Unbiased Instrumental Variables (IV) in Stata

Austin Nichols
2019 London Stata Conference

https://www.stata.com/meeting/uk19/
Magic Bullets

- Instrumental Variables (IV) methods are the only way to estimate causal effects in a variety of settings, including experiments (randomized control trials or RCTs) with imperfect compliance

- IV methods often exhibit poor performance
 - Bias & size distortion with many weak instruments
 - No finite moments when exactly identified

- Andrews and Armstrong (2017) offer a solution in Stata
Causal Diagram

• Conditioning on confounders does not in general solve the problem of endogenous participation in a treatment of interest.

• The receipt of a treatment (R=1) whose effect β we want to measure may be randomly assigned (Z=1), but we still need IV to estimate impact.
Sign restriction allows unbiased IV

- IV has one fewer moments than overid restrictions, so exactly identified IV has no moments
 - Hirano and Porter (2015) show that mean, median, and quantile unbiased estimation are all impossible in the linear IV model with an unrestricted parameter space for the first stage

- This result no longer holds when the sign of the first stage is known (e.g. no defiers, some compliers):
 - In models with a single instrumental variable, Andrews and Armstrong (2017) show that there is a unique unbiased estimator based on the reduced form and first-stage regression estimates
 - This estimator is substantially less dispersed than the usual 2SLS estimator in finite samples

- In an RCT, we are very confident the first stage is positive
Model and Estimator

\[Y = Z\pi \beta + u \] \(\leftarrow \) reduced form coef \(\xi_1 = (Z'Z)^{-1}(Z'Y) \)

\[R = Z\pi + v \] \(\leftarrow \) first stage coef \(\xi_2 = (Z'Z)^{-1}(Z'R) \)

IV estimator constructs Wald ratio \(\xi_1 / \xi_2 \)

Assume \(u, v \) normal so \((\xi_1, \xi_2) \sim N(\mu, \Sigma) \) w/variance \(\Sigma = (\sigma_1^2, \sigma_{12} \ \sigma_{12}, \sigma_2^2) \)

Let \(d = (\xi_1 - \xi_2 \sigma_{12}/\sigma_2^2). \) \(\text{E}[d] = \pi\beta - \pi\sigma_{12}/\sigma_2^2 \)

Voinov and Nikulin (1993) show that unbiased estimation of \(1/\pi \) is possible if its sign is known:

Let \(t = \Phi(-\xi_2/\sigma_2)/\phi(\xi_2/\sigma_2)\sigma_2 \) then \(\text{E}[t] = 1/\pi \) and \(\text{E}[dt] = \text{E}[d]\text{E}[t] = \beta - \sigma_{12}/\sigma_2^2 \)

Estimator \(b_U = dt + s_{12}/v_2 \)
Further considerations

• b_U is asymptotically equivalent to 2SLS when instruments are strong and thus b_U can be used together with conventional 2SLS standard errors

• Optimal *estimation* and optimal *testing* are distinct questions in the context of weak instruments
 – b_U is uniformly minimum risk unbiased for convex loss, but Moreira (2009) indicates that the Anderson–Rubin test is the *uniformly most powerful* unbiased two-sided test in the just-identified context (not a conditional t-test based on b_U)
 – more research needed on tests based on tests based on this unbiased IV estimator…
Small-Sample Properties

• Note this applies to bivariate normal errors with known variance, not the focal case of random assignment $Z=\{0,1\}$ and endogenous receipt of treatment $R=\{0,1\}$

 – Appendix B (Nonnormal errors and unknown reduced-form variance) “derives asymptotic results for the case with non-normal errors and an estimated reduced-form covariance matrix. Appendix B.1 shows asymptotic unbiasedness in the weak-instrument case. Appendix B.2 shows asymptotic equivalence with 2SLS in the strong-instrument case”

 – How does this approach perform in finite samples?
Stata command

- Estimator implemented as `aaniv` on SSC
- Download using `ssc install aaniv`
- So far, just one endogenous treatment and one excluded instrument (as of today), as is ideal for an RCT, but the command will be updated in future releases to a larger set of use cases
Small-Sample Properties

- Even with binary \(R \) and \(Z \), so non-normal errors by design, standard linear regression rejects the truth all the time, and unbiased IV outperforms standard IV/2SLS

 (this simulation has a high correlation between a normal variate that predicts \(R \) and the unobserved error that predicts the outcome \(Y \))
Distributions of Estimators by Sample Size and Correlation

Unbiased IV in Stata
Rejection rates about right for IV models, in large samples

Unbiased IV in Stata
Conclusion

• Unbiased IV performs as well as IV-2SLS in a setting that it is not explicitly designed for, with no bias and lower evident dispersion (but neither has a finite variance)
 – Report unbiased IV for an experiment, if only to enable meta-analysis; use `aaniv` in Stata (`ssc install aaniv`)

• Rejection rates for both Unbiased IV and IV 2SLS are approximately at the nominal rate when sample size is over a thousand
 – At smaller sample sizes, there is some under-rejection of a true null—using the deprecated t-tests, not the preferred AR test
Contact
Austin Nichols
Principal Scientist
austinnichols@gmail.com

Abt ASSOCIATES
BOLD THINKERS DRIVING REAL-WORLD IMPACT

abtassociates.com