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Setup

Double-indexed data (yij ,xij) of size n×m.

Two-way fixed-effect model for non-negative outcomes:

yij = exp(αi + βj + x>ijγ) εij , E(εij |x11, . . . ,xnm) = 1.

Object of interest is slope vector γ.

Examples:

# patent applications (or alike) with firm heterogeneity and aggregate time
effects (common technological progress).

Trade volume with both importer and exporter heterogeneity (and other
constant-elasticity models).

Focus on data sets where n,m are both ‘large’ — incidental parameters in
both directions.

This covers large panels as well as cross-sections on bi-lateral interactions.



Differencing-out the nuisance parameters

Note that
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Thus, when errors are uncorrelated,
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Consequently,
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for all i, i′ and j, j′.

This implies unconditional moments that can be used in a GMM framework.

See [Charbonneau, 2013] and [Jochmans, 2017].

This differencing approach is the two-way generalization of
[Chamberlain, 1992].

In the one-way case, this nests ‘pseudo-poisson’ but in the two-way case, it
does not.



Implications

Inference on γ can be separated from estimation of the incidental parameters.

Moment conditions are exactly unbiased and fixed in number.

This is not so for pseudo-poisson:

High-dimensional problem; [Guimarães, 2016], [Correia et al., 2019].

Estimated fixed effects introduce bias in standard errors; [Jochmans, 2017],
[Pfaffermayer, 2019].

If the panel were short clustering could be used to obtain (conservative)
standard errors. No such theory here.

Bootstrap/jackknife standard errors equally unavailable.



GMM1 and GMM2

Our first estimator, GMM1, solves
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Do not compute this by brute force but exploit the representation
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where bars indicate sample averages.

This is immediate in Mata.

Similar ‘tricks’ can be used for calculating the covariance matrix.

Details on covariance matrix are in [Jochmans, 2017].



Our second estimator, GMM2, solves
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for
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(with some abuse of notation).

Computational burden is again non-existent.

Behaves similar to pseudo-poisson but with more accurate standard errors.



twexp

The command twexp is designed for (balanced) n×m panel data sets.

twexp depvar [indepvars] , indn(varname) indm(varname) model(option)
init(vec)

indn(varname) declares the cross-sectional dimension of the panel.

indm(varname) declares the time-series dimension of the panel.

model(option) determines whether GMM1 or GMM2 is implemented.

init(vec) specifies the starting value for the numerical optimization.

ssc install twexp



twgravity

The command twgravity is designed for a cross-sectional data on dyadic
interactions between n agents.

Agents do not interact with themselves, so yii and xii are not defined.

The syntax is the same as for twexp.

twgravity depvar [indepvars] , indn(varname) indm(varname) model(option)
init(vec)

indn(varname) identifies the first agent in the dyad.

indm(varname) identifies the second agent in the dyad.

model(option) determines whether GMM1 or GMM2 is implemented.

init(vec) specifies the starting value for the numerical optimization.

ssc install twgravity



Trade illustration

Country-level trade data from

http://personal.lse.ac.uk/tenreyro/lgw.html

[Santos Silva and Tenreyro, 2006].

Descriptive statistics:



twgravity trade ldist border comlang colony comfrt wto, indn(s2 ex)
indm(s1 im) model(GMM1)

Completes in .81 seconds on my laptop.

Poisson takes 16 seconds, 3.87 seconds, or 1.65 seconds, depending on the
routine used.



twgravity trade ldist border comlang colony comfrt wto, indn(s2 ex)
indm(s1 im) model(GMM2)

Completes in 1.85 seconds on my laptop.



Patents and R&D illustration

Panel data on 346 firms from 1970–1979, taken from

http://cameron.econ.ucdavis.edu/mmabook/mmaprograms.html,

[Hall et al., 1986].

Descriptive statistics:

Include fixed effects to control for firm heterogeneity and time effects for
common technological progress and other macro shocks.



twexp PAT LOGR, indn(id) indm(year) model(GMM1)

matrix start = e(b)

twexp PAT LOGR, indn(id) indm(year) model(GMM2) init(start)



Monte Carlo

No fixed effects,

Two binary regressors with unit coefficients,

Success probabilities are .05 and .50, respectively,

Independent log-normal errors,

Sample size is n = 25.

Ratio of average standard error to Monte Carlo standard deviation:

GMM1: .8654 and 1.0145,

GMM2: .8457 and 1.0319,

PMLE: .6761 and 0.9125.





Extensions: Overidentification

For now the code deals with the ‘just-identified’ setting, where the number
of moments is equal to the number of parameters.

Overidentification is easily dealt with but not (yet) implemented.

This is useful for:

Approximating ‘optimal’ unconditional moments,

Instrumental-variable problems.



Extensions: Instrumental variable model

The approach extends straightforwardly to

yij = exp(αi + βj + x>ijγ) εij , E(εij |z11, . . . ,znm) = 1,

where zij are instrumental variables.

In the same way as before we get
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for all i, i′ and j, j′.

An example in the trade context would be the potential endogeneity of trade
agreements; [Egger et al., 2011].
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