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1. Summary

• Quantile regression (Koenker and Bassett, 1978) is
increasingly used by practitioners but it is still not part of the
standard econometric/statistics courses.

• Road map:
• general introduction to quantile regression
• two topics from recent research:

• models with time-invariant individual (“fixed effects”) effects
• structural quantile function.

• I will present the approach to these problems proposed by
Machado and Santos Silva (2019), and illustrate the use of
the corresponding Stata commands xtqreg and ivqreg2.
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2. Conditional quantiles

• For 0 < τ < 1, the τ-th quantile of y given x is defined by

Qy (τ|x) = min{η|P(y ≤ η|x) ≥ τ}.
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3. Basics of quantile regression

• Quantile regression estimates Qy (τ|x).

• Throughout we assume linearity: Qy (τ|x) = x ′β (τ).

• With linear quantiles, we can write

y = x ′β (τ) + u (τ) ; Qu(τ)(τ|x) = 0.

• Note that the errors and the parameters depend on τ.

• For τ = 0.5 we have the median regression.

• We need to restrict the support of x to ensure that quantiles
do not cross.

4



0
2

4
6

8
10

0 1 2 3 4 5
x

5



4. Inference

• The estimator of β (τ) is defined by

β̂ (τ) = argmin
b

1
n

{
∑yi≥x ′i b

τ
∣∣yi − x ′i b∣∣+∑yi<x ′i b

(1− τ)
∣∣yi − x ′i b∣∣} .

• The F.O.C. can be written as

1
n ∑n

i=1

((
τ − 1

((
yi − x ′i β̂ (τ)

)
< 0

)))
xi = 0.

• β̂ (τ) is invariant to perturbations of yi that do not change
the sign of

(
yi − x ′i β̂ (τ)

)
.

• β̂ (τ) can be estimated by linear programming (see qreg).
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• Asymptotic theory is non-standard because the objective
function is not differentiable.

• However, under certain regularity conditions, β̂ (τ) has
standard properties:

√
n
(

β̂ (τ)− β (τ)
) d→ N

(
0,D−1AD−1

)
,

D = E
[
fu(τ) (0|xi ) xix ′i

]
, A = E

[
(τ − 1 (u (τ)i ≤ 0))2xix ′i

]
.

• It is possible to estimate A and D under different assumptions
(see qreg and qreg2).
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5. Comments

• The main advantage of quantile regression is the
informational gains they provide.

• Quantiles are “robust”measures of location and are
estimated using a “robust”estimator.

• Quantiles and means have very different properties.

• Quantiles are not additive; the quantile of the sum is not the
sum of the quantiles.

• Quantiles are equivariant to non-decreasing transformations;
for example, if yi is non-negative with

Qyi (τ|xi ) = exp
(
x ′i β (τ)

)
,

then,
Qln(yi )(τ|xi ) = x

′
i β (τ) .
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6. Extensions

• The plain-vanilla quantile regression estimator has been
extended to different settings:

• Censored regression; Powell (1984)
• Binary data; Manski (1975, 1985), Horowitz (1992)
• Ordered data; M.-j. Lee (1992)
• Count data; Machado and Santos Silva (2005)
• Corner-solutions data; Machado, Santos Silva, and Wei (2016)
• Clustering; Parente and Santos Silva (2016)

• Two areas of active research are:
• quantile regressions with time-invariant individual ("fixed")
effects, and

• structural quantile function.
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7. Quantiles via moments

• Consider a location-scale model

yi = x ′i β+
(
x ′i γ
)
ui ,

where xi and ui are independent and Pr (x ′i γ > 0) = 1.

• In this case the mean and all conditional quantiles are linear

Qy (τ|x) = x ′i β+
(
x ′i γ
)

Qu(τ|xi )
= x ′i β (τ)

β (τ) = β+ γQu(τ).

• In this model, the information provided by β, γ, and Qu(τ) is
equivalent to the information provided by regression quantiles.
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• Machado and Santos Silva (2019) noted that, assuming
E (U) = 0 and using the normalization E (|U |) = 1, β and γ
are identified by conditional expectations:

E [yi |xi ] = β0 + β1xi

E [|yi − β0 − β1xi | |xi ] = γ0 + γ1xi

• Qu(τ|xi ) can be estimated from the scaled errors

yi − β0 − β1xi
γ0 + γ1xi

• This provides a way to estimate quantile regression using two
OLS regressions and the computation of a univariate quantile.
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8. Panel data

• Suppose now that we are interested in estimating

Qyit (τ|xit , ηi ) = x ′itβ (τ)+ η (τ)i , with i = 1, . . . , n; t = 1, . . . ,T .

• As in mean regression, “fixed effects” can be important.
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• Estimation of quantile regression with fixed effects is diffi cult
because there is no transformation that can be used to
eliminate the incidental parameters.

• Therefore, due to the incidental parameter problem,
consistency requires that both n→ ∞ and T → ∞.

• For fixed T , the only realistic option is the "correlated
random effects" (Mundlak) estimator; see Abrevaya and
Dahl (2008).

• Roger Koenker (2004) and Canay (2011) proposed estimators
based on the assumption that η (τ)i = ηi but this goes
against the spirit of quantile regression.
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• Kato, Galvão, and Montes-Rojas (2012) studied the properties
of quantile regression in a model where the fixed effects are
explicitly included as dummies.

• The estimator is consistent and asymptotically normal when
both n→ ∞ and T → ∞ with n2 [ln (n)]3 /T → 0.

• This is an issue because in many applications n is much larger
than T (e.g. for T = 40, n = 100, n2 [ln (n)]3 /T = 24, 416).

• An alternative is to use the quantiles-via-moments estimator.
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• Consider the location-scale model for panel data

yit = αi + x ′itβ+ (δi + x
′
itγ)uit

η (τ)i = αi + δiQu(τ), β (τ) = β+ γQu(τ),

where xi and ui are independent and Pr ((δi + x ′itγ) > 0) = 1.

• Estimation is performed using two fixed effects regressions
(xtreg) and computing a univariate quantile.

• Consistency requires (n,T )→ ∞ with n = o(T ).

• For fixed T the estimator will have a bias but:

• simulations suggest that the bias is negligible for n/T ≤ 10;
• the bias can be removed using jackknife.

• The estimator is implemented in the xtqreg command
(available from SSC)
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xtqreg

xtqreg depvar [indepvars] [if] [in] [, options]

quantile(#[#[# ...]]): estimates # quantile; default is
quantile(.5)

id: specifies the variable defining the panel

ls: displays the estimates of the location and scale
parameters

16



9. Endogeneity

• Suppose that we have a structural relationship defined by

y = dα+ x ′β+ u,

d = δ (x , z , v)

where v may not be independent of u

• We are interested in

Sy (τ|d , x) = dα (τ) + x ′β (τ) ,

the structural quantile function such that:

• Pr [y < Sy (τ|d , x) |z , x ] = τ,

• Sy (τ|d , x) = Qy (τ|z , x) 6= Qy (τ|d , x).
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• Chernozhukov and Hansen (2008) propose an estimator of
SY (τ|d , x) based on the observation that

Qy−dα(τ) (τ|z , x) = x ′β (τ) + zγ (τ)

with γ (τ) = 0.
• We can implement the estimator by:

• estimating β (τ) and γ (τ) for a range of values of α (τ)

• and choosing as estimates the ones corresponding to the value
of α (τ) for which γ (τ) is in some sense closer to zero.

• Chernozhukov and Hansen (2008) prove the consistency and
asymptotic normality of the estimator.

• The estimator is diffi cult to implement when there are
multiple endogenous variables, but there have been a number
of recent developments on this.
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• Again, the quantile-via-moments estimator can be useful.
• Consider a location-scale structural relationship

y = dα+ x ′β+
(
dδ+ x ′γ

)
u, d = δ (x , z , v) ,

where v may not be independent of u but u is independent of
x and z .

• Because Sy (τ|d , x) is such that Pr [y < Sy (τ|d , x)|z , x ] = τ,

Sy (τ|d , x) = dα+ x ′β+
(
dδ+ x ′γ

)
Qu(τ)

= d (α+ δQu(τ)) + x (β+ γQu(τ)) .

19



• GMM can be used to estimate the structural parameters:

E
[(

yi − dα− x ′β
dδ+ x ′γ

)∣∣∣∣ zi] = 0,
E
[(
|yi − dα− x ′β|
dδ+ x ′γ

− 1
)∣∣∣∣ zi] = 0.

• Qu(τ) can be estimated from the standardized errors(
yi − d α̂− x ′ β̂

)
/
(
d δ̂+ x ′γ̂

)
.

• The estimator has the usual properties.

• The estimator is implemented in the ivqreg2 command
(available from SSC)
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ivqreg2

ivqreg2 depvar [indepvars] [if] [in] [, options]

quantile(#[#[# ...]]): estimates # quantile; default is
quantile(.5)

instruments(varlist): list of instruments, including control
variables; by default no instruments are used and
restricted quantile regression is performed

ls: displays the estimates of the location and scale
parameters
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10. Final notes

• Quantile regression can be very useful and it is now easy to
implement in a variety of cases.

• In some contexts, however, quantile regression can be
challenging.

• The Method of Moments-Quantile Regression estimator can
be useful in some of these cases.

• xtqreg and ivqreg2 make it easy to estimate quantile
regressions with “fixed effects”or endogenous variables.
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