New functions for Random samples generation using Stata 15

G. Aguilera-Venegas, J.L. Galán-García, M.Á. Galán-García, Y. Padilla-Domínguez, P. Rodríguez-Cielos

University of Málaga, Spain

The 25th UK Stata Conference

5 & 6 September 2019. London

Contents

Generating random samples from Statistical Distributions

- Authors' Background
- Random sample generation using Stata

Pros and cons of current functions and commands

3 Our approach

- Our commands
- Comparisons
- Examples

Conclusions

Generating random samples from Statistical Distributions

Pros and cons of current functions and commands Our approach Conclusions Authors' Background Random sample generation using Stata

Authors' Background

- Random samples generators using CAS (Computer Algebra Systems)
 - Derive
 - Maxima
- Random samples generators using Stata 13
- A very important application of generating random samples: Simulations
 - Accelerated Time Simulations (ATS)
 - Traffic control (GRAM, ATISMART, ATISMART+)
 - Baggage handling (ATISBAT)
 - In progress: ATS in biological and medical applications
 - Probabilistic Cellular Automata (PCAEGOL)

Generating random samples from Statistical Distributions

Pros and cons of current functions and commands Our approach Conclusions Authors' Background Random sample generation using Stata

Random sample generation using Stata

- Build-in Stata 16 functions
 - rbeta, rbinomial, rcauchy, rchi2, rexponential, rgamma, rhipergeometric, rigaussian, laplace, rlogistic, rnbinomial, rnormal, rpoisson, rt, runiform, runiformint, rweibull, and rweibullph
- Users' contributions
 - rndwei, rndexp, rndivg, rndlog, rndlgn, rndf, rndchi, rndt, rndnbx, rndbb, rndpoi, ...
 - rsample

Pros and cons of current functions and commands

- Pros
 - Stata functions are fast
 - rsample works for generic distributions
 - rsample optionally plots the generated sample
- Cons
 - Stata functions only for specific distributions
 - Stata functions do not plot the generated sample
 - rsample very slow when the size is high
 - rsample needs the user to introduce suitable limits
 - The size in rsample cannot be easily changed

Our commands Comparisons Examples

Our commands

- Include new distributions not considered in Stata functions
- Are fast even for high sizes
- Work with suitable limits automatically computed
- Can easily change the size of the sample
- Optionally plot the generated sample
- Optionally compute the Median Squared Error
- Display time spent in the generation
- scauchy, sexponential, slognormal, snormal, spareto, sweibull, sbinomial, suniformint

Our commands Comparisons Examples

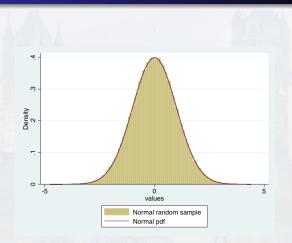
New characteristics of Our commands

- Other continuos and discrete distributions in progress
- A general function to deal with all considered distribution is also in progress
- Optionally chose among our algorithm, Stata function or rsample
- Therefore, the previous advantages are now available for Stata functions and rsample:
 - Plot the generated sample
 - Suitable limits automatically computed
 - Easily change the size of the sample
 - Compute the Median Squared Error
 - Display time spent in the generation

Our command Comparisons Examples

Comparisons

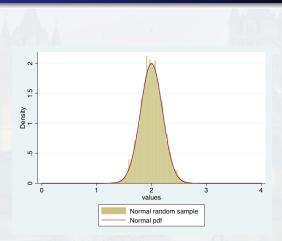
Distribution	Command	Time	Error	Plot
Normal(0,1)	rnormal	1.150e-07	1.030e-06	No
	snormal	1.360e-07	9.772e-07	Yes
	rsample	.00044102	.00001524	Yes
Pareto(8,1)	rpareto	Not available in Stata functions		
	spareto	1.090e-07	9.739e-07	Yes
	rsample	.00044182	.00029966	Yes


Comparisor Examples

Conclusions

Examples

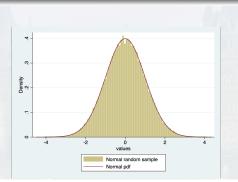
snormal 10000000snormal 100000, pl(1)


Compariso Conclusions

Compariso Examples

- snormal 1000000
- snormal 100000, pl(1)
- snormal 100000, mse(1)
- snormal 10000, m(2) s(0.2) le(0) ri(4) mse(1) pl(1) nr(10)

Our command Comparisons Examples


Our command Comparisons Examples

- snormal 10000000
- snormal 100000, pl(1)
- snormal 100000, mse(1)
- snormal 10000, m(2) s(0.2) le(0) ri(4) mse(1) pl(1) nr(10)
- snormal 100000, me(2) mse(1) pl(1)

Comparise Examples

Conclusions

Examples

. snormal 100000, me(2) mse(1) pl(1)
number of observations (_N) was 0, now 100,000
The mean of the mean squared errors is 1.153e-07 and it is stored in r(mmse)
The generated sample is stored in variable sample.
Total time: 4.671 and it is stored in r(time)
Mean time for getting a value of the sample: .00004671 and it is stored in r(mtime)

Conclusions

- New commands for random numbers generation from distributions not available in Stata
- Same time order in computation as build-in stata functions
- Deal with our algorithm, the stata functions or rsample (optionally)
- Computation of media squared error (optionally)
- Display mean time spend (optionally specifying the number of iterations)
- Plot the generated random sample (optionally)
- Computation of suitable limits automatically (user can change them)
- Great improvement in the time, error and default bounds regarding rsample

New functions for Random samples generation using Stata 15

G. Aguilera-Venegas, J.L. Galán-García, M.Á. Galán-García, Y. Padilla-Domínguez, P. Rodríguez-Cielos

University of Málaga, Spain

The 25th UK Stata Conference

5 & 6 September 2019. London