hdps: Implementation of high-dimensional propensity score approaches in Stata

John Tazare Elizabeth Williamson Ian Douglas

Stata UGM 2019

5th September 2019

@LSHTMstatmethod

Introduction	hd-PS	hd-PS Software	Case Study
Acknowledgement	S		

• This work is funded by the Medical Research Council as part of a Doctoral Training Partnership based at LSHTM.

Introduction	hd-PS	hd-PS Software	Case Study
Outline			

- 2 Description of hd-PS Algorithm
- 3 hd-PS Software
- 4 Case study in CPRD

Table of Contents

Description of hd-PS Algorithm

4 Case study in CPRD

Introduction	hd-PS	hd-PS Software	Case Study
Introduction			

- Electronic Health Records (EHRs) increasingly used to investigate the effect of medications
 - Risks/benefits may be different in routine care versus trials
 - EHRs often the best available data to answer these questions
- Invalid results undermine their use
- A key issue is adequate confounder adjustment

Table of Contents

2 Description of hd-PS Algorithm

Propensity Scores (PS) in Pharmacoepidemiology

- Models the treatment allocation process
- Defined as conditional probability of being treated given a set of observed covariates
- Typically estimated using logistic regression model
- Methods for estimating treatment effects using PSs include:
 - Covariate adjustment
 - Stratification
 - Matching
 - Inverse Probability of Treatment Weighting (IPTW)

High-Dimensional Propensity Score (hd-PS)

Motivation:

 \bullet Absence/imperfect recording of important confounders in EHR data hd-PS:

- Developed in US health claims data [Schneeweiss et al., 2009]
- Information stored as codes in databases are proxies to underlying confounders (or constructs)
- Semi-automated algorithm for selecting confounders

Aim:

• Select important confounders to minimise residual confounding

hd-PS: What do we mean by 'Proxies'?

Step 0: Prior to running the algorithm

- Force clinically important factors and demographics into PS model e.g. age, sex and calendar time
- Define a baseline time-window to assess each individual's confounder information

Step 1: Specify a number of data dimensions

- Dimensions represent different aspects of care
- UK EHRs: clinical information, patterns of drug usage and referrals to secondary care

Introduction	h	d-PS	hd-	PS Software		Case Study
Description	n of hd-F	'S Algori	thm			
	Covariat	e Assessme	nt Period	Cohe	ort Entry	
					Follow	up
		\geq	\times			
Patient Identifier	Code	Patient Identifier	Code	Patient Identifier	Code	

Clinical Dimension

- Signs/Symptoms
- Diagnoses

Referral Dimension

Referral to specialist

Prescription Dimension

Patterns of drug usage

Step 2: Within each dimension identify the most prevalent codes (typically d = 200)

Step 3: Assess the recurrence of each identified covariate

- 3 indicators of frequency for each code:
 - Once: Recorded \geq once for that patient
 - **Sporadic:** Recorded \geq median number of times
 - Frequent: Recorded \geq 75th percentile

Step 3: Assess the recurrence of each identified covariate

Patient	Code Count	E10-Once	E10-Sporadic	E10-Frequent
1	5	1	1	1
2	3	1	1	0
3	1	1	0	0

Step 4: Prioritise covariates (within each dimension)

- Covariates with highest potential to bias treatment outcome relationship selected
- Select top empirical candidates from previous step (typically k = 500)

Steps 5/6: Perform standard PS analysis

- Estimate treatment PS using predefined and empirically selected variables
- Incorporate PS using standard methods to estimate treatment effect

Table of Contents

Introduction	hd-PS	hd-PS Software	Case Study
hd-PS Software			

- hd-PS has been implemented in SAS & R:
 - SAS: www.drugepi.org/dope-downloads/
 - R: github.com/lendle/hdps
- Forthcoming Stata suite: hdps
 - Implements traditional hd-PS
 - Extends to hd-PS developments in UK EHRs

Introduction	hd-PS	hd-PS Software	Case Study
hdps Suite O	verview		

- hdps set
 - Reads in dimension files
- hdps prevalence
 - Must be ran after hdps set
 - Step 2: Calculates code prevalences
 - Returns code summary information for codes selected ($d \times$ no. of dims)
- hdps recurrence
 - Requires a study cohort dataset in memory
 - Step 3: Recurrence of codes identified by hdps prevalence assessed
 - Returns dataset with set of candidate covariates (at most $3 \times d \times$ no. of dims)
 - Step 4: Prioritises covariates and returns dataset with top k

Introduction

2 Description of hd-PS Algorithm

3 hd-PS Software

4 Case study in CPRD

Example of contradictory results [Douglas et al., 2012]

- **Population:** Clopidogrel and aspirin users in UK Clinical Practice Research Datalink
- Treatment: PPI use vs No PPI use
- Outcomes: Myocardial Infarction (MI) analysed using Cox model

• Findings:

- Pattern of associations strongly suggested residual confounding between patients
- Self-controlled case series no evidence of increased risk
- Subsequent trials/genetic studies confirmed lack of association

Introduction	hd-PS	hd-PS Software	Case Study
Casa study	Mathada		

Re-analysis of original study:

- PS analysis adjusting for the original confounders
- Confounders:
 - Age, sex, smoking status, alcohol consumption, BMI categorised, diabetes, coronoary heart disease, peripheral vascular disease, ischaemic stroke, and cancer
- PS incorporated using inverse probability of treatment weighting (IPTW)

hd-PS analysis:

- Identified 3 dimensions: Clinical, Referral, Prescription
- 200 most prevalent variables chosen from each dimension
- 500 variables added to PS model + original confounders

Aim:

• Obtain a point estimate closer to the expected null result with similar precision to the original study

Case stud	ly:	Resu	lts
-----------	-----	------	-----

Analysis	HR (95% CI)		
Original	Analysis		
Crude	1.23 (1.06 – 1.42)		
Investigator	1.17 (1.00 – 1.35)		
hd-PS Analysis			
hd-PS Adapted for UK EHR	1.00 (0.78 – 1.28)		

Case Study

Introduction	hd-PS	hd-PS Software	Case Study
Case study:	Results		

Analysis	HR (95% CI)	
Original	Analysis	
Crude	1.23 (1.06 – 1.42)	
Investigator	1.17 (1.00 – 1.35)	
hd-PS A	Analysis	
hd-PS Adapted for UK EHR	1.00 (0.78 – 1.28)	

Introduction	hd-PS	hd-PS Software	Case Study
Conclusion			

- hd-PS improved adjustment for confounding compared with traditional methods
- Captured extra predictors of prescribing which were also causing confounding bias
- Potential to improve confounder adjustment in UK EHRs

Introduction	hd-PS	hd-PS Software	Case Study
Final Thoughts			

How best to read/store the dimension files? (datasets vs. matrices)

Thank you for listening

John Tazare john.tazare1@lshtm.ac.uk @JohnTStats

Introduction	hd-PS	hd-PS Software	Case Study
References I			

Bross, I. (1966).

Spurious effects from an extraneous variable. *J Chronic Dis*, 19:637–47.

Douglas, I. et al. (2012).

Clopidogrel and interaction with proton pump inhibitors: comparison between cohort and within person study designs. *BMJ*, page e4388.

Schneeweiss, S. et al. (2009).

High-dimensional propensity score adjustment in studies of treatment effects using health care claims data.

Epidemiology, pages 512-22.

A1: Prioritisation using the Bross formula

Step 4: Prioritise covariates (within each dimension)

Defined for binary confounders

 $ARR = RR \times bias_M$

- ARR: Observed *RR* treatment on outcome adjusted for individual binary confounder (confounded)
- RR: 'Unconfounded' RR treatment on outcome

A1: Prioritisation using the Bross formula

Step 4: Prioritise covariates (within each dimension)

where
$$bias_M = \frac{P_{C1}(RR_{CD} - 1) + 1}{P_{C0}(RR_{CD} - 1) + 1}$$

- Bross formula [Bross, 1966]
- Strength of confounder on outcome choose covariates with highest magnitude of bias
- *P_{Ci}*: Prevalence of binary confounding factor in treated group (*i* = 1) and untreated/comparator group (*i* = 0)
- *RR_{CD}*: Effect of confounder on outcome