short-time employment, ‘parental’ leave, sick leave, job loss

February

early April

June
Variations on the same theme: other ‘beeswarm’ plots

The evolution of employment: telework, short-time employment, ‘parental’ leave, sick leave, job loss

February

early April

June
Variations on the same theme: other ‘beeswarm’ plots

The evolution of employment: telework, short-time employment, ‘parental’ leave, sick leave, job loss

February

early April

June
A beeswarm plot package in the making

beeswarm [\texttt{varname}] [\texttt{if}] [\texttt{in}],
[...\texttt{varcolor(varname) varsymbol(varname)}...]

(too many options to discuss here (fiddling with the construction, the display, the choice of locations etc.; see below))
What is the commonality?
What is the commonality?

- Simple scatterplots...
- ... but elements have **no** pre-defined location on the canvas
- Key to the drawing is calculating the plotting positions!
Examples

Principles and mechanics

Implementation
Force-directed layouts

- Element positions determined by a stochastic simulation algorithm
- Elements “interact” with each other in order to find their position on the canvas
Force-directed layouts

- Element positions determined by a stochastic simulation algorithm
- Elements “interact” with each other in order to find their position on the canvas
- Interactions through combinations of few simple forces:
 » Gravitational forces (positive or negative; attractions or repulsion)
 » Spring forces (towards target distances)
 » Collisions
Force-directed layouts

- Element positions determined by a stochastic simulation algorithm
- Elements “interact” with each other in order to find their position on the canvas
- Interactions through combinations of few simple forces:
 - Gravitational forces (positive or negative; attractions or repulsion)
 - Spring forces (towards target distances)
 - Collisions
- Start from random positions and iterate until convergence to a stable plot
- Stochastic: randomness in the resulting plot (set your seed)!
Different combination of forces lead to different types of plots

Attraction forces between points and towards ‘anchors’ (hives) + collisions

Spring forces to target connected node distances and repulsion
Example for a beeswarm plot

Positioning trail
Example for a beeswarm plot

Positioning trail
Example for a beeswarm plot

Positioning trail
Example for a beeswarm plot
Example for a beeswarm plot

Positioning trail
Example for a beeswarm plot
Example for a beeswarm plot

Positioning trail
Example for a beeswarm plot

Positioning trail
Example for a beeswarm plot
Example for a beeswarm plot
Example for a beeswarm plot

Positioning trail
Example for a beeswarm plot
Example for a beeswarm plot

Positioning trail
Examples

Principles and mechanics

Implementation
Implementation

beeswarm

... Stata code ...
 parsing data ...

 Mata call ...
 ... pass views ...
 ... create an instance of a Swarm class ...
 ... run simulation (Swarm.fly()) ...

 Stata graphics code ...
 ... clear canvas ...
 ... scatter and pcspike ...

fdnetgraph

... Stata code ...
 parsing data ...

 Mata call ...
 ... pass views ...
 ... create an instance of a Swarm class ...
 ... run simulation (Swarm.fly()) ...

 Stata graphics code ...
 ... clear canvas ...
 ... scatter and pcspike ...

Generic component
Mata library defining a Swarm class
Main variables and functions of the Swarm class

The Swarm class is the engine which calculates the element positions and pass it back to calling ado file.

```cpp
class swarm {
    // Variables:
    real matrix BeePos // positions
    real matrix BeeVel // velocities (movement)
    real matrix BeeAcc // accelerations
    real matrix BeeLinks // connections
    class params scalar Params // long list of force parameters

    // Functions:
    ...adin
    }
Pros and cons of Stata here

- Great combo:
  » Stata for handling and parsing source data
  » Mata for handling calculations/simulations
- Mata (class) programming is neat
- `twoway` graph commands flexible (more than they may seem)

- `twoway` graph can be impractical ...
  » Controlling graph element dimensions (Aaargh!)
  » Plotregion dimension as residual (Ouch!)
  » Marker dimensions with weights??
  » (NB: no graph class digging—higher-level `twoway` graph commands only)
- Animation (and interaction) gives force-directed graphs another dimension —https://flowingdata.com/2019/03/06/women-men-timeuse/ (see p5 or d3)
Thanks!

Comments and suggestions welcome.

beeswarm and fdnetgraph will be ‘released’ in the coming weeks/months (it needs a bit of fine-tuning and documentation!)