Quantile regression: Basics and recent advances

J. M.C. Santos Silva University of Surrey

2019 UK Stata Conference 06/09/19

- Quantile regression (Koenker and Bassett, 1978) is increasingly used by practitioners but it is still not part of the standard econometric/statistics courses.
- Road map:
 - general introduction to quantile regression
 - two topics from recent research:
 - models with time-invariant individual ("fixed effects") effects
 - structural quantile function.
- I will present the approach to these problems proposed by Machado and Santos Silva (2019), and illustrate the use of the corresponding Stata commands xtqreg and ivqreg2.

2. Conditional quantiles

• For $0 < \tau < 1$, the τ -th quantile of y given x is defined by $Q_y(\tau|x) = \min\{\eta | P(y \le \eta | x) \ge \tau\}.$

- Quantile regression estimates $Q_y(\tau|x)$.
- Throughout we assume linearity: $Q_{y}(\tau|x) = x'\beta(\tau)$.
- With linear quantiles, we can write

$$y = x' \beta(\tau) + u(\tau);$$
 $Q_{u(\tau)}(\tau|x) = 0.$

- Note that the **errors** and the **parameters** depend on *τ*.
- For $\tau = 0.5$ we have the median regression.
- We need to restrict the **support** of *x* to ensure that quantiles do not cross.

4. Inference

• The estimator of $\beta\left(au
ight)$ is defined by

$$\hat{\beta}\left(\tau\right) = \arg\min_{b} \frac{1}{n} \left\{ \sum_{y_i \geq x_i' b} \tau \left| y_i - x_i' b \right| + \sum_{y_i < x_i' b} \left(1 - \tau\right) \left| y_i - x_i' b \right| \right\}.$$

• The F.O.C. can be written as

$$\frac{1}{n}\sum_{i=1}^{n}\left(\left(\tau-\mathbf{1}\left(\left(y_{i}-x_{i}^{\prime}\hat{\beta}\left(\tau\right)\right)<0\right)\right)\right)x_{i}=0.$$

- $\hat{\beta}(\tau)$ is **invariant** to perturbations of y_i that do not change the sign of $(y_i x'_i \hat{\beta}(\tau))$.
- $\hat{\beta}(\tau)$ can be estimated by **linear programming** (see qreg).

- Asymptotic theory is **non-standard** because the objective function is not differentiable.
- However, under certain regularity conditions, $\hat{\beta}\left(\tau\right)$ has standard properties:

$$\sqrt{n}\left(\hat{\beta}\left(\tau\right)-\beta\left(\tau\right)\right)\overset{d}{
ightarrow}\mathcal{N}\left(0,D^{-1}AD^{-1}
ight)$$
 ,

$$D = E\left[f_{u(\tau)}(0|x_i) x_i x_i'\right], \quad A = E\left[(\tau - \mathbf{1}(u(\tau)_i \le 0))^2 x_i x_i'\right].$$

• It is possible to estimate A and D under different assumptions (see qreg and qreg2).

- The main advantage of quantile regression is the **informational gains** they provide.
- Quantiles are "**robust**" measures of location and are estimated using a "**robust**" estimator.
- Quantiles and means have very different properties.
 - Quantiles are not **additive**; the quantile of the sum is not the sum of the quantiles.
 - Quantiles are **equivariant** to non-decreasing transformations; for example, if y_i is non-negative with

$$\mathrm{Q}_{y_{i}}(au|x_{i})=\exp\left(x_{i}^{\prime}eta\left(au
ight)
ight)$$
 ,

then,

$$\mathbf{Q}_{\ln(y_i)}(\tau|\mathbf{x}_i) = \mathbf{x}_i' \boldsymbol{\beta}(\tau) \,.$$

- The plain-vanilla quantile regression estimator has been extended to different settings:
 - Censored regression; Powell (1984)
 - Binary data; Manski (1975, 1985), Horowitz (1992)
 - Ordered data; M.-j. Lee (1992)
 - Count data; Machado and Santos Silva (2005)
 - Corner-solutions data; Machado, Santos Silva, and Wei (2016)
 - Clustering; Parente and Santos Silva (2016)
- Two areas of active research are:
 - quantile regressions with time-invariant individual ("fixed") effects, and
 - structural quantile function.

7. Quantiles via moments

• Consider a location-scale model

$$y_i = x'_i \beta + (x'_i \gamma) u_i,$$

where x_i and u_i are independent and $\Pr(x'_i \gamma > 0) = 1$.

• In this case the mean and all conditional quantiles are linear

$$\begin{aligned} \mathbf{Q}_{\mathbf{y}}(\tau|\mathbf{x}) &= \mathbf{x}_{i}^{\prime}\boldsymbol{\beta} + \left(\mathbf{x}_{i}^{\prime}\boldsymbol{\gamma}\right)\mathbf{Q}_{u}(\tau|\mathbf{x}_{i}) \\ &= \mathbf{x}_{i}^{\prime}\boldsymbol{\beta}\left(\tau\right) \\ \boldsymbol{\beta}\left(\tau\right) &= \boldsymbol{\beta} + \boldsymbol{\gamma}\mathbf{Q}_{u}(\tau). \end{aligned}$$

• In this model, the information provided by β , γ , and $Q_u(\tau)$ is equivalent to the information provided by regression quantiles.

• Machado and Santos Silva (2019) noted that, assuming E(U) = 0 and using the normalization E(|U|) = 1, β and γ are identified by conditional expectations:

$$E\left[y_i|x_i\right] = \beta_0 + \beta_1 x_i$$

$$E\left[\left|y_{i}-\beta_{0}-\beta_{1}x_{i}\right|\left|x_{i}\right]=\gamma_{0}+\gamma_{1}x_{i}$$

• $Q_u(\tau|x_i)$ can be estimated from the scaled errors

$$\frac{y_i - \beta_0 - \beta_1 x_i}{\gamma_0 + \gamma_1 x_i}$$

 This provides a way to estimate quantile regression using two OLS regressions and the computation of a univariate quantile.

8. Panel data

- Suppose now that we are interested in estimating $Q_{y_{it}}(\tau | x_{it}, \eta_i) = x'_{it}\beta(\tau) + \eta(\tau)_i, \text{ with } i = 1, \dots, n; \ t = 1, \dots, T.$
- As in mean regression, "fixed effects" can be important.

- Estimation of quantile regression with fixed effects is difficult because there is **no transformation** that can be used to eliminate the incidental parameters.
- Therefore, due to the **incidental parameter problem**, consistency requires that both $n \rightarrow \infty$ and $T \rightarrow \infty$.
- For fixed *T*, the only realistic option is the "**correlated random effects**" (Mundlak) estimator; see Abrevaya and Dahl (2008).
- Roger Koenker (2004) and Canay (2011) proposed estimators based on the assumption that $\eta (\tau)_i = \eta_i$ but this goes against the spirit of quantile regression.

- Kato, Galvão, and Montes-Rojas (2012) studied the properties of quantile regression in a model where the fixed effects are explicitly included as **dummies**.
- The estimator is consistent and asymptotically normal when both $n \to \infty$ and $T \to \infty$ with $n^2 [\ln(n)]^3 / T \to 0$.
- This is an issue because in many applications *n* is much larger than *T* (e.g. for T = 40, n = 100, $n^2 [\ln (n)]^3 / T = 24,416$).
- An alternative is to use the quantiles-via-moments estimator.

• Consider the location-scale model for panel data

$$y_{it} = \alpha_i + x'_{it}\beta + (\delta_i + x'_{it}\gamma)u_{it}$$

$$\eta(\tau)_i = \alpha_i + \delta_i Q_u(\tau), \qquad \beta(\tau) = \beta + \gamma Q_u(\tau),$$

where x_i and u_i are independent and $Pr((\delta_i + x'_{it}\gamma) > 0) = 1$.

- Estimation is performed using two fixed effects regressions (xtreg) and computing a univariate quantile.
- Consistency requires $(n, T) \rightarrow \infty$ with n = o(T).
- For fixed T the estimator will have a bias but:
 - simulations suggest that the bias is negligible for $n/T \le 10$;
 - the bias can be removed using jackknife.
- The estimator is implemented in the <u>xtqreg</u> command (available from SSC)

xtqreg depvar [indepvars] [if] [in] [, options]

- id: specifies the variable defining the panel
- ls: displays the estimates of the location and scale
 parameters

9. Endogeneity

• Suppose that we have a structural relationship defined by

$$y = d\alpha + x'\beta + u,$$

$$d = \delta(x, z, v)$$

where v may not be independent of u

• We are interested in

$$S_{y}\left(au | extbf{d}, x
ight) = extbf{d} lpha \left(au
ight) + x' eta \left(au
ight)$$
 ,

the structural quantile function such that:

•
$$\Pr[y < S_y(\tau | d, x) | z, x] = \tau$$
,

•
$$S_{y}(\tau|d,x) = Q_{y}(\tau|z,x) \neq Q_{y}(\tau|d,x).$$

• Chernozhukov and Hansen (2008) propose an estimator of $S_Y(\tau|d, x)$ based on the observation that

$$Q_{y-dlpha(au)}\left(au|z,x
ight) =x^{\prime}eta\left(au
ight) +z\gamma\left(au
ight)$$

with $\gamma(\tau) = 0$.

- We can implement the estimator by:
 - estimating $\beta\left(au
 ight)$ and $\gamma\left(au
 ight)$ for a range of values of $lpha\left(au
 ight)$
 - and choosing as estimates the ones corresponding to the value of $\alpha(\tau)$ for which $\gamma(\tau)$ is in some sense closer to zero.
- Chernozhukov and Hansen (2008) prove the consistency and asymptotic normality of the estimator.
- The estimator is difficult to implement when there are multiple endogenous variables, but there have been a number of recent **developments** on this.

- Again, the quantile-via-moments estimator can be useful.
- Consider a location-scale structural relationship

$$y = d\alpha + x'\beta + (d\delta + x'\gamma) u, \quad d = \delta(x, z, v),$$

where v may not be independent of u but u is independent of x and z.

• Because $S_y(au|d,x)$ is such that $\Pr\left[y < S_y(au|d,x) | z,x
ight] = au$,

$$S_{y}(\tau|d,x) = d\alpha + x'\beta + (d\delta + x'\gamma) Q_{u}(\tau)$$
$$= d(\alpha + \delta Q_{u}(\tau)) + x(\beta + \gamma Q_{u}(\tau)).$$

• GMM can be used to estimate the structural parameters:

$$E\left[\left(rac{y_i-dlpha-x'eta}{d\delta+x'\gamma}
ight)\Big|\,z_i
ight]=0, \ E\left[\left(rac{|y_i-dlpha-x'eta|}{d\delta+x'\gamma}-1
ight)\Big|\,z_i
ight]=0.$$

• $Q_u(\tau)$ can be estimated from the standardized errors

$$(y_i - d\hat{\alpha} - x'\hat{\beta}) / (d\hat{\delta} + x'\hat{\gamma})$$

- The estimator has the usual properties.
- The estimator is implemented in the ivqreg2 command (available from SSC)

ivqreg2 depvar [indepvars] [if] [in] [, options]

- instruments(varlist): list of instruments, including control variables; by default no instruments are used and restricted quantile regression is performed
 - ls: displays the estimates of the location and scale
 parameters

- Quantile regression can be very useful and it is now easy to implement in a variety of cases.
- In some contexts, however, quantile regression can be challenging.
- The Method of Moments-Quantile Regression estimator can be useful in some of these cases.
- <u>xtqreg</u> and <u>ivqreg2</u> make it easy to estimate quantile regressions with "fixed effects" or endogenous variables.

References

• Abrevaya, J. and Dahl, C.M. (2008). "The Effects of Birth Inputs on Birthweight," *Journal of Business & Economic Statistics*, 26, 379-397.

• Canay, I.A. (2011). "A Simple Approach to Quantile Regression for Panel Data," *Econometrics Journal*, 14, 368-386.

• Chernozhukov, V. and Hansen, C. (2008). "Instrumental Variable Quantile Regression: A Robust Inference Approach," *Journal of Econometrics*, 142, 379–398.

• Horowitz, J.L. (1992). "A Smooth Maximum Score Estimator for the Binary Response Model", *Econometrica*, 60, 505-531.

• Kato, K., Galvão, A.F. and Montes-Rojas, G. (2012). "Asymptotics for Panel Quantile Regression Models with Individual Effects," *Journal of Econometrics*, 170, 76–91. • Koenker, R. (2004). "Quantile Regression for Longitudinal Data," *Journal of Multivariate Analysis* 91, 74–89.

• Koenker, R. and Bassett Jr., G.S. (1978). "Regression Quantiles," *Econometrica*, 46, 33-50.

• Lee, M.-j. (1992). "Median Regression for Ordered Discrete Response," *Journal of Econometrics*, 51, 59-77.

• Machado, J.A.F. and Santos Silva, J.M.C. (2005), "Quantiles for Counts", *Journal of the American Statistical Association*, 100, 1226-1237.

• Machado, J.A.F., Santos Silva, J.M.C., and Wei, K. (2016), "Quantiles, Corners, and the Extensive Margin of Trade," *European Economic Review*, 89, 73–84. • Machado, J.A.F. and Santos Silva, J.M.C. (2019), "Quantiles via Moments," *Journal of Econometrics*, forthcoming.

• Manski, C.F. (1975). "Maximum Score Estimation of the Stochastic Utility Model of Choice", *Journal of Econometrics*, 3, 205-228.

• Manski, C.F. (1985). "Semiparametric Analysis of Discrete Response: Asymptotic Properties of the Maximum Score Estimator", *Journal of Econometrics*, 27, 313-333.

• Parente, P.M.D.C. and Santos Silva, J.M.C. (2016). "Quantile Regression with Clustered Data," *Journal of Econometric Methods*, 5, 1-15.

• Powell, J.L. (1984). "Least Absolute Deviation Estimation for the Censored Regression Model," *Journal of Econometrics*, 25, 303-325.