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Overview

1. Introduction to survival analysis & competing risks

2. Fundamental relationships
3. Modelling on the cause-speciĆc hazards scale

• Cause-speciĆc Cox PHmodel

• Flexible parametric models (log-cumulative cause-speciĆc

hazards)

4. Modelling directly on the cause-speciĆc cumulative incidence

• Fine &Graymodel

• Flexible parametric models (log-cumulative subdistribution

hazards)

5. Which scale is most appropriate?

6. Summary
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Survival analysis: the fundamentals
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Key components of a survival analysis

The study of time to a particular event of interest:

• Engineering e.g. time to failure of a component

• Economics e.g. duration of unemployment

• Medical e.g. time to death (survival time) of a cancer patient

Censoring:

• Right censoring: survival time > follow-up time
• Emmigration

• Administrative (most common)

• Non-informative censoring: Loss to follow-up is not

associated with factors related to the study

• Independent and identically distributed (i.i.d) censoring:

independence between survival time and censoring time

(untestable)
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Some important notation

LetT be a non-negative random variable that denotes observed

survival time:

(All-cause) Survival function

S(t) = P(T ≥ t)

(All-cause) Cumulative incidence function (CIF)

F(t) = P(T < t)
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Some important notation

LetT be a non-negative random variable that denotes observed

survival time:

(All-cause) Survival function

S(t) = P(T ≥ t) = 1 − F(t)

(All-cause) Cumulative incidence function (CIF)

F(t) = P(T < t)
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A typical survival analysis: two-state model

Alive

Death

(from any

cause)

h(t)

(All-cause) Hazard rate, h(t)
Instantaneous mortality (failure) rate from any cause, given that

the individual is still alive up to time t

(All-cause) Survival function, S(t)

S(t) = exp

(
−
∫ t

0
h(u)du

)
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Example dataset

Load public-use prostate cancer dataset:

. use "http://www.stata-journal.com/software/sj4-2/st0059/prostatecancer", clear

. tab status

status Freq. Percent Cum.

Censor 150 29.64 29.64
Cancer 155 30.63 60.28

CVD 141 27.87 88.14
Other 60 11.86 100.00

Total 506 100.00
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The Kaplan-Meier estimator
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. stset time, f(status==1,2,3) id(id) exit(time 60) scale(12)

. sts graph if agegrp == 1 & treatment == 1, ...
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What are competing risks?
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Competing risks

Competing risks = when a patient dies from other causes that

exclude the disease under study.

Non-informative censoring: Loss to follow-up is not associated

with factors related to the study

• Not valid under competing risks

• Death from ``competing'' causes may be due to adverse

effects of treatment for disease

Due to informative censoring - specialised competing risks

methods are required to avoid biased estimation.
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No competing risks

Alive

Death

(from any

cause)

Death

from cause

k = 2

h(t)

hcs
2 (t)

Cause-specific hazard (CSH) rate, hcs
k (t)

Instantaneous mortality (failure) rate from cause k, given that the
individual is still alive up to time t
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With competing risks

Alive

Death

from cause

k = 1

Death

from cause

k = 2

hcs
1 (t)

hcs
2 (t)

Cause-specific hazard (CSH) rate, hcs
k (t)

Instantaneous mortality (failure) rate from cause k, given that the
individual is still alive up to time t

8/47



With competing risks

Alive

Death
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k = 1

Death

from cause
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hcs
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k (t)

hcs
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The cause-specific CIF (transition probability)

Estimating the cause-speciĆc CIF is of interest:

• Awkward interpretation on survival scale - what does it mean?

• The cause-speciĆc survival function does not account for

those who die from other competing causes before time t
• Those who die from competing causes are removed from

risk-set

• Better interpretation onmortality scale

Cause-specific CIF, Fk(t)
Probability a patient will die from causeD = k by time twhilst
also being at risk of dying from other competing causes of death
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CSH relationship with cause-specific CIF

Cause-specific CIF, Fk(t)
Probability a patient will die from causeD = k by time twhilst
also being at risk of dying from other competing causes of death

S(t) =
K∏

k=1
Scs

k (t) = exp

(
−

K∑
k=1

∫ t

0
hcs

k (u)du
)

Note

Scs
k (t) = exp

(
−
∫ t

0
hcs

k (u)du
)

̸= 1 − Fk(t)
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Obtaining Aalen-Johansen (AJ) estimates of the cause-
specific CIF

Non-parametric estimates of cause-speciĆc CIFs obtained using

stcompet:

. stset time, f(status==1) id(id) exit(time 60) scale(12)

. stcompet CIF1 = ci if agegrp == 0 & treatment == 1, compet1(2) compet2(3)

. stcompet CIF2 = ci if agegrp == 1 & treatment == 1, compet1(2) compet2(3)
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Comparing AJ with 1 - KM estimates of the cancer-specific
CIF
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. stset time, f(status==1) id(id) exit(time 60) scale(12)

. sts graph if agegrp == 0 & treatment == 1, failure ///
> addplot(line CIF1 _t if status == 1, sort connect(stepstair)) ... 12/47
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Approaches for modelling (all) CSHs in
Stata
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Standard approach: cause-specific Cox model

A common approach for modelling CSH function is by assuming

proportional hazards (PH) using the Coxmodel.

Cause-specific Cox PH model

hcs
k (t | xk) = h0k exp (βββ

cs
k xk)

βββcs
k : row vector of coefĆcients/log-CSH ratio for cause k

xk: column vector of covariates for cause k
h0k: the baseline CSH function

CHR = association on the effect of a covariate on rate of dying

from cause k
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stcox

. stset time, failure(status == 1) id(id) scale(12) exit(time 60)

. stcox treatment, nolog noshow

Cox regression -- Breslow method for ties

No. of subjects = 506 Number of obs = 506
No. of failures = 145
Time at risk = 1457.966667

LR chi2(1) = 6.14
Log likelihood = -834.85419 Prob > chi2 = 0.0132

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment .6602897 .1116672 -2.45 0.014 .4740025 .9197894

. predict h0_cancer, basehc

. gsort _t -_d

. by _t: replace h0_cancer = . if _n > 1

. gen h_cancer_trt0 = h0_cancer

. gen h_cancer_trt1 = h0_cancer*exp(_b[treatment])
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stcox

. stset time, failure(status == 2) id(id) scale(12) exit(time 60)

. stcox treatment, nolog noshow

Cox regression -- Breslow method for ties

No. of subjects = 506 Number of obs = 506
No. of failures = 140
Time at risk = 1457.966667

LR chi2(1) = 1.19
Log likelihood = -806.46297 Prob > chi2 = 0.2755

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.20334 .2048509 1.09 0.277 .8619538 1.679937

. predict h0_cvd, basehc

. gsort _t -_d

. by _t: replace h0_cvd = . if _n > 1

. gen h_cvd_trt0 = h0_cvd

. gen h_cvd_trt1 = h0_cvd*exp(_b[treatment])
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stcox

. stset time, failure(status == 3) id(id) scale(12) exit(time 60)

. stcox treatment, nolog noshow

Cox regression -- Breslow method for ties

No. of subjects = 506 Number of obs = 506
No. of failures = 57
Time at risk = 1457.966667

LR chi2(1) = 2.67
Log likelihood = -324.95951 Prob > chi2 = 0.1023

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment .6460519 .1745103 -1.62 0.106 .3804893 1.096964

. predict h0_other, basehc

. gsort _t -_d

. by _t: replace h0_other = . if _n > 1

. gen h_other_trt0 = h0_other

. gen h_other_trt1 = h0_other*exp(_b[treatment])
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stcox

. drop if missing(h0_cancer) & missing(h0_other) & missing(h0_cvd)

. foreach i in cancer other cvd {
2. replace h0_ ì ́ = 0 if missing(h0_ ì ́)
3. replace h_ ì _́trt0 = 0 if missing(h_ ̀i _́trt0)
4. replace h_ ì _́trt1 = 0 if missing(h_ ̀i _́trt1)
5. }

. sort _t

. gen S_1 = exp(sum(log(1- h_cancer_trt0 - h_other_trt0 - h_other_trt0)))

. gen S_2 = exp(sum(log(1- h_cancer_trt1 - h_other_trt1 - h_other_trt1)))

. foreach i in cancer other cvd {
2. gen cif_trt0_ ì ́ = sum(S_1[_n-1]*h_ ̀i _́trt0)
3. gen cif_trt1_ ì ́ = sum(S_2[_n-1]*h_ ̀i _́trt1)
4. }

. foreach i in trt0 trt1 {
2. gen totcif2_ ì ́ = cif_ ì _́cancer + cif_ ì _́cvd
3. gen totcif3_ ì ́ = totcif2_ ì ́ + cif_ ì ́_other
4. }
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stcox
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stcox

. tw (rarea totcif3_trt1 totcif2_trt1 _t, sort connect(stepstair) ...) ///
> (rarea cif_trt1_cancer totcif2_trt1 _t, ...) ///
> (rarea zeros cif_trt1_cancer _t, ...), ...
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Remarks on Cox PH models for competing risks data

• Baseline hazard function is undeĆned - no risk in

misspeciĆcation of underlying baseline distribution

• However, leads to difĆculties in obtaining predictions to
facilitate interpretation of model parameters:

• Conditional and absolute measures

• Cause-speciĆc CIF in presence of competing risks

• To obtain suchmeasures baseline hazard can be estimated

non-parametrically as described by Breslow (1972)

• For a smooth function, further smoothing techniques must be

applied

• Computationally intensive methods such as bootstrapping is

required for SEs/CIs
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Flexible parametric survival models (FPMs) [Royston and
Parmar, 2002]

• Models andmore accurately captures complex shapes of the

(log-cumulative) baseline hazard function

• A generalisation of theWeibull distribution is used with

restricted cubic splines (RCS) that allows for more ćexibility

• Can also easily include time-dependent effects (TDE)

Cause-specific log-cumulative PH FPM

ln (Hcs
k (t | xk)) = sk(ln t;γγγk,m0k) + βββcs

k xk

+
E∑

l=1
sk(ln t;αααlk,mlk)xlk

sk(ln t;γγγk,m0k): baseline restricted cubic spline function on

log-time
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Flexible parametric survival models (FPMs) [Royston and
Parmar, 2002]

• Models andmore accurately captures complex shapes of the

(log-cumulative) baseline hazard function

• A generalisation of theWeibull distribution is used with

restricted cubic splines (RCS) that allows for more ćexibility

• Can also easily include time-dependent effects (TDE)

Cause-specific log-cumulative non-PH FPM

ln (Hcs
k (t | xk)) = sk(ln t;γγγk,m0k) + βββcs

k xk +
E∑

l=1
sk(ln t;αααlk,mlk)xlk

sk(ln t;αααlk,mlk)xlk: interaction between spline variables and

covariates for TDEs 16/47



stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 1) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -440.316 Number of obs = 506

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment .6594084 .111509 -2.46 0.014 .4733827 .9185368

_rcs1 3.389716 .4258797 9.72 0.000 2.649838 4.336179
_rcs2 .8879662 .0724157 -1.46 0.145 .7567963 1.041871
_rcs3 1.06315 .0411503 1.58 0.114 .9854806 1.146942
_rcs4 1.016818 .0199075 0.85 0.394 .9785387 1.056594
_cons .229559 .0272468 -12.40 0.000 .1819129 .2896844

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

Cox regression -- Breslow method for ties

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment .6602897 .1116672 -2.45 0.014 .4740025 .9197894

17/47



stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 2) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -448.73758 Number of obs = 506

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment 1.202808 .2047249 1.08 0.278 .8616223 1.679097

_rcs1 2.82908 .2642265 11.13 0.000 2.355841 3.397384
_rcs2 .8685486 .0544436 -2.25 0.025 .7681357 .9820878
_rcs3 .9529595 .0319403 -1.44 0.151 .8923696 1.017663
_rcs4 1.027927 .0213538 1.33 0.185 .986915 1.070644
_cons .17767 .0237024 -12.95 0.000 .1367912 .2307651

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.20334 .2048509 1.09 0.277 .8619538 1.679937
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stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 3) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -231.45608 Number of obs = 506

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment .6432149 .1737196 -1.63 0.102 .3788467 1.092066

_rcs1 2.638735 .3351586 7.64 0.000 2.057219 3.384628
_rcs2 .7913665 .0590788 -3.13 0.002 .683647 .9160589
_rcs3 .9369818 .0467358 -1.30 0.192 .8497164 1.033209
_rcs4 1.029843 .031817 0.95 0.341 .9693337 1.09413
_cons .097687 .0179093 -12.69 0.000 .0681998 .1399235

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

treatment .6460519 .1745103 -1.62 0.106 .3804893 1.096964
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stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 3) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) tvc(treatment) dftvc(2) eform nolog

Log likelihood = -230.90611 Number of obs = 506

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment .711078 .2158501 -1.12 0.261 .3922222 1.289147

_rcs1 2.805675 .4977957 5.81 0.000 1.981588 3.972477
_rcs2 .7487466 .0683538 -3.17 0.002 .6260772 .895451
_rcs3 .9426525 .0484762 -1.15 0.251 .8522722 1.042617
_rcs4 1.032005 .0318598 1.02 0.308 .9714123 1.096377

_rcs_treatment1 .9101003 .2468771 -0.35 0.728 .5347974 1.548778
_rcs_treatment2 1.161785 .1848084 0.94 0.346 .8505949 1.586824

_cons .0931347 .0183948 -12.02 0.000 .0632401 .1371608

Note: Estimates are transformed only in the first equation.
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Estimating cause-specific CIFs after fitting FPMs

Cause-specific CIF, Fk(t)

Fk(t) =
∫ t

0
exp

(
−

K∑
k=1

∫ t

0
hcs

k (u)du
)

hcs
k (u)du

Must be obtained by numerical approximation:

• Trapezoid method - stpm2cif [Hinchliffe and Lambert, 2013]

• Gauss-Legendre quadrature - stpm2cr [Mozumder et al.,

2017]
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stpm2cif: Data setup

. local knotstvc_opt

. local bknotstvc_opt

. local k = 1

. foreach cause in _cancer _cvd _other {
2. stset time, failure(status ==  ̀k )́ exit(time 60) scale(12)
3. cap stpm2 treatment, df(4) scale(h) eform nolog
4. estimates store stpm2 c̀ause ́
5. local bhknots c̀ause ́  ̀e(bhknots) ́
6. local boundknots ̀cause ́  ̀e(boundary_knots) ́
7. local knotstvc_opt  k̀notstvc_opt ́  ̀cause ́  ̀bhknots c̀ause ́ ́
8. local bknotstvc_opt  b̀knotstvc_opt ́  ̀cause ́  ̀boundknots ̀cause ́ ́
9. local k =  k̀ ́ + 1
10. }
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stpm2cif: Data setup

. expand 3 // augment data k = 3 times

. bysort id: gen _cause=_n

. //create dummy variables for each cause of death

. gen _cvd=_cause==2

. gen _other=_cause==3

. gen _cancer=_cause==1

. //create cause of death event indicator variable

. gen _event=(_cause==status)

. label values _cause status

. foreach cause in _cancer _cvd _other {
2. gen treatment c̀ause ́ = treatment* c̀ause ́
3. }
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stpm2cif: Data setup

. list id status time treatment _cause _event in 1/9, sep(9)

id status time treatm~t _cause _event

1. 1 Censor 72 0 1 0
2. 1 Censor 72 0 2 0
3. 1 Censor 72 0 3 0
4. 2 Cancer 1 0 1 1
5. 2 Cancer 1 0 2 0
6. 2 Cancer 1 0 3 0
7. 3 CVD 40 1 1 0
8. 3 CVD 40 1 2 1
9. 3 CVD 40 1 3 0
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stpm2cif: Fitting the model

. stset time, failure(_event == 1) exit(time 60) scale(12)

. stpm2 treatment_cancer _cancer treatment_cvd _cvd treatment_other _other ///
> , scale(h) knotstvc( ̀knotstvc_opt ́) bknotstvc( b̀knotstvc_opt )́ ///
> tvc(_cancer _cvd _other) rcsbaseoff nocons eform nolog

Log likelihood = -1120.5192 Number of obs = 1,518

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment_cancer .6593781 .111504 -2.46 0.014 .4733607 .9184951

_cancer .2295677 .0272475 -12.40 0.000 .1819204 .2896945
treatment_cvd 1.202808 .2047249 1.08 0.278 .8616223 1.679097

_cvd .17767 .0237024 -12.95 0.000 .1367912 .2307651
treatment_other .6432149 .1737196 -1.63 0.102 .3788467 1.092066

_other .097687 .0179093 -12.69 0.000 .0681998 .1399235
(output omitted )

Note: Estimates are transformed only in the first equation.
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stpm2cif: Post-estimation

. stpm2cif cancer cvd other, cause1(treatment_cancer 1 _cancer 1) ///
> cause2(treatment_cvd 1 _cvd 1) cause3(treatment_other 1 _other 1) ci

. gen _totcif2_trt1 = CIF_cancer + CIF_cvd

. gen _totcif3_trt1 = _totcif2_trt1 + CIF_other
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stpm2cif: Post-estimation
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. gen zeros = 0

. tw (rarea _totcif3_trt1 _totcif2_trt1 _newt, sort color(erose%80)) ///
> (rarea CIF_cancer _totcif2_trt1 _newt, sort color(emidblue%80)) ///
> (rarea zeros CIF_cancer _newt, sort color(eltgreen%80)), ...
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stpm2cr

. stset time, failure(status == 1,2,3) exit(time 60) scale(12)

. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)], ///
> events(status) cause(1 2 3) cens(0) eform model(csh)
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stpm2cr: Post-estimation
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. range newt 0 5 100

. predict cifgq_trt1, cif at(treatment 1) timevar(newt) ci
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Comparison with AJ estimates
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. stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
> events(status) cause(1 2 3) cens(0) eform model(csh)
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Comparison with AJ estimates
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. stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
> events(status) cause(1 2 3) cens(0) eform model(csh)
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Note on computational time

. expand 500 //now 253,000 observations

. replace time = time + runiform()*0.0001

. replace id = _n
variable id was int now long

Time (secs)

stpm2crmodel 52.60

stpm2 (stacked data) 76.59

stpm2cr predict (w/ CIs) 2.56

stpm2cif (w/ CIs) 11.10
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stpm2cr: Other predictions

• Restrictedmean lifetime (RML) [Royston and Parmar, 2013;

Andersen, 2013]

- double integration

• Absolute & relative CIFmeasures

• Subdistribution hazard [Beyersmann et al., 2009]

• Standardisation (to come)

- predict for and average over

every individual in study population
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Using the multistate package
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multistate [Crowther and Lambert, 2017]

• Writtenmainly byMichael (& Paul) for more complex

multi-state models e.g. illness-death models

• Competing risks is a special case of multi-state models

• Can use multistate package to obtain equivalent
non-parametric estimates and Ćt parametric models in

presence of competing risks

• Uses a simulation approach for calculating transition

probabilities i.e. cause-speciĆc CIFs
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msset

. tab status, gen(cause)

. rename cause2 _cancer

. rename cause3 _cvd

. rename cause4 _other

. msset, id(id) states(_cancer _cvd _other) times(time time time) cr

. li id treatment status time _from _to _trans _start _stop _status _flag in 1/9, sep(9) noobs

id treatm~t status time _from _to _trans _start _stop _status _flag

1 0 Censor 72.0024 1 2 1 0 72.002434 0 0
1 0 Censor 72.0024 1 3 2 0 72.002434 0 0
1 0 Censor 72.0024 1 4 3 0 72.002434 0 0
2 0 Cancer 1.00301 1 2 1 0 1.0030106 1 0
2 0 Cancer 1.00301 1 3 2 0 1.0030106 0 0
2 0 Cancer 1.00301 1 4 3 0 1.0030106 0 0
3 1 CVD 40.008 1 2 1 0 40.007992 0 0
3 1 CVD 40.008 1 3 2 0 40.007992 1 0
3 1 CVD 40.008 1 4 3 0 40.007992 0 0
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msaj

. stset _stop, failure(_status == 1) scale(12) exit(time 60)

. msaj if treatment == 1, cr //ci

. sort _t

. li id status _trans _d _t P_AJ_? if P_AJ_1 != . in 1/45, noobs

id status _trans _d _t P_AJ_1 P_AJ_2 P_AJ_3 P_AJ_4

202 Cancer 1 1 .00841895 .99604743 .00395257 0 0
105 CVD 2 1 .00854265 .99209486 .00395257 .00395257 0
151 Other 3 1 .00855531 .98814229 .00395257 .00395257 .00395257
382 CVD 2 1 .00866204 .98418972 .00395257 .00790514 .00395257
437 CVD 2 1 .00869011 .98023715 .00395257 .01185771 .00395257

120 Cancer 1 1 .00869888 .97628458 .00790514 .01185771 .00395257
502 Cancer 1 1 .00881231 .97233202 .01185771 .01185771 .00395257
464 CVD 2 1 .00886007 .96837945 .01185771 .01581028 .00395257
93 Other 3 1 .00898155 .96442688 .01185771 .01581028 .00790514
492 CVD 2 1 .00904977 .96047431 .01185771 .01976285 .00790514

. bysort P_AJ_2 (_t): gen first1 = _n==1

. bysort P_AJ_3 (_t): gen first2 = _n==1

. bysort P_AJ_4 (_t): gen first3 = _n==1
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msaj
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predictms

- without msset

. stpm2 treatment if _trans==1, df(4) scale(h) eform nolog

. estimates store m1

. stpm2 treatment if _trans==2, df(4) scale(h) eform nolog

. estimates store m2

. stpm2 treatment if _trans==3, df(4) scale(h) eform nolog

. estimates store m3

. range tempt 0 5 100

. predictms , cr timevar(tempt) models(m1 m2 m3) at1(treatment 1)
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predictms - without msset

. forvalues k = 1/3 {
2. stset time, failure(status ==  ̀k )́ id(id) scale(12) exit(time 60)
3. stpm2 treatment, df(4) scale(h) eform nolog
4. estimates store m k̀ ́
5. }

. range tempt 0 5 100

. predictms , cr timevar(tempt) models(m1 m2 m3) at1(treatment 1)
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predictms

- without msset
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Summary of FPM tools for estimating cause-specific CIFs
using CSHs

• Post-estimation command, stpm2cif
• Requires augmenting data before stpm2
• Fitting a single model means interpretation is difĆcult and

more room for errors

• Uses a basic numerical integrationmethod - slow for larger

datasets

• Using stpm2cr as a wrapper followed by predict
• Fits separate stpm2models for each cause of death without

data augmentation

• Uses quicker numerical integrationmethod

• Can obtain other useful predictions e.g. restrictedmean

lifetime/comparative predictions
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Summary of FPM tools for estimating cause-specific CIFs
using CSHs

• Via the predictms command provided as a part of the
multistate package

• Uses a simulation approach. Can alternatively use AJ

estimator to save on computational time

• Can also be used without requiring msset
• Extremely versatile - has some very useful features and

post-estimation options
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What about modelling covariate effects on
the risk of dying from a particular cause?
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Cause-specific hazards

Alive

Death

from cause

k = 1

Death

from cause

k = 2

hcs
1 (t)

hcs
2 (t)

Subdistribution hazard (SDH) rate, hsd
k (t)

The instantaneous rate of failure at time t from causeD = k
amongst those who have not died, or have died from any of the

other causes, whereD ̸= k
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Subdistribution hazards

Alive

or
Death from cause k = 2

Alive

or
Death from cause k = 1

Death

from cause

k = 1

Death

from cause

k = 2

hsd
1 (t)

hsd
2 (t)

Subdsitribution hazard (SDH) rate, hsd
k (t)

hsd
k (t) = lim

∆t→0

P(t < T ≤ t +∆t,D = k|T > t ∪ (T ≤ t ∩ D ̸= k)
∆t
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SDH relationship with cause-specific CIF

Cause-specific CIF, Fk(t)

Fk(t) = 1 − exp

[
−
∫ t

0
hsd

k (u)du
]

Note

1 − Fk(t) = P(D ̸= k) + Ssd
k (t)
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SDH relationship with cause-specific CIF
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Standard approach: Fine & Gray model

Derived in a similar way to cause-speciĆc Cox PHmodel as

described by Fine and Gray [1999].

SDH Regression Model (Fine & Gray Model)

hsd
k (t | xk) = h0k exp

(
βββsd

k xk
)

βββsd
k : row vector of coefĆcients/log-SDH ratio for cause k

xk: column vector of covariates for cause k
h0k: the baseline SDH function

SHR = association on the effect of a covariate on risk of dying from

cause k
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Time-dependent censoring weights

• Need to consider those who have already died from other

competing causes of death in risk-set

• Calculate missing censoring times for those that died from

other causes by applying time-dependent weights to partial

likelihood

• Inćuence of weights decreases over-time as the probability of

being censored increases

• Further details given by Lambert et al. [2017] and Geskus

[2011]
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stcrreg

. *Cancer

. stset time, failure(status == 1) exit(time 60) scale(12)

. stcrreg treatment, compete(status == 2, 3)

failure _d: status == 1
analysis time _t: time/12
exit on or before: time 60

Iteration 0: log pseudolikelihood = -875.12133
Iteration 1: log pseudolikelihood = -875.1123
Iteration 2: log pseudolikelihood = -875.1123

Competing-risks regression No. of obs = 506
No. of subjects = 506

Failure event : status == 1 No. failed = 145
Competing events: status == 2 3 No. competing = 197

No. censored = 164

Wald chi2(1) = 6.74
Log pseudolikelihood = -875.1123 Prob > chi2 = 0.0094

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

treatment .6454653 .1088223 -2.60 0.009 .463836 .8982171

. stcurve, cif at(treatment=1) outfile(cancer1, replace) range(0 5)
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stcrreg

. *CVD

. stset time, failure(status == 2) exit(time 60) scale(12)

. stcrreg treatment, compete(status == 1, 3)

failure _d: status == 2
analysis time _t: time/12
exit on or before: time 60

Iteration 0: log pseudolikelihood = -848.00112
Iteration 1: log pseudolikelihood = -847.83627
Iteration 2: log pseudolikelihood = -847.83627

Competing-risks regression No. of obs = 506
No. of subjects = 506

Failure event : status == 2 No. failed = 140
Competing events: status == 1 3 No. competing = 202

No. censored = 164

Wald chi2(1) = 2.79
Log pseudolikelihood = -847.83627 Prob > chi2 = 0.0949

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

treatment 1.326649 .2245377 1.67 0.095 .9521137 1.848517

. stcurve, cif at(treatment=1) outfile(cvd1, replace) range(0 5)
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stcrreg

. *Other causes

. stset time, failure(status == 3) exit(time 60) scale(12)

. stcrreg treatment, compete(status == 1, 2)

failure _d: status == 3
analysis time _t: time/12
exit on or before: time 60

Iteration 0: log pseudolikelihood = -349.42345
Iteration 1: log pseudolikelihood = -349.41144
Iteration 2: log pseudolikelihood = -349.41144

Competing-risks regression No. of obs = 506
No. of subjects = 506

Failure event : status == 3 No. failed = 57
Competing events: status == 1 2 No. competing = 285

No. censored = 164

Wald chi2(1) = 2.14
Log pseudolikelihood = -349.41144 Prob > chi2 = 0.1432

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

treatment .6736976 .1817566 -1.46 0.143 .3970267 1.143169

. stcurve, cif at(treatment=1) outfile(other1, replace) range(0 5)
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FPMs on (log-cumulative) SDH scale

Log-cumulative SDH FPM

ln
(

Hsd
k (t | xk)

)
= sk(ln t;γγγk,m0k) +βββsd

k xk

+
E∑

l=1
sk(ln t;αααlk,mlk)xlk

1. Apply time-dependent censoring weights to the likelihood
function for each cause k (stcrprep) [Lambert et al., 2017]

2. Model all k causes of death simultaneously directly using the
full likelihood function (stpm2cr) [Mozumder et al., 2017;

Jeong and Fine, 2007]
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FPMs on (log-cumulative) SDH scale

Log-cumulative non-proportional SDH FPM

ln
(

Hsd
k (t | xk)

)
= sk(ln t;γγγk,m0k) +βββsd

k xk +
E∑

l=1
sk(ln t;αααlk,mlk)xlk

1. Apply time-dependent censoring weights to the likelihood
function for each cause k (stcrprep) [Lambert et al., 2017]

2. Model all k causes of death simultaneously directly using the
full likelihood function (stpm2cr) [Mozumder et al., 2017;

Jeong and Fine, 2007]
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stcrprep

. stset time, failure(status == 1,2,3) exit(time 60) scale(12) id(id)

. gen cod2 = cond(_d==0,0,status)

. stcrprep, events(cod2) keep(treatment ) trans(1 2 3) wtstpm2 censcov(treatment) every(1)

. gen event = cod2 == failcode

. stset tstop [iw=weight_c], failure(event) enter(tstart) noshow

(output omitted )
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stcrprep

. stpm2 treatment_cancer _cancer treatment_cvd _cvd treatment_other _other ///
> , scale(h) knotstvc( ̀knotstvc_opt ́) bknotstvc( b̀knotstvc_opt )́ ///
> tvc(_cancer _cvd _other) rcsbaseoff nocons eform nolog
note: delayed entry models are being fitted

Log likelihood = -1228.025 Number of obs = 3,688

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment_cancer .6408643 .1083623 -2.63 0.009 .4600852 .8926761

_cancer .3060732 .0335208 -10.81 0.000 .2469463 .3793569
treatment_cvd 1.329932 .2263497 1.68 0.094 .9527038 1.856525

_cvd .2029639 .0262824 -12.32 0.000 .1574686 .2616034
treatment_other .6740861 .1819979 -1.46 0.144 .3970979 1.144282

_other .1034306 .0183681 -12.78 0.000 .0730273 .1464916
(output omitted )

Note: Estimates are transformed only in the first equation.

. predict cif_stcrprep_cancer, at(treatment_cancer 1 _cancer 1) zeros failure timevar(tempt)

. predict cif_stcrprep_cvd, at(treatment_cvd 1 _cvd 1) zeros failure timevar(tempt)

. predict cif_stcrprep_other, at(treatment_other 1 _other 1) zeros failure timevar(tempt)
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stcrprep
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stpm2cr

. stset time, failure(status == 1,2,3) exit(time 60) scale(12)

. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)], ///
> events(status) cause(1 2 3) cens(0) eform

(output omitted )

. predict cifgq_trt1, cif at(treatment 1) timevar(tempt)
Calculating predictions for the following causes: 1 2 3
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stpm2cr

. stset time, failure(status == 1,2,3) exit(time 60) scale(12)

. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)], ///
> events(status) cause(1 2 3) cens(0) eform

(output omitted )

. predict cifgq_trt1, cif at(treatment 1) timevar(tempt)
Calculating predictions for the following causes: 1 2 3

Above is not comparable with time-dependent censoring weights

approach as we assume proportionality for the competing causes

of death.
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stpm2cr

. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
> events(status) cause(1 2 3) cens(0) eform

(output omitted )
Log likelihood = -1117.3418 Number of obs = 506

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
treatment .647454 .1094638 -2.57 0.010 .464834 .9018201

(output omitted )
_cons .1889881 .0229604 -13.71 0.000 .1489433 .2397993

(output omitted )
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stpm2cr

. stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
> events(status) cause(1 2 3) cens(0) eform

(output omitted )

exp(b) Std. Err. z P>|z| [95% Conf. Interval]
(output omitted )

cvd
treatment 1.336129 .2273682 1.70 0.089 .9571939 1.865077

(output omitted )
_cons .1366028 .0187788 -14.48 0.000 .1043385 .178844

(output omitted )
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stpm2cr

. stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [other: treatment, scale(hazard) df(4)], ///
> events(status) cause(1 2 3) cens(0) eform

(output omitted )

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
other

treatment .6771057 .1827954 -1.44 0.149 .3988974 1.149349
(output omitted )

_cons .0720086 .0138407 -13.69 0.000 .0494056 .1049525
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Comparing stcrprep and stpm2cr
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Comparison of computational time (to all k causes)

. expand 100 //now 50,060 observations

. replace time = time + runiform()*0.0001

. replace id = _n
variable id was int now long

Time

stcrreg (total) 53mins

stcrprep (total) 1min

stpm2cr 17 secs
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On which scale should we model?

Cause-speciĆc hazards

• Risk-set is deĆned in usual

way - easy to understand

• Infer covariate effects on
the rate of dying from a
cause

• For research questions

on aetiology and causal

effects

Subdistribution hazards

• Maintains direct

relationship with

cause-speciĆc CIF

• Infer covariate effects on
the risk of dying from a
cause

• For research questions

on prognosis

Many recommend inferences on all CSHs and cause-speciĆc CIFs

for a better understanding on the overall impact of cancer

[Lambert et al., 2017; Latouche et al., 2013; Beyersmann et al.,

2007]
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What next?

• Standardisation post-estimation for FPMs on cause-speciĆc

log-cumulative hazard scale

• Standardisation post-estimation after stpm2cr

• Restrictedmean survival time [Royston and Parmar, 2011] for

stpm2cr and stcrprep

• Expected number of life-years lost decomposed by cause of

death [Andersen, 2013]
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