DISCRETIZE: Command to Convert a Continuous Instrument into a Dummy Variable for Instrumental Variable Estimation

Federico Curci, Sébastien Fontenay & Federico Masera

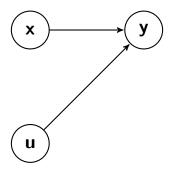
Stata Users Group Meeting, London - Sept. 5-6, 2019

Table of Contents

1 Motivations

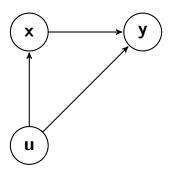
2 discretize command

3 Illustration

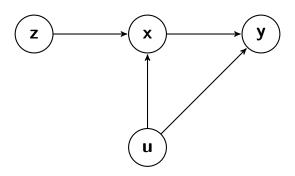

Table of Contents

1 Motivations

2 discretize command


3 Illustration

Simple regression model assumes \boldsymbol{X} is uncorrelated with the errors \boldsymbol{U}



If there is an association between X and U: endogeneity bias

→ omitted variable, measurement error or simultaneity

Instrumental Variable (IV): instrument Z excluded from outcome equation (second stage), but determinant of endogenous X (first stage)

 \Rightarrow Researchers often have no a priori knowledge or theoretical understanding regarding the relation between Z and X

 \Rightarrow Researchers often have no *a priori* knowledge or theoretical understanding regarding the relation between Z and X

First Solution: Estimate (complex) non-linear model between Z and X

- Advantages:
 - Strong first stage
 - Data-driven procedure
- Risks:
 - ▶ Overfitting → including variation of U that we wanted to eliminate

 \Rightarrow Researchers often have no a priori knowledge or theoretical understanding regarding the relation between Z and X

Second Solution: Estimate linear model between Z and X

- Advantages:
 - No overfitting
- Risks:
 - If relationship is non-linear, often leads to a weak instrument problem

 \Rightarrow Researchers often have no a priori knowledge or theoretical understanding regarding the relation between Z and X

Third Solution: Convert continuous Z into binary instrument

- Advantages:
 - Parsimonious non-parametric model (Angrist & Pischke, 2009)
 - Easy interpretation of the variation used
- Risks:
 - ► Choice of boundaries for binary instrument often arbitrary
 - Sensitivity of second stage results

Table of Contents

1 Motivations

2 discretize command

3 Illustration

discretize command

The discretize command offers a data-driven procedure to build discrete instruments \rightarrow boundaries chosen to maximize F-statistic in first stage

Main advantages:

- Parsimonious model for first stage relation No overfitting
- By construction, minimizes weak instrument problem
- 3 Transparent procedure that does not depend on arbitrary decisions made by the researcher
- 4 Graphs to check robustness of second stage results

First stage estimation

```
discretize contvarname, endogenous(varname)
  range(min/max) interval(min(step)max)
```

contvarname = continuous instrument to be discretized (integer because
loops do not handle well decimals)
endogenous(varname) = endogenous variable
range(min/max) = minimum/maximum values of range
interval(min(step)max) = minimum/maximum width of interval

Second stage estimation

```
discretize contvarname, endogenous(varname)
  range(min/max) interval(min(step)max)
  second depvar(varname)
```

One needs to specify also second and the name of the dependent variable with depvar(varname)

Estimation performed using the command ivregress with the two-stage least squares (2sls) estimator

Available options

exogenous (varlist)	exogenous variable(s) used in first and second stage			
<pre>interact(varname)</pre>	interaction with discretized instrument			
xt(estimator)	panel-data estimators available with the commands xtreg and xtivreg			
vce(vcetype)	for robust or cluster standard errors			
print	displays values contained in matrix 'results'			
save	saves file with variables stored in matrix 'results' $+$ 95% CI			
graph(string)	graph coefficient estimates (coef) or F-statistics (ftstat)			

Table of Contents

1 Motivations

2 discretize command

3 Illustration

Example from Curci & Masera (2018): Rise of violent crime in city centers and suburbanization

Instrument used: lead poisoning

- Heavy metal that generates violent behavior
- People exposed principally through car emissions
- Most commonly because lead mixed with soil dust
- Lead is less dangerous when mixed with neutral pH soil
- \Rightarrow Chemical theory predicts that cities with neutral soil (around 6.5-7.5 pH) should have lower increase in violent crime

After first stage estimation, the matrix 'results' stores: Instruments' boundaries, F-statistic, parameter estimate of discrete instrument and standard error

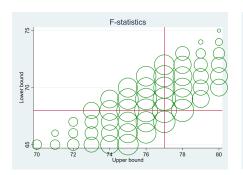
. discretize ph10, range(65/80) interval(5(1)10) endogenous(totnpcc_cc_offenses_vc)
> exogenous(i.year) interact(tetra_corr) xt(fe) graph(fstat) print
results[51.5]

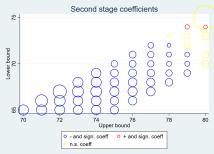
		lb	ub	fstat	beta	se
	r1	68	77	262.16462	00527984	.00032609
	r2	68	76	234.77293	00515082	.00033617
	r3	69	77	227.45227	00527996	.00035009
	r4	68	78	223.39974	00461751	.00030893
	r5	68	75	222.05374	00523717	.00035145
	r6	67	77	207.42131	00451308	.00031336
	r7	69	76	201.19534	0051533	.00036331
	r8	70	77	199.14216	00526872	.00037336
	r9	71	77	199.14216	00526872	.00037336
	r10	65	75	191.22497	00381797	.0002761
	r11	69	75	189.88088	00529106	.00038397
	r12	69	78	188.03554	00449492	.00032779
	r13	67	76	182.06497	00434235	.00032182
	r14	66	76	176.64343	00396422	.00029827
	r15	72	77	175.57532	00550638	.00041556
	r16	71	76	173.76344	00514243	.00039011
	r17	70	76	173.76344	00514243	.00039011
	r18	68	74	173.53996	00487553	.0003701
	r19	67	75	168.13245	00433725	.00033449
	r20	70	75	163.5051	00533389	.00041714

We can use the new discrete instrument with boundaries 6.8 and 7.7 that has been found to maximize the F-stat in the first stage

```
. gen good_soil = (ph1_plc_wtm_wtm_0_r>=6.8 & ph1_plc_wtm_wtm_0_r<=7.7)
. xtivreg perc_cc i.year (standardized_vc = c.good_soil#c.tetra_corr), fe
Fixed-effects (within) IV regression
                                                 Number of obs
                                                                           9,481
Group variable: fipsplace 00
                                                 Number of groups =
                                                                             305
                                                 Obs per group:
R-sq:
                                                                min =
     within =
                                                                               8
     between = 0.0855
                                                                avg =
                                                                            31.1
     overall = 0.0795
                                                                              32
                                                                max =
                                                 Wald chi2(32)
                                                                       633103.54
corr(u i, Xb) = 0.0259
                                                 Prob > chi2
                                                                          0.000
        perc_cc
                        Coef.
                                Std. Err.
                                                    P>|z|
                                                               [95% Conf. Interval]
                                               Z.
standardized vc
                    - 0717297
                                  00594
                                           -12 08
                                                    0.000
                                                              - 0833718
                                                                          - 0600876
           vear
                     .0017654
                                .0040017
                                             0.44
                                                    0.659
                                                              -.0060779
          1961
                                                                           .0096087
          1991
                     0768294
                                .0113749
                                             6.75
                                                    0.000
                                                               0545349
                                                                           .0991238
                     .4348947
                                .0031643
                                           137.44
                                                    0.000
                                                               .4286929
                                                                           .4410965
          _cons
        sigma_u
                    .18215015
                    .04846004
        sigma e
                                (fraction of variance due to u i)
            rho
                    93389896
F test that all u i=0:
                            F(304.9144) =
                                            435.91
                                                            Prob > F
                                                                        = 0.0000
```

Instrumented:


standardized_vc


After second stage estimation, the matrix 'results' stores: Instruments' boundaries, parameter estimate of endogenous variable and standard error

. discretize ph10, range(65/80) interval(5(1)10) endogenous(standardized_vc) second > depvar(perc_cc) exogenous(i.year) interact(tetra_corr) xt(fe) graph(coef) print results[51 4]

results[51,4]								
	1b	ub	beta	se				
r1	70	77	04097976	.00580547				
r2	71	77	04097976	.00580547				
r3	69	77	05647729	.00583521				
r4	68	77	07172966	.00593996	_			
r5	68	78	05994759	.00599139				
r6	69	78	042527	.00599988				
r7	72	77	03381604	.00603609				
r8	71	78	02463927	.00619798				
r9	70	78	02463927	.00619798				
r10	71	76	04882763	.00641164				
r11	70	76	04882763	.00641164				
r12	70	75	04405828	.00647297				
r13	69	76	06484251	.00648862				
r14	69	75	06214748	.00657464				
r15	68	76	08023395	.00660769				
r16	68	75	07907977	.00674165				
r17	72	78	01415127	.00674563				
r18	65	75	07021066	.00684718				
r19	71	80	01309482	.00686332				
r20	70	80	01309482	.00686332				

Graphics allow users to check the sensitivity of the results to the choice of instruments

Package available from: https://sites.google.com/view/sebastien-fontenay/stata

Comments and suggestions are very much welcomed! sebastien.fontenay@uclouvain.be