GMM with first-step residuals: A recipe for control-function S.E.s

Enrique Pinzón

StataCorp LLC

September 10, 2020
"London"

The plan

- Use gmm to get standard errors for control function type estimators
- linear cross-sectional model
- fractional (binary) outcome cross-sectional model
- exponential mean (Poisson) panel-data model
- Control function estimates imply:
- A test for endogeneity
- A structural function interpretation of effects
- It is common to use the bootstrap
- Excuse to show you some gmm Jujutsu
- Discuss some estimation and postestimation considerations

Model I: Linear model

$$
\begin{aligned}
y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
E\left(X_{1}^{\prime} \varepsilon\right) & =\mathbf{0} \\
E\left(X_{2}^{\prime} \varepsilon\right) & \neq \mathbf{0}
\end{aligned}
$$

- Different estimators arise from the following:

- Control function approaches additionally assume

Model I: Linear model

$$
\begin{aligned}
y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
E\left(X_{1}^{\prime} \varepsilon\right) & =\mathbf{0} \\
E\left(X_{2}^{\prime} \varepsilon\right) & \neq \mathbf{0}
\end{aligned}
$$

- Different estimators arise from the following:

$$
E\left(Z^{\prime} \varepsilon\right)=0 \quad \text { Instrumental variables }
$$

$=Z \Pi+\nu \quad$ Two stage least squares (TSLS)

- Control function approaches additionally assume

Model I: Linear model

$$
\begin{aligned}
y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
E\left(X_{1}^{\prime} \varepsilon\right) & =\mathbf{0} \\
E\left(X_{2}^{\prime} \varepsilon\right) & \neq \mathbf{0}
\end{aligned}
$$

- Different estimators arise from the following:

$$
\begin{aligned}
E\left(Z^{\prime} \varepsilon\right) & =0 & \text { Instrumental variables } \\
X_{2} & =Z \Pi+\nu & \text { Two stage least squares (TSLS) } \\
E\left(Z^{\prime} \nu\right) & =0 &
\end{aligned}
$$

- Control function approaches additionally assume

Model I: Linear model

$$
\begin{aligned}
y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \\
E\left(X_{1}^{\prime} \varepsilon\right) & =\mathbf{0} \\
E\left(X_{2}^{\prime} \varepsilon\right) & \neq \mathbf{0}
\end{aligned}
$$

- Different estimators arise from the following:

$$
\begin{aligned}
E\left(Z^{\prime} \varepsilon\right) & =0 & \text { Instrumental variables } \\
X_{2} & =Z \Pi+\nu & \text { Two stage least squares (TSLS) } \\
E\left(Z^{\prime} \nu\right) & =0 &
\end{aligned}
$$

- Control function approaches additionally assume

$$
\begin{aligned}
\varepsilon & =\rho \nu+\epsilon \\
y & =X_{1} \beta_{1}+X_{2} \beta_{2}+\rho \nu+\epsilon
\end{aligned}
$$

TSLS and Control function

TSLS:

(1) Regression of X_{2} on Z, get part of X_{2} without endogeneity, \widehat{X}_{2}

- We get $\widehat{X}_{2}=Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X_{2}=P_{2} X_{2}$
(2) Regression of y on X_{1} and \widehat{X}_{2}
- We get $\widehat{\beta}=\left(X_{2}^{\prime} P_{z} X_{2}\right)^{-1} X_{2} P_{z} y$

(1) Get residuals from Regression of X_{2} on Z
(2) Regress y on X_{1}, X_{2}, and $\widehat{\nu}$
- We need to address uncertainty in estimation of ν

TSLS and Control function

TSLS:

(1) Regression of X_{2} on Z, get part of X_{2} without endogeneity, \widehat{X}_{2}

- We get $\widehat{X}_{2}=Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X_{2}=P_{Z} X_{2}$
(2) Regression of y on X_{1} and \widehat{X}_{2}
- We get $\widehat{\beta}=\left(X_{2}^{\prime} P_{z} X_{2}\right)^{-1} X_{2} P_{z} y$

CONTROL FUNCTION (CF):

(1) Get residuals from Regression of X_{2} on Z

$$
\text { - } \widehat{\nu}=X_{2}-\widehat{X_{2}}=I-P_{z} X_{2}
$$

(2) Regress y on X_{1}, X_{2}, and $\widehat{\nu}$

- We need to address uncertainty in estimation of ν

TSLS and Control function

TSLS:

(1) Regression of X_{2} on Z, get part of X_{2} without endogeneity, \widehat{X}_{2}

- We get $\widehat{X}_{2}=Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X_{2}=P_{Z} X_{2}$
(2) Regression of y on X_{1} and \widehat{X}_{2}
- We get $\widehat{\beta}=\left(X_{2}^{\prime} P_{z} X_{2}\right)^{-1} X_{2} P_{z} y$

CONTROL FUNCTION (CF):
(1) Get residuals from Regression of X_{2} on Z

$$
\text { - } \widehat{\nu}=X_{2}-\widehat{X_{2}}=I-P_{z} X_{2}
$$

(2) Regress y on X_{1}, X_{2}, and $\widehat{\nu}$

- We need to address uncertainty in estimation of ν

GMM for CF

- GMM needs specification $E\left\{W^{\prime} e\right\}=\mathbf{0}$ or $E\left\{W^{\prime} e(\theta)\right\}=\mathbf{0}$
- In gmm W are exogenous and specified as options
- $e(\theta)$ change at each iteration as θ converges to it's minimum
- The control function approach does not quite fit into gmm's framework. Let $W(\Pi)=\left[X, X_{2}-Z \Pi\right]$
- Estimating $\widehat{\nu}$ and feeding it to gmm will give incorrect standard errors

GMM for CF

- GMM needs specification $E\left\{W^{\prime} e\right\}=\mathbf{0}$ or $E\left\{W^{\prime} e(\theta)\right\}=\mathbf{0}$
- In gmm W are exogenous and specified as options
- e($\theta)$ change at each iteration as θ converges to it's minimum
- The control function approach does not quite fit into gmm's framework. Let $W(\Pi)=\left[X, X_{2}-Z \Pi\right]$

- Estimating $\widehat{\nu}$ and feeding it to gmm will give incorrect standard errors

GMM for CF

- GMM needs specification $E\left\{W^{\prime} e\right\}=\mathbf{0}$ or $E\left\{W^{\prime} e(\theta)\right\}=\mathbf{0}$
- In gmm W are exogenous and specified as options
- e($\theta)$ change at each iteration as θ converges to it's minimum
- The control function approach does not quite fit into gmm's framework. Let $W(\Pi)=\left[X, X_{2}-Z \Pi\right]$

$$
\begin{array}{r}
E\left\{Z^{\prime}\left(X_{2}-Z \Pi\right)\right\}=0 \\
E\left\{W(\Pi)^{\prime}\left[y-X_{1} \beta_{1}+X_{2} \beta+\rho\left(X_{2}-Z \Pi\right)\right]\right\}=0
\end{array}
$$

- Estimating $\widehat{\nu}$ and feeding it to gmm will give incorrect standard errors

GMM for CF

- GMM needs specification $E\left\{W^{\prime} e\right\}=\mathbf{0}$ or $E\left\{W^{\prime} e(\theta)\right\}=\mathbf{0}$
- In gmm W are exogenous and specified as options
- e($\theta)$ change at each iteration as θ converges to it's minimum
- The control function approach does not quite fit into gmm's framework. Let $W(\Pi)=\left[X, X_{2}-Z \Pi\right]$

$$
\begin{array}{r}
E\left\{Z^{\prime}\left(X_{2}-Z \Pi\right)\right\}=0 \\
E\left\{W(\Pi)^{\prime}\left[y-X_{1} \beta_{1}+X_{2} \beta+\rho\left(X_{2}-Z \Pi\right)\right]\right\}=0
\end{array}
$$

- Estimating $\widehat{\nu}$ and feeding it to gmm will give incorrect standard errors

Give gmm what it needs not what it wants

- gmm wants a set of instruments for each equation
- Rewrite the system as

$$
\begin{aligned}
E\left\{Z^{\prime}\left(X_{2}-Z \Pi\right)\right\} & =\mathbf{0} \\
E\left\{X^{\prime}\left[y-X_{1} \beta_{1}+X_{2} \beta_{2}+\rho\left(X_{2}-Z \Pi\right)\right]\right\} & =0 \\
E\left\{\left(X_{2}-Z \Pi\right)^{\prime}\left[y-X_{1} \beta_{1}+X_{2} \beta_{2}+\rho\left(X_{2}-Z \Pi\right)\right]\right\} & =\mathbf{0}
\end{aligned}
$$

- The last equation satisfies the framework

$$
\begin{aligned}
E\left\{\left(X_{2}-Z \Pi\right)^{\prime}\left[y-X_{1} \beta_{1}+X_{2} \beta_{2}+\rho\left(X_{2}-Z \Pi\right)\right]\right\} & =E\{\eta(\Pi, \rho, \beta)\} \\
E\{\eta(\Pi, \rho, \beta)\} & =\mathbf{0}
\end{aligned}
$$

- It divided the set of instruments for one of the equations

gmm: Substitutable expressions I

$$
\begin{aligned}
\operatorname{mpg} & =\beta_{0}+\beta_{1} \text { turn }+\beta_{2} \text { foreign }+\varepsilon \\
\text { turn } & =\pi_{0}+\pi_{1} \text { foreign }+\pi_{2} \text { weight }+\nu
\end{aligned}
$$

gmm: Substitutable expressions I

$$
\begin{aligned}
\operatorname{mpg} & =\beta_{0}+\beta_{1} \text { turn }+\beta_{2} \text { foreign }+\varepsilon \\
\text { turn } & =\pi_{0}+\pi_{1} \text { foreign }+\pi_{2} \text { weight }+\nu
\end{aligned}
$$

. sysuse auto, clear
(1978 Automobile Data)
. // Writing down substitutable expression
. local zp $\{\mathrm{p} 1\} * 1$. foreign $+\{p 2\} *$ weight $+\{p 0\}$

- local u turn -(`zp’)
- local xb $\{b 1\} *$ turn $+\{b 2\} * 1 . f o r e i g n+\{b 3\} *\left({ }^{\prime} u^{\prime}\right)+\{b 0\}$
. local e mpg - (‘xb')
. // Computing

```
. gmm (eq3: `u`) ///
```

$>$ (eq2: (`e')*(`u')) ///
$>$ (eq1: ‘e'), ///
> instruments(eq3: weight i.foreign) ///
$>$ instruments(eq1: turn i.foreign) ///
> winitial(unadjusted, independent) ///
> from(C) onestep quickderivatives

Considerations

- Do not use gmm as a computation engine
- You know the fitted values of θ from regress
- Use gmm to compute standard errors
- Start optimization at regress values
- Use quickderivatives uses numerical recipes does not go through deriv()
- GMM is exactly identified, use onestep
- Sanity check: ivregress gmm should give you the same standard errors and point estimates

gmm: Substitutable expressions II

Step 1						
Iteration 1: GMM criterion $Q(b)=3.309 \mathrm{e}-29$ note: model is exactly identified						
GMM estimation						
Number of parameters $=7$						
Number of moments $=7$						
Initial weight matrix: Unadjusted				Numb	of obs	74
		Robust				
	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval]
/p1	-1.809802	. 6316408	-2.87	0.004	-3.047795	-. 5718085
/p2	. 0042183	. 0003777	11.17	0.000	. 003478	. 0049587
/po	27.44963	1.347933	20.36	0.000	24.80773	30.09153
/b1	-1.56173	. 2071108	-7.54	0.000	-1.96766	-1.1558
/b2	-4.476451	1.790227	-2.50	0.012	-7.985232	-. 9676693
/b3	1.326564	. 2608633	5.09	0.000	. 8152814	1.837847
/b0	84.54861	8.641913	9.78	0.000	67.61077	101.4865
Instruments for equation eq3: weight 0b.foreign 1.foreign _cons						
Instruments for equation eq2: _cons						
Instruments for equation eq1: turn 0b.foreign 1.foreign _cons						

gmm: Starting values

. // Getting starting values

- quietly regress turn i.foreign weight
. predict double uhat, residuals
- matrix $B=e(b)$
. matrix $B=B[1,2$..colsof(B)]
. quietly regress mpg turn i.foreign uhat
- matrix $A=e(b)$
. matrix $A=A[1,1], A[1,3 . \operatorname{colsof}(A)]$
. matrix $C=B, A$

Evaluator

```
gmm eval [if][in][weight], equations(eqnames)
    parameters(parameter_names)
    [youropts stataopts]
```

- I would write an evaluator instead of using substitutable expressions
- Evaluators allow me to add options
- Evaluators are ado files so they can be used more widely

Evaluator

```
gmm eval [if][in][weight], equations(eqnames)
    parameters(parameter_names)
    [youropts stataopts]
```

- I would write an evaluator instead of using substitutable expressions
- Evaluators allow me to add options
- Evaluators are .ado files so they can be used more widely

Example

```
program _cf_linear
    version 16
    syntax varlist if [fweight iweight pweight], ///
                    at (name) ///
                        [ / ///
                        uhat(varlist) ///
                y1(varname) ///
                    y2(varlist) ///
                    * ///
]
    tempvar zp xb xbu
    tokenize 'varlist'
    local main '1'
    local reduced '2'
    local aux '3'
    matrix score double 'xb', = 'at'' 'if', eq(#1)
    matrix score double 'zp' = 'at' 'if', eq(#2)
    replace 'reduced'
    replace 'uhat', = 'y2' - 'zp' 'if'
    matrix score double 'xbu' = 'at', 'if',',eq(#3)
    replace 'main' = 'y1' - 'xb' - 'xbu' 'if'
    replace 'aux' = ('y1' - 'xb'-`xbu')*'uhat' 'if'
end
```


Evaluator estimates

```
    . gmm _cf_linear, equations(mpg turn uhat) ///
> pārameters( "`y1parm' 'y2parm' uhat:uhat") ///
> y1(mpg) y2(turn) uhat(uhat) ///
> instruments(turn: i.foreign weight) ///
> instruments(mpg: i.foreign turn) ///
> winitial(unadjusted, independent) ///
> quickderivatives onestep from(CNEW)
```


Evaluator estimates

Sanity check

. estimates store gmm
. quietly ivregress gmm mpg i.foreign (turn = weight)
. estimates store ivreg_gmm
. estimates table gmm ivreg_gmm, eq(1) keep(turn 1.foreign _cons) se

Variable	gmm	ivreg_gmm
turn	-1.5617299	-1.5617299
	.2071109	.2071109
foreign		
Foreign	-4.4764507	-4.4764507
	1.7902282	1.7902282
_cons	84.548613	84.548613
	8.641919	8.641919

legend: b/se

A command

```
cfunction estimator y Xs ..., endogenous(endl ... endk = ...)
cfvar([newvars], [...]) ...
```

- estimator is probit, linear, ...
- endogenous () might be multiple equations with different instruments
- A variable is created with the residuals of the first step
- cfvar(newvars. [replace float])

A command

```
cfunction estimator y Xs ..., endogenous(endl ... endk = ...)
    cfvar([newvars], [...]) ...
cfunction estimator y Xs ..., endogenous(endl = ...) ...
    endogenous(endk = ...)
    cfvar([newvars],[...]) ...
```

- estimator is probit, linear, ...
- endogenous () might be multiple equations with different instruments
- A variable is created with the residuals of the first step
- cfvar(newvars, [replace float])

The command

Iteration 0: EE criterion $=7.381 \mathrm{e}-29$ Iteration 1: EE criterion $=3.125 \mathrm{e}-29$						
Control-function linear regression regress Number of obs Outcome model reg Control-function model: regress 74						
mpg	Coef.	Robust Std. Err	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Con	Interval]
mpg turn -1.56173 .2071356 -7.54 0.000 -1.967708 -1.155752						
foreign						
Foreign	-4.476451	1.790523	-2. 50	0.012	-7.985812	-. 9670892
_cons	84.54861	8.64284	9.78	0.000	67.60896	101.4883

The command

. cfunction linear mpg i.foreign, endogenous(turn=i.foreign weight) aequations Iteration 0: EE criterion $=7.381 \mathrm{e}-29$
Iteration 1: EE criterion $=3.125 \mathrm{e}-29$
Control-function linear regression Number of obs $=\quad 74$
Outcome model
regress
Control-function model: regress

mpg	Coef.	Robust Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
mpg turn	-1.56173	. 2071356	-7.54	0.000	-1.967708	-1.155752
foreign Foreign	-4.476451	1.790523	-2.50	0.012	-7.985812	-. 9670892
_cons	84.54861	8.64284	9.78	0.000	67.60896	101.4883
turn						
foreign Foreign	-1.809802	. 6316412	-2.87	0.004	-3.047796	-. 5718077
weight	.0042183	. 0003777	11.17	0.000	. 003478	. 0049587
_cons	27.44963	1.347934	20.36	0.000	24.80773	30.09154
	1.326564	. 2609407	5.08	0.000	. 8151298	1.837998

Model II: Fractional (binary) outcomes

$$
\begin{aligned}
E(y \mid X, \nu) & =\Phi\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\rho \nu\right) \\
X_{2} & =Z \Pi+\nu
\end{aligned}
$$

- You can think of y as $y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon>0$ and (ε, ν) being correlated and jointly normal
- y could be described by another model as long as X_{2} is continuous and endogeneity is due to a relation of ε and ν
- Z are unrelated to ν

Interpretation

- Coefficients and standard errors are asymptotically equivalent to two-step estimates computed by ivprobit ..., twostep
- Coefficients should not be taken too seriously. What is important is to think about effects. (Editorial comment).
- We will be able to compute effects because the coefficient vectors and standard errors are kept for all equations

The command

Sanity check I

. quietly cfunction probit foreign mpg, endogenous(headroom = mpg weight)
. estimates store cfprobit
. quietly ivprobit foreign mpg (headroom = weight), twostep

- estimates store ivtwo
. estimates table cfprobit ivtwo, se eq(1) drop(`drop')

Variable	cfprobit	ivtwo
headroom	-5.0174745	-5.0174745
	2.1124998	2.4034212
mpg	-.1544128	-.1544128
	.14841505	.15947795
_cons	17.317527	17.317528
	9.0248155	10.182072

legend: b/se

Sanity check II

General postestimation considerations

- Construct predictions as a function of $c f \operatorname{var}$
- Return e(covariates). Variables margins operates over.
- Exclude cfvar
- Exclude excluded instruments (z's)
- margins only perturbs variables in e(covariates)
- The coefficients on cfvar provide test for endogeneity
- margins quantities have a structural function interpretation

Model III: Panel exponential mean

$$
\begin{aligned}
E\left(y_{i t} X_{i t 1}, X_{i t 2}, \alpha_{i}, \nu_{i t}\right) & =\exp \left(X_{i t} \beta_{1}+X_{i 2} \beta_{2}+\alpha_{i}+\rho \nu_{i t}\right) \\
X_{i t 2} & =z_{i t} \Pi+\gamma_{i}+\nu_{i t}
\end{aligned}
$$

- Fit a fixed effects regression of $X_{i t 2}$ on $Z_{i t}$ or a correlated random effects estimator (i.e. Mundlak) and get residuals
- Compute fixed effects Poisson regression including residuals
- Other estimators and conditions can be considered. They will imply different GMM estimators (i.e Windmeijer (2000) and Lin and Wooldridge (2019))

Moment conditions

- $\widetilde{W} \equiv W_{i t}-\bar{W}_{i}+\bar{W}$
- $\left(\widetilde{X}_{2}-\tilde{Z} \Pi\right) \equiv \nu(\Pi)$
- $\exp \left(X_{1} \beta_{1}+X_{2} \beta_{2}+\rho \nu(\Pi)\right) \equiv \theta$

$$
\begin{aligned}
E\left\{\tilde{Z}^{\prime} \nu(\Pi)\right\} & =\mathbf{0} \\
E\left\{X^{\prime}\left[y-\frac{\bar{y}}{\bar{\theta}} \theta\right]\right\} & =\mathbf{0} \\
E\left\{\nu(\Pi)^{\prime}\left[y-\frac{\bar{y}}{\bar{\theta}} \theta\right]\right\} & =\mathbf{0}
\end{aligned}
$$

Evaluator

```
program cfxtpoisson
    version 16
    syntax varlist if [fweight iweight pweight], ///
                    at (name) ///
    [ ///
    at (name) ///
    id(string) ///
    uhat(varlist) ///
    y1(varname) ///
    y2(varlist) ///
    * ///
    tempvar zp xb xbu xbbar ybar
    tokenize 'varlist'
    local main '1'
    local reduced `2'
    local aux '3'
```


end

Exponential mean simulated data

$$
\begin{aligned}
& y^{2}=1-x 1+x 2-z 1+z_{2}-z^{2}+u 1+a \\
& y^{1}=\exp \left(.5\left(1-y^{2}+x 1-x 2\right)+u 2+a\right)
\end{aligned}
$$

- u1 and u2 are correlated jointly normal time-varying unobservables
- Correlation $\rho=.7$
- a is a time invariant unobservable and normal correlated with covariates
- All covariates are standardized chi-squares with 5 degrees of freedom

iterlogonly

```
. gmm cfxtpoisson, equations(y1,y2 uhat) id(id), ///
> parameters("`y1parm' 'y2parm' uhat:uhat") ///
> y2(dmy2) y1(y1) uhat(uhat) ///
> instruments(y2: dmz1 dmz2 dmz3 dmx1 dmx2) ///
> instruments(y1: y2 x1 x2, nocons) ///
> winitial(unadjusted, independent) ///
> quickderivatives onestep from(C) iterlogonly ///
> vce(cluster id)
Iteration 0: GMM criterion Q(b) = 2.696e-20
Iteration 1: GMM criterion Q(b) = 9.749e-31
```


Results

- gmm

GMM estimation
Number of parameters $=10$
Number of moments $=10$
Initial weight matrix: Unadjusted Number of obs $=10,000$
(Std. Err. adjusted for 2,000 clusters in id)

	Coef.	Robust Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
$\begin{array}{ll}\mathrm{y} 1 & \mathrm{y}^{2} \\ & \text { x1 } \\ & \text { x2 }\end{array}$						
	-. 5150497	. 0183471	-28.07	0.000	-. 5510094	-. 47909
	. 4935781	. 0308917	15.98	0.000	. 4330315	. 5541247
	-. 4997544	.0388162	-12.87	0.000	-. 5758327	-. 423676
y^{2}						
dmz1	-. 9914454	. 0111035	-89.29	0.000	-1.013208	-. 969683
dmz2	. 9952376	. 0115265	86.34	0.000	. 9726461	1.017829
dmz 3	-1.000285	. 0116556	-85.82	0.000	-1.023129	-. 9774401
dmx1	-1.0056	. 0110415	-91.07	0.000	-1.027241	-. 983959
dmx2	. 9985457	. 0109718	91.01	0.000	. 9770413	1.02005
_cons	.9681836	. 000386	2508.14	0.000	. 967427	. 9689402
uhat uhat						
	.7922526	. 0372532	21.27	0.000	. 7192377	. 8652675

Instruments for equation $y 1: y^{2} x 1 x^{2}$
Instruments for equation $y 2: d m z 1$ dmz2 dmz3 dmx1 dmx2 _cons
Instruments for equation uhat: _cons

A preliminary simulation exercise

Estimator	Bias	Coverage rate
cfunction_linear	-0.000	0.950
cfunction_probit	-0.001	0.953
xtcfunction	0.000	0.945

- $\rho=.5$
- Endogeneity comes from:
- Joint normality of time invariant unobservables (all)
- Common component in endogenous covariate and time-invariant unobservables
- All covariates are standardized chi-square with 5 degrees of freedom
- $N=3000, T=5$ for cross section I kept one time period ($T=2$)
- Results are from 1000 draws
- No time to compare to bootstrap

Conclusion

- I illustrated how to use gmm to compute control function estimates and their standard errors
- Along the way I illustrated some tools for those wanting to use gmm more efficiently
- Control function GMM standard error estimates are an attractive alternative to bootstrap standard errors
- The estimators open up the possibilities of using margins for control function estimates described

