Analysing competing risks data using flexible parametric survival models: what tools are available in Stata, which ones to use and when?

Sarwar Islam Mozumder (sarwar.islam@le.ac.uk) Biostatistics Research Group, Dept. of Health Sciences, University of Leicester

2018 London Stata Conference | 6 - 7 September 2018

Overview

- 1. Introduction to survival analysis & competing risks
- 2. Fundamental relationships
- 3. Modelling on the cause-specific hazards scale
 - Cause-specific Cox PH model
 - Flexible parametric models (log-cumulative cause-specific hazards)
- 4. Modelling directly on the cause-specific cumulative incidence
 - Fine & Gray model
 - Flexible parametric models (log-cumulative subdistribution hazards)
- 5. Which scale is most appropriate?
- 6. Summary

Survival analysis: the fundamentals

The study of time to a particular event of interest:

- Engineering e.g. time to failure of a component
- Economics e.g. duration of unemployment
- Medical e.g. time to death (survival time) of a cancer patient

The study of time to a particular event of interest:

- Engineering e.g. time to failure of a component
- Economics e.g. duration of unemployment
- Medical e.g. time to death (survival time) of a cancer patient

Censoring:

- Right censoring: survival time > follow-up time
 - Emmigration
 - Administrative (most common)
- Non-informative censoring: Loss to follow-up is not associated with factors related to the study

The study of time to a particular event of interest:

- Engineering e.g. time to failure of a component
- Economics e.g. duration of unemployment
- Medical e.g. time to death (survival time) of a cancer patient

Censoring:

- Right censoring: survival time > follow-up time
 - Emmigration *informative*?
 - Administrative (most common) *non-informative*
- Non-informative censoring: Loss to follow-up is not associated with factors related to the study

The study of time to a particular event of interest:

- Engineering e.g. time to failure of a component
- Economics e.g. duration of unemployment
- Medical e.g. time to death (survival time) of a cancer patient

Censoring:

- Right censoring: survival time > follow-up time
 - Emmigration
 - Administrative (most common)
- Non-informative censoring: Loss to follow-up is not associated with factors related to the study
- Independent and identically distributed (i.i.d) censoring: independence between survival time and censoring time (untestable)

Let \mathcal{T} be a non-negative random variable that denotes observed survival time:

(All-cause) Survival function

 $S(t) = P(T \ge t)$

Let T be a non-negative random variable that denotes observed survival time:

(All-cause) Survival function

$$S(t) = P(T \ge t) = 1 - F(t)$$

(All-cause) Cumulative incidence function (CIF)

F(t) = P(T < t)

(All-cause) Hazard rate, h(t)

Instantaneous mortality (failure) rate from any cause, given that the individual is still alive up to time *t*

(All-cause) Survival function, *S*(*t*)

$$S(t) = \exp\left(-\int_0^t h(u) \mathrm{d} u\right)$$

Load public-use prostate cancer dataset:

- . use "http://www.stata-journal.com/software/sj4-2/st0059/prostatecancer", clear
- . tab status

status	Freq.	Percent	Cum.
Censor	150	29.64	29.64
Cancer	155	30.63	60.28
CVD	141	27.87	88.14
Other	60	11.86	100.00
Total	506	100.00	

The Kaplan-Meier estimator

. stset time, f(status==1,2,3) id(id) exit(time 60) scale(12)
. sts graph if agegrp == 1 & treatment == 1, ...

What are competing risks?

Non-informative censoring: Loss to follow-up is not associated with factors related to the study

Non-informative censoring: Loss to follow-up is not associated with factors related to the study

- Not valid under competing risks
- Death from ``competing'' causes may be due to adverse effects of treatment for disease

Non-informative censoring: Loss to follow-up is not associated with factors related to the study

- Not valid under competing risks
- Death from ``competing'' causes may be due to adverse effects of treatment for disease

Due to informative censoring - specialised competing risks methods are required to avoid biased estimation.

No competing risks

With competing risks

Cause-specific hazard (CSH) rate, $h_k^{cs}(t)$

Instantaneous mortality (failure) rate from cause k, given that the individual is still alive up to time t

With competing risks

The cause-specific CIF (transition probability)

Estimating the cause-specific CIF is of interest:

• Awkward interpretation on survival scale - what does it mean?

The cause-specific CIF (transition probability)

Estimating the cause-specific CIF is of interest:

- Awkward interpretation on survival scale what does it mean?
- The cause-specific survival function does not account for those who die from other competing causes before time t

Estimating the cause-specific CIF is of interest:

- Awkward interpretation on survival scale what does it mean?
- The cause-specific survival function does not account for those who die from other competing causes before time t
- Those who die from competing causes are removed from risk-set

Estimating the cause-specific CIF is of interest:

- Awkward interpretation on survival scale what does it mean?
- The cause-specific survival function does not account for those who die from other competing causes before time t
- Those who die from competing causes are removed from risk-set
- Better interpretation on mortality scale

Cause-specific CIF, $F_k(t)$

Probability a patient will die from cause D = k by time t whilst also being at risk of dying from other competing causes of death

Cause-specific CIF, $F_k(t)$

Probability a patient will die from cause D = k by time t whilst also being at risk of dying from other competing causes of death

CSH relationship with cause-specific CIF

Cause-specific CIF, $F_k(t)$

$$F_k(t) = \int_0^t S(u) h_k^{cs}(u) \mathrm{d} u$$

CSH relationship with cause-specific CIF

Cause-specific CIF, $F_k(t)$

$$F_k(t) = \int_0^t \frac{S(u)}{h_k^{cs}(u)} du$$

$$S(t) = \prod_{k=1}^{K} S_k^{cs}(t) = \exp\left(-\sum_{k=1}^{K} \int_0^t h_k^{cs}(u) \mathrm{d}u\right)$$

CSH relationship with cause-specific CIF

Cause-specific CIF, $F_k(t)$

$$F_k(t) = \int_0^t S(u) h_k^{cs}(u) \mathrm{d} u$$

$$S(t) = \prod_{k=1}^{K} S_k^{cs}(t) = \exp\left(-\sum_{k=1}^{K} \int_0^t h_k^{cs}(u) \mathrm{d}u\right)$$

Note

$$S_k^{cs}(t) = \exp\left(-\int_0^t h_k^{cs}(u) \mathrm{d}u\right) \neq 1 - F_k(t)$$

Obtaining Aalen-Johansen (AJ) estimates of the causespecific CIF

Non-parametric estimates of cause-specific CIFs obtained using **stcompet**:

Obtaining Aalen-Johansen (AJ) estimates of the causespecific CIF

Non-parametric estimates of cause-specific CIFs obtained using **stcompet**:

- . stset time, f(status==1) id(id) exit(time 60) scale(12)
- . stcompet CIF1 = ci if agegrp == 0 & treatment == 1, compet1(2) compet2(3)
- . stcompet CIF2 = ci if agegrp == 1 & treatment == 1, compet1(2) compet2(3)

Comparing AJ with 1 - KM estimates of the cancer-specific CIF


```
. stset time, f(status==1) id(id) exit(time 60) scale(12)
. sts graph if agegrp == 0 & treatment == 1, failure ///
> addplot(line CIF1 _t if status == 1, sort connect(stepstair)) ... 12/47
```

Comparing AJ with 1 - KM estimates of the cancer-specific CIF


```
. stset time, f(status==1) id(id) exit(time 60) scale(12)
. sts graph if agegrp == 1 & treatment == 1, failure ///
> addplot(line CIF2 _t if status == 1, sort connect(stepstair)) ... 12/47
```

Approaches for modelling (all) CSHs in Stata
A common approach for modelling CSH function is by assuming proportional hazards (PH) using the Cox model.

Cause-specific Cox PH model

$$h_k^{cs}(t \mid \mathbf{x}_k) = h_{0k} \exp\left(\boldsymbol{\beta}_k^{cs} \mathbf{x}_k\right)$$

 β_k^{cs} : row vector of coefficients/log-CSH ratio for cause k \mathbf{x}_k : column vector of covariates for cause k h_{0k} : the baseline CSH function A common approach for modelling CSH function is by assuming proportional hazards (PH) using the Cox model.

Cause-specific Cox PH model

 $h_k^{cs}(t \mid \mathbf{x}_k) = h_{0k} \exp\left(\boldsymbol{\beta}_k^{cs} \mathbf{x}_k\right)$

 β_k^{cs} : row vector of coefficients/log-CSH ratio for cause k \mathbf{x}_k : column vector of covariates for cause k h_{0k} : the baseline CSH function

CHR = association on the effect of a covariate on rate of dying from cause k

. stset time, failure(status == 1) id(id) s	scale(12) exit(time 60)
. stcox treatment, nolog noshow		
Cox regression Breslow method for ties		
No. of subjects = 506	Number of obs	= 506
No. of failures = 145		
Time at risk = 1457.966667		
	LR chi2(1)	= 6.14
Log likelihood = -834.85419	Prob > chi2	= 0.0132

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	.6602897	.1116672	-2.45	0.014	.4740025	.9197894

- . predict h0_cancer, basehc
- . gsort _t -_d
- . by _t: replace h0_cancer = . if _n > 1
- . gen h_cancer_trt0 = h0_cancer
- . gen h_cancer_trt1 = h0_cancer*exp(_b[treatment])

. stset time, failure(status == 2) id(id) :	<pre>scale(12) exit(time 60)</pre>
. stcox treatment, nolog noshow	
Cox regression Breslow method for ties	
No. of subjects = 506	Number of obs = 506
No. of failures = 140	
Time at risk = 1457.966667	
	LR chi2(1) = 1.19
Log likelihood = -806.46297	Prob > chi2 = 0.2755
t Use Datis Std From	

_t	Haz. Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
treatment	1.20334	.2048509	1.09	0.277	.8619538	1.679937

- . predict h0_cvd, basehc
- . gsort _t -_d
- . by _t: replace h0_cvd = . if _n > 1
- . gen $h_cvd_trt0 = h0_cvd$
- . gen h_cvd_trt1 = h0_cvd*exp(_b[treatment])

Cox regression Breslow method for ties			
No. of subjects = 506	Number of obs	=	506
No. of failures = 57	Number of the		000
Time at risk = 1457.966667			
	LR chi2(1)	=	2.67
Log likelihood = -324.95951	Prob > chi2	=	0.1023

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	.6460519	.1745103	-1.62	0.106	.3804893	1.096964

- . predict h0_other, basehc
- . gsort _t -_d
- . by _t: replace h0_other = . if _n > 1
- . gen h_other_trt0 = h0_other
- . gen h_other_trt1 = h0_other*exp(_b[treatment])

```
. drop if missing(h0 cancer) & missing(h0 other) & missing(h0 cvd)
. foreach i in cancer other cvd {
 2.
            replace h0 `i' = 0 if missing(h0 `i')
 3.
            replace h `i´ trt0 = 0 if missing(h `i´ trt0)
            replace h `i´ trt1 = 0 if missing(h `i´ trt1)
 4.
 5.}
. sort _t
. gen S 1 = \exp(\sup(\log(1 - h \operatorname{cancer trt0} - h \operatorname{other trt0} - h \operatorname{other trt0})))
. gen S_2 = exp(sum(log(1- h_cancer_trt1 - h_other_trt1 - h_other_trt1)))
. foreach i in cancer other cvd {
 2.
             gen cif trt0 `i` = sum(S 1[ n-1]*h `i` trt0)
 3.
             gen cif trt1 `i´ = sum(S 2[ n-1]*h `i´ trt1)
 4. }
. foreach i in trt0 trt1 {
             gen totcif2 `i´ = cif `i´ cancer + cif `i´ cvd
 2.
 3
             gen totcif3 `i´ = totcif2 `i´ + cif `i´ other
 4. }
```


. tw (rarea totcif3_trt1 totcif2_trt1 _t, sort connect(stepstair) ...) ///
> (rarea cif_trt1_cancer totcif2_trt1 _t, ...) ///
> (rarea zeros cif_trt1_cancer _t, ...), ...

- Baseline hazard function is undefined no risk in misspecification of underlying baseline distribution
- However, leads to difficulties in obtaining predictions to facilitate interpretation of model parameters:

- Baseline hazard function is undefined no risk in misspecification of underlying baseline distribution
- However, leads to difficulties in obtaining predictions to facilitate interpretation of model parameters:
 - Conditional and absolute measures

- Baseline hazard function is undefined no risk in misspecification of underlying baseline distribution
- However, leads to difficulties in obtaining predictions to facilitate interpretation of model parameters:
 - Conditional and absolute measures
 - Cause-specific CIF in presence of competing risks

- Baseline hazard function is undefined no risk in misspecification of underlying baseline distribution
- However, leads to difficulties in obtaining predictions to facilitate interpretation of model parameters:
 - Conditional and absolute measures
 - Cause-specific CIF in presence of competing risks
- To obtain such measures baseline hazard can be estimated non-parametrically as described by Breslow (1972)
- For a smooth function, further smoothing techniques must be applied

- Baseline hazard function is undefined no risk in misspecification of underlying baseline distribution
- However, leads to difficulties in obtaining predictions to facilitate interpretation of model parameters:
 - Conditional and absolute measures
 - Cause-specific CIF in presence of competing risks
- To obtain such measures baseline hazard can be estimated non-parametrically as described by Breslow (1972)
- For a smooth function, further smoothing techniques must be applied
- Computationally intensive methods such as bootstrapping is required for SEs/CIs

Flexible parametric survival models (FPMs) [Royston and Parmar, 2002]

- Models and more accurately captures complex shapes of the (log-cumulative) baseline hazard function
- A generalisation of the Weibull distribution is used with restricted cubic splines (RCS) that allows for more flexibility

Flexible parametric survival models (FPMs) [Royston and Parmar, 2002]

- Models and more accurately captures complex shapes of the (log-cumulative) baseline hazard function
- A generalisation of the Weibull distribution is used with restricted cubic splines (RCS) that allows for more flexibility

Cause-specific log-cumulative PH FPM

$$\ln\left(H_k^{cs}(t \mid \mathbf{x}_k)\right) = s_k(\ln t; \boldsymbol{\gamma}_k, \mathbf{m}_{0k}) + \boldsymbol{\beta}_k^{cs} \mathbf{x}_k$$

 $s_k(\ln t; \gamma_k, \mathbf{m}_{0k})$: baseline restricted cubic spline function on log-time

Flexible parametric survival models (FPMs) [Royston and Parmar, 2002]

- Models and more accurately captures complex shapes of the (log-cumulative) baseline hazard function
- A generalisation of the Weibull distribution is used with restricted cubic splines (RCS) that allows for more flexibility
- Can also easily include time-dependent effects (TDE)

Cause-specific log-cumulative non-PH FPM

$$\ln\left(H_k^{cs}(t \mid \mathbf{x}_k)\right) = s_k(\ln t; \boldsymbol{\gamma}_k, \mathbf{m}_{0k}) + \beta_k^{cs} \mathbf{x}_k + \sum_{l=1}^{E} s_k(\ln t; \boldsymbol{\alpha}_{lk}, \mathbf{m}_{lk}) \mathbf{x}_{lk}$$

 $s_k(\ln t; \alpha_{lk}, \mathbf{m}_{lk}) \mathbf{x}_{lk}$: interaction between spline variables and covariates for TDEs

stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 1) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -440.316			Number	of obs =	506	
	exp(b)	Std. Err.	Z	P> z	[95% Conf.	Interval]
xb						
treatment	.6594084	.111509	-2.46	0.014	.4733827	.9185368
_rcs1	3.389716	.4258797	9.72	0.000	2.649838	4.336179
_rcs2	.8879662	.0724157	-1.46	0.145	.7567963	1.041871
_rcs3	1.06315	.0411503	1.58	0.114	.9854806	1.146942
_rcs4	1.016818	.0199075	0.85	0.394	.9785387	1.056594
_cons	.229559	.0272468	-12.40	0.000	.1819129	.2896844

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

Cox regression -- Breslow method for ties

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	.6602897	.1116672	-2.45	0.014	.4740025	.9197894

stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 2) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -448.73758

Number of obs = 506

	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
xb						
treatment	1.202808	.2047249	1.08	0.278	.8616223	1.679097
_rcs1	2.82908	.2642265	11.13	0.000	2.355841	3.397384
_rcs2	.8685486	.0544436	-2.25	0.025	.7681357	.9820878
_rcs3	.9529595	.0319403	-1.44	0.151	.8923696	1.017663
_rcs4	1.027927	.0213538	1.33	0.185	.986915	1.070644
_cons	.17767	.0237024	-12.95	0.000	.1367912	.2307651

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	1.20334	.2048509	1.09	0.277	.8619538	1.679937

stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 3) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -231.45608

Number of obs = 506

	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
xb						
treatment	.6432149	.1737196	-1.63	0.102	.3788467	1.092066
_rcs1	2.638735	.3351586	7.64	0.000	2.057219	3.384628
_rcs2	.7913665	.0590788	-3.13	0.002	.683647	.9160589
_rcs3	.9369818	.0467358	-1.30	0.192	.8497164	1.033209
_rcs4	1.029843	.031817	0.95	0.341	.9693337	1.09413
_cons	.097687	.0179093	-12.69	0.000	.0681998	.1399235

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	.6460519	.1745103	-1.62	0.106	.3804893	1.096964

. stset time, failure(status == 3) id(id) scale(12) exit(time 60)							
. stpm2 treatment, scale(hazard) df(4) tvc(treatment) dftvc(2) eform nolog							
Log likelihood = -230.90611			Numi	ber of obs	=	506	
	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]	
xb							
treatment	.711078	.2158501	-1.12	0.261	.3922222	1.289147	
_rcs1	2.805675	.4977957	5.81	0.000	1.981588	3.972477	
_rcs2	.7487466	.0683538	-3.17	0.002	.6260772	.895451	
_rcs3	.9426525	.0484762	-1.15	0.251	.8522722	1.042617	
_rcs4	1.032005	.0318598	1.02	0.308	.9714123	1.096377	
_rcs_treatment1	.9101003	.2468771	-0.35	0.728	.5347974	1.548778	
_rcs_treatment2	1.161785	.1848084	0.94	0.346	.8505949	1.586824	
_cons	.0931347	.0183948	-12.02	0.000	.0632401	.1371608	

Note: Estimates are transformed only in the first equation.

Cause-specific CIF, $F_k(t)$

$$F_k(t) = \int_0^t \exp\left(-\sum_{k=1}^K \int_0^t h_k^{cs}(u) \mathrm{d}u\right) h_k^{cs}(u) \mathrm{d}u$$

Cause-specific CIF,
$$F_k(t)$$

$$F_k(t) = \int_0^t \exp\left(-\sum_{k=1}^K \int_0^t h_k^{cs}(u) du\right) h_k^{cs}(u) du$$

Must be obtained by numerical approximation:

- Trapezoid method stpm2cif [Hinchliffe and Lambert, 2013]
- Gauss-Legendre quadrature stpm2cr [Mozumder et al., 2017]

stpm2cif: Data setup

```
. local knotstvc opt
. local bknotstvc_opt
. local k = 1
. foreach cause in cancer cvd other {
            stset time. failure(status == `k`) exit(time 60) scale(12)
 2.
 3
           cap stpm2 treatment, df(4) scale(h) eform nolog
            estimates store stpm2`cause'
 4
 5
           local bhknots`cause' `e(bhknots)'
 6
           local boundknots`cause´ `e(boundarv knots)´
 7
           local knotstvc_opt `knotstvc_opt' `cause' `bhknots`cause''
 8.
           local bknotstvc opt `bknotstvc opt `cause `boundknots`cause `
           local k = k' + 1
 9.
10. }
```

stpm2cif: Data setup

- . expand 3 // augment data k = 3 times
- . bysort id: gen _cause=_n
- . //create dummy variables for each cause of death
- . gen _cvd=_cause==2
- . gen _other=_cause==3
- . gen _cancer=_cause==1
- . //create cause of death event indicator variable
- . gen _event=(_cause==status)
- . label values _cause status
- . foreach cause in _cancer _cvd _other {
 2. gen treatment`cause` = treatment*`cause`
 3. }

stpm2cif: Data setup

	list	id	status	time	treatment	_cause	_event	in	1/9,	sep(9)
--	------	----	--------	------	-----------	--------	--------	----	------	--------

	id	status	time	$treatm_t$	_cause	_event
1.	1	Censor	72	0	1	0
2.	1	Censor	72	0	2	0
з.	1	Censor	72	0	3	0
4.	2	Cancer	1	0	1	1
5.	2	Cancer	1	0	2	0
6.	2	Cancer	1	0	3	0
7.	3	CVD	40	1	1	0
8.	3	CVD	40	1	2	1
9.	3	CVD	40	1	3	0

. stset time, failure(_event == 1) exit(time 60) scale(12)

```
. stpm2 treatment_cancer _cancer treatment_cvd _cvd treatment_other _other /// \ensuremath{\sc c}
```

```
> , scale(h) knotstvc(`knotstvc_opt') bknotstvc(`bknotstvc_opt') ///
```

> tvc(_cancer _cvd _other) rcsbaseoff nocons eform nolog

```
Log likelihood = -1120.5192 Number of obs = 1,518
```

	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
xb						
treatment_cancer	.6593781	.111504	-2.46	0.014	.4733607	.9184951
_cancer	.2295677	.0272475	-12.40	0.000	.1819204	.2896945
treatment_cvd	1.202808	.2047249	1.08	0.278	.8616223	1.679097
_cvd	.17767	.0237024	-12.95	0.000	.1367912	.2307651
treatment_other	.6432149	.1737196	-1.63	0.102	.3788467	1.092066
_other	.097687	.0179093	-12.69	0.000	.0681998	.1399235
(output omitted)						

Note: Estimates are transformed only in the first equation.

```
. stpm2cif cancer cvd other, cause1(treatment_cancer 1 _cancer 1) ///
```

```
> cause2(treatment_cvd 1 _cvd 1) cause3(treatment_other 1 _other 1) ci
```

- . gen _totcif2_trt1 = CIF_cancer + CIF_cvd
- . gen _totcif3_trt1 = _totcif2_trt1 + CIF_other

stpm2cif: Post-estimation

. gen zeros = 0

- . tw (rarea _totcif3_trt1 _totcif2_trt1 _newt, sort color(erose%80)) ///
- > (rarea CIF_cancer _totcif2_trt1 _newt, sort color(emidblue%80)) ///
- > (rarea zeros CIF_cancer _newt, sort color(eltgreen%80)), ...

- . stset time, failure(status == 1,2,3) exit(time 60) scale(12)
- . stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
- > [cvd: treatment, scale(hazard) df(4)] ///
- > [other: treatment, scale(hazard) df(4)], ///
- > events(status) cause(1 2 3) cens(0) eform model(csh)

stpm2cr: Post-estimation

. range newt 0 5 100

. predict cifgq_trt1, cif at(treatment 1) timevar(newt) ci

Comparison with AJ estimates

Comparison with AJ estimates

Comparison with AJ estimates

. stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
> events(status) cause(1 2 3) cens(0) eform model(csh)

- . expand 500 //now 253,000 observations
- . replace time = time + runiform()*0.0001

. replace id = _n

variable id was int now long

	Time (secs)
stpm2cr model	52.60
stpm2 (stacked data)	76.59
stpm2cr predict (w/ Cls)	2.56
stpm2cif (w/ Cls)	11.10

- Restricted mean lifetime (RML) [Royston and Parmar, 2013; Andersen, 2013]
- Absolute & relative CIF measures
- Subdistribution hazard [Beyersmann et al., 2009]
- Standardisation (to come)

- Restricted mean lifetime (RML) [Royston and Parmar, 2013; Andersen, 2013] - double integration
- Absolute & relative CIF measures
- Subdistribution hazard [Beyersmann et al., 2009]
- *Standardisation (to come)* predict for and average over every individual in study population

Using the multistate package
multistate [Crowther and Lambert, 2017]

- Written mainly by Michael (& Paul) for more complex multi-state models e.g. illness-death models
- Competing risks is a special case of multi-state models
- Can use multistate package to obtain equivalent non-parametric estimates and fit parametric models in presence of competing risks
- Uses a simulation approach for calculating transition probabilities i.e. cause-specific CIFs

msset

ч

- . tab status, gen(cause)
- . rename cause2 _cancer
- . rename cause3 _cvd
- . rename cause4 _other
- . msset, id(id) states(_cancer _cvd _other) times(time time time) cr

. li id treatment status time _from _to _trans _start _stop _status _flag in 1/9, sep(9) noobs

1											
1	id	$treatm_t$	status	time	_from	_to	_trans	_start	_stop	_status	_flag
+											
' I	1	0	Censor	72.0024	1	2	1	0	72.002434	0	0
	1	0	Censor	72.0024	1	3	2	0	72.002434	0	0
	1	0	Censor	72.0024	1	4	3	0	72.002434	0	0
	2	0	Cancer	1.00301	1	2	1	0	1.0030106	1	0
	2	0	Cancer	1.00301	1	3	2	0	1.0030106	0	0
	2	0	Cancer	1.00301	1	4	3	0	1.0030106	0	0
	3	1	CVD	40.008	1	2	1	0	40.007992	0	0
	3	1	CVD	40.008	1	3	2	0	40.007992	1	0
	3	1	CVD	40.008	1	4	3	0	40.007992	0	0

msaj

- . stset _stop, failure(_status == 1) scale(12) exit(time 60)
- . msaj if treatment == 1, cr //ci
- . sort _t
- . li id status _trans _d _t P_AJ_? if P_AJ_1 != . in 1/45, noobs

,									
1	id	status	_trans	_d	_t	P_AJ_1	P_AJ_2	P_AJ_3	P_AJ_4
1									
' I	202	Cancer	1	1	.00841895	.99604743	.00395257	0	0
	105	CVD	2	1	.00854265	.99209486	.00395257	.00395257	0
	151	Other	3	1	.00855531	.98814229	.00395257	.00395257	.00395257
	382	CVD	2	1	.00866204	.98418972	.00395257	.00790514	.00395257
	437	CVD	2	1	.00869011	.98023715	.00395257	.01185771	.00395257
1									
' I	120	Cancer	1	1	.00869888	.97628458	.00790514	.01185771	.00395257
	502	Cancer	1	1	.00881231	.97233202	.01185771	.01185771	.00395257
	464	CVD	2	1	.00886007	.96837945	.01185771	.01581028	.00395257
	93	Other	3	1	.00898155	.96442688	.01185771	.01581028	.00790514
	492	CVD	2	1	.00904977	.96047431	.01185771	.01976285	.00790514

1

- . bysort P_AJ_2 (_t): gen first1 = _n==1
- . bysort P_AJ_3 (_t): gen first2 = _n==1
- . bysort P_AJ_4 (_t): gen first3 = _n==1

msaj

29/47

```
. stpm2 treatment if _trans==1, df(4) scale(h) eform nolog
```

- . estimates store m1
- . stpm2 treatment if _trans==2, df(4) scale(h) eform nolog
- . estimates store m2
- . stpm2 treatment if _trans==3, df(4) scale(h) eform nolog
- . estimates store m3
- . range tempt 0 5 100
- . predictms , cr timevar(tempt) models(m1 m2 m3) at1(treatment 1)

```
. forvalues k = 1/3 {
    2. stset time, failure(status == `k`) id(id) scale(12) exit(time 60)
    3. stpm2 treatment, df(4) scale(h) eform nolog
    4. estimates store m`k'
    5. }
. range tempt 0 5 100
. predictms , cr timevar(tempt) models(m1 m2 m3) at1(treatment 1)
```


Summary of FPM tools for estimating cause-specific CIFs using CSHs

- Post-estimation command, stpm2cif
 - Requires augmenting data before stpm2
 - Fitting a single model means interpretation is difficult and more room for errors
 - Uses a basic numerical integration method slow for larger datasets

Summary of FPM tools for estimating cause-specific CIFs using CSHs

- Post-estimation command, stpm2cif
 - Requires augmenting data before stpm2
 - Fitting a single model means interpretation is difficult and more room for errors
 - Uses a basic numerical integration method slow for larger datasets
- Using stpm2cr as a wrapper followed by predict
 - Fits separate **stpm2** models for each cause of death without data augmentation
 - Uses quicker numerical integration method
 - Can obtain other useful predictions e.g. restricted mean lifetime/comparative predictions

Summary of FPM tools for estimating cause-specific CIFs using CSHs

- Via the predictms command provided as a part of the multistate package
 - Uses a simulation approach. Can alternatively use AJ estimator to save on computational time
 - Can also be used without requiring **msset**
 - Extremely versatile has some very useful features and post-estimation options

What about modelling covariate effects on the risk of dying from a particular cause?

Cause-specific hazards

Subdistribution hazards

Subdistribution hazard (SDH) rate, $h_k^{sd}(t)$

The instantaneous rate of failure at time *t* from cause D = kamongst those who have not died, or have died from any of the other causes, where $D \neq k$

Subdistribution hazards

Subdsitribution hazard (SDH) rate, $h_k^{sd}(t)$

$$h_{k}^{sd}(t) = \lim_{\Delta t \to 0} \frac{P(t < T \le t + \Delta t, D = k | T > t \cup (T \le t \cap D \neq k))}{\Delta t}$$

Cause-specific CIF, $F_k(t)$

$$F_k(t) = 1 - \exp\left[-\int_0^t h_k^{sd}(u) \mathrm{d}u\right]$$

Cause-specific CIF, $F_k(t)$

$$F_k(t) = 1 - \exp\left[-\int_0^t h_k^{sd}(u) \mathrm{d}u\right]$$

Note

$$1 - F_k(t) = P(D \neq k) + S_k^{sd}(t)$$

Derived in a similar way to cause-specific Cox PH model as described by Fine and Gray [1999].

SDH Regression Model (Fine & Gray Model)

$$h_k^{sd}(t \mid \mathbf{x}_k) = h_{0k} \exp\left(\beta_k^{sd} \mathbf{x}_k\right)$$

 β_k^{sd} : row vector of coefficients/log-SDH ratio for cause k \mathbf{x}_k : column vector of covariates for cause k h_{0k} : the baseline SDH function Derived in a similar way to cause-specific Cox PH model as described by Fine and Gray [1999].

SDH Regression Model (Fine & Gray Model)

$$h_k^{sd}(t \mid \mathbf{x}_k) = h_{0k} \exp\left(\boldsymbol{\beta}_k^{sd} \mathbf{x}_k\right)$$

 β_k^{sd} : row vector of coefficients/log-SDH ratio for cause k \mathbf{x}_k : column vector of covariates for cause k h_{0k} : the baseline SDH function

SHR = association on the effect of a covariate on risk of dying from cause k

Time-dependent censoring weights

- Need to consider those who have already died from other competing causes of death in risk-set
- Calculate missing censoring times for those that died from other causes by applying time-dependent weights to partial likelihood
- Influence of weights decreases over-time as the probability of being censored increases
- Further details given by Lambert et al. [2017] and Geskus [2011]

stcrreg

```
*Cancer
. stset time, failure(status == 1) exit(time 60) scale(12)
. stcrreg treatment, compete(status == 2, 3)
       failure d: status == 1
  analysis time _t: time/12
 exit on or before: time 60
Iteration 0: log pseudolikelihood = -875.12133
Iteration 1: log pseudolikelihood = -875.1123
Iteration 2: log pseudolikelihood = -875.1123
Competing-risks regression
                                           No. of obs
                                                                  506
                                                          =
                                           No. of subjects =
                                                                  506
Failure event : status == 1
                                          No. failed =
                                                               145
Competing events: status == 2 3
                                         No. competing
                                                          = 197
                                           No. censored = 164
                                           Wald chi2(1) = 6.74
Log pseudolikelihood = -875.1123
                                          Prob > chi2 = 0.0094
```

_t	SHR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	.6454653	.1088223	-2.60	0.009	.463836	.8982171

. stcurve, cif at(treatment=1) outfile(cancer1, replace) range(0 5)

stcrreg

```
. *CVD
. stset time, failure(status == 2) exit(time 60) scale(12)
. stcrreg treatment, compete(status == 1, 3)
        failure d: status == 2
  analysis time _t: time/12
 exit on or before: time 60
Iteration 0: log pseudolikelihood = -848.00112
Iteration 1: log pseudolikelihood = -847.83627
Iteration 2: log pseudolikelihood = -847.83627
Competing-risks regression
                                             No. of obs
                                                                      506
                                                             =
                                             No. of subjects =
                                                                      506
Failure event : status == 2
                                             No. failed
                                                                     140
                                                             =
Competing events: status == 1 3
                                            No. competing
                                                                     202
                                                             =
                                             No. censored
                                                               164
                                                             =
                                                                     2.79
                                             Wald chi2(1)
                                                             =
Log pseudolikelihood = -847.83627
                                             Prob > chi2
                                                                  0.0949
                                                             =
```

_t	SHR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	1.326649	.2245377	1.67	0.095	.9521137	1.848517

. stcurve, cif at(treatment=1) outfile(cvd1, replace) range(0 5)

stcrreg

```
. *Other causes
. stset time, failure(status == 3) exit(time 60) scale(12)
. stcrreg treatment, compete(status == 1, 2)
        failure d: status == 3
  analysis time _t: time/12
 exit on or before: time 60
Iteration 0: log pseudolikelihood = -349.42345
Iteration 1: log pseudolikelihood = -349.41144
Iteration 2: log pseudolikelihood = -349.41144
Competing-risks regression
                                            No. of obs
                                                                   506
                                                           =
                                            No. of subjects =
                                                                   506
Failure event : status == 3
                                           No. failed
                                                                   57
                                                           =
Competing events: status == 1 2
                                           No. competing
                                                                   285
                                                           =
                                            No. censored =
                                                             164
                                                                  2.14
                                            Wald chi2(1)
                                                           =
Log pseudolikelihood = -349.41144
                                           Prob > chi2
                                                           = 0.1432
```

_t	SHR	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	.6736976	.1817566	-1.46	0.143	.3970267	1.143169

. stcurve, cif at(treatment=1) outfile(other1, replace) range(0 5)

FPMs on (log-cumulative) SDH scale

Log-cumulative SDH FPM

$$\ln\left(H_k^{sd}(t\mid \mathbf{x}_k)
ight) = s_k(\ln t; oldsymbol{\gamma}_k, \mathbf{m}_{0k}) + oldsymbol{eta}_k^{sd}\mathbf{x}_k$$

FPMs on (log-cumulative) SDH scale

Log-cumulative non-proportional SDH FPM

$$\ln \left(H_k^{sd}(t \mid \mathbf{x}_k)\right) = s_k(\ln t; \boldsymbol{\gamma}_k, \mathbf{m}_{0k}) + \boldsymbol{\beta}_k^{sd} \mathbf{x}_k + \sum_{l=1}^{E} s_k(\ln t; \boldsymbol{\alpha}_{lk}, \mathbf{m}_{lk}) \mathbf{x}_{lk}$$

FPMs on (log-cumulative) SDH scale

Log-cumulative non-proportional SDH FPM

$$\ln \left(H_k^{sd}(t \mid \mathbf{x}_k)\right) = s_k(\ln t; \boldsymbol{\gamma}_k, \mathbf{m}_{0k}) + \boldsymbol{\beta}_k^{sd} \mathbf{x}_k + \sum_{l=1}^E s_k(\ln t; \boldsymbol{\alpha}_{lk}, \mathbf{m}_{lk}) \mathbf{x}_{lk}$$

- Apply time-dependent censoring weights to the likelihood function for each cause k (stcrprep) [Lambert et al., 2017]
- Model all k causes of death simultaneously directly using the full likelihood function (stpm2cr) [Mozumder et al., 2017; Jeong and Fine, 2007]

- . stset time, failure(status == 1,2,3) exit(time 60) scale(12) id(id)
- . gen cod2 = cond(_d==0,0,status)
- . stcrprep, events(cod2) keep(treatment) trans(1 2 3) wtstpm2 censcov(treatment) every(1)
- . gen event = cod2 == failcode
- . stset tstop [iw=weight_c], failure(event) enter(tstart) noshow

(output omitted)

. stpm2 treatment_cancer _cancer treatment_cvd_cvd treatment_other _other ///
> , scale(h) knotstvc(`knotstvc_opt`) bknotstvc(`bknotstvc_opt`) ///
> tvc(_cancer _cvd _other) rcsbaseoff nocons eform nolog
note: delayed entry models are being fitted

Log likelihood =		Nur	mber of obs	=	3,688	
	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
xb						
treatment_cancer	.6408643	.1083623	-2.63	0.009	.4600852	.8926761
_cancer	.3060732	.0335208	-10.81	0.000	.2469463	.3793569
treatment_cvd	1.329932	.2263497	1.68	0.094	.9527038	1.856525
_cvd	.2029639	.0262824	-12.32	0.000	.1574686	.2616034
treatment_other	.6740861	.1819979	-1.46	0.144	.3970979	1.144282
_other	.1034306	.0183681	-12.78	0.000	.0730273	.1464916
(output omitted)						

Note: Estimates are transformed only in the first equation.

. predict cif_stcrprep_cancer, at(treatment_cancer 1 _cancer 1) zeros failure timevar(tempt)

- . predict cif_stcrprep_cvd, at(treatment_cvd 1 _cvd 1) zeros failure timevar(tempt)
- . predict cif_stcrprep_other, at(treatment_other 1 _other 1) zeros failure timevar(tempt)

stcrprep


```
. stset time, failure(status == 1,2,3) exit(time 60) scale(12)
```

```
. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
```

```
> [cvd: treatment, scale(hazard) df(4)] ///
```

```
> [other: treatment, scale(hazard) df(4)], ///
```

```
> events(status) cause(1 2 3) cens(0) eform
  (output omitted)
```

```
. predict cifgq_trt1, cif at(treatment 1) timevar(tempt) Calculating predictions for the following causes: 1 2 3
```

```
. stset time, failure(status == 1,2,3) exit(time 60) scale(12)
. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)], ///
> events(status) cause(1 2 3) cens(0) eform
  (output omitted)
. predict cifgq_trt1, cif at(treatment 1) timevar(tempt)
Calculating predictions for the following causes: 1 2 3
```

Above is not comparable with time-dependent censoring weights approach as we assume proportionality for the competing causes of death.

```
. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
> events(status) cause(1 2 3) cens(0) eform
   (output omitted)
Log likelihood = -1117.3418 Number of obs = 506
```

	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
cancer						
treatment	.647454	.1094638	-2.57	0.010	.464834	.9018201
(output omitted)	1					
_cons	.1889881	.0229604	-13.71	0.000	.1489433	.2397993
(output omitted)	1					

```
. stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
```

- > [cvd: treatment, scale(hazard) df(4)] ///
- > [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
- > events(status) cause(1 2 3) cens(0) eform

(output omitted)

	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
(output omitted)	1					
cvd						
treatment	1.336129	.2273682	1.70	0.089	.9571939	1.865077
(output omitted)	1					
_cons	.1366028	.0187788	-14.48	0.000	.1043385	.178844
(output omitted)	1					

- . stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
- > [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
- > [other: treatment, scale(hazard) df(4)], ///
- > events(status) cause(1 2 3) cens(0) eform
 (output omitted)

	exp(b)	Std. Err.	Z	P> z	[95% Conf.	Interval]
(output omitted)						
other treatment	.6771057	.1827954	-1.44	0.149	.3988974	1.149349
(output omitted) _cons	.0720086	.0138407	-13.69	0.000	.0494056	.1049525

Comparing stcrprep and stpm2cr

Comparison of computational time (to all *k* causes)

- . expand 100 //now 50,060 observations
- . replace time = time + runiform()*0.0001
- . replace id = _n

variable id was int now long

Time

stcrreg (total)	53 mins
stcrprep (total)	1 min
stpm2cr	17 secs

On which scale should we model?

Cause-specific hazards

 Risk-set is defined in usual way - easy to understand

Subdistribution hazards

 Maintains direct relationship with cause-specific CIF

On which scale should we model?

Cause-specific hazards

- Risk-set is defined in usual way - easy to understand
- Infer covariate effects on the rate of dying from a cause
 - For research questions on aetiology and causal effects

Subdistribution hazards

- Maintains direct relationship with cause-specific CIF
- Infer covariate effects on the risk of dying from a cause
 - For research questions on prognosis

On which scale should we model?

Cause-specific hazards

- Risk-set is defined in usual way - easy to understand
- Infer covariate effects on the rate of dying from a cause
 - For research questions on aetiology and causal effects

Subdistribution hazards

- Maintains direct relationship with cause-specific CIF
- Infer covariate effects on the risk of dying from a cause
 - For research questions on prognosis

Many recommend inferences on all CSHs and cause-specific CIFs for a better understanding on the overall impact of cancer [Lambert et al., 2017; Latouche et al., 2013; Beyersmann et al., 2007]

- Standardisation post-estimation for FPMs on cause-specific log-cumulative hazard scale
- Standardisation post-estimation after stpm2cr
- Restricted mean survival time [Royston and Parmar, 2011] for stpm2cr and stcrprep
- Expected number of life-years lost decomposed by cause of death [Andersen, 2013]

- P. K. Andersen. Decomposition of number of life years lost according to causes of death. *Statistics in Medicine*, 32:5278--85, Jul 2013.
- J. Beyersmann, M. Dettenkofer, H. Bertz, and M. Schumacher. A competing risks analysis of bloodstream infection after stem-cell transplantation using subdistribution hazards and cause-specific hazards. *Statistics in Medicine*, 26 (30):5360--5369, Dec. 2007.
- J. Beyersmann, A. Latouche, A. Buchholz, and M. Schumacher. Simulating competing risks data in survival analysis. *Stat Med*, 28(6):956--971, 2009.
- M. J. Crowther and P. C. Lambert. Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. *Statistics in medicine*, 36(29):4719--4742, 2017.

References ii

- J. P. Fine and R. J. Gray. A proportional hazards model for the subdistribution of a competing risk. *Journal of the American Statistical Association*, 446: 496--509., 1999.
- R. B. Geskus. Cause-specific cumulative incidence estimation and the Fine and Gray model under both left truncation and right censoring. *Biometrics*, 67(1): 39--49, Mar 2011.
- S. R. Hinchliffe and P. C. Lambert. Extending the flexible parametric survival model for competing risks. *The Stata Journal*, 13:344--355, 2013.
- J.-H. Jeong and J. P. Fine. Parametric regression on cumulative incidence function. *Biostatistics*, 8(2):184--196, Apr 2007.
- P. C. Lambert and P. Royston. Further development of flexible parametric models for survival analysis. *The Stata Journal*, 9:265--290, 2009.
- P. C. Lambert, S. R. Wilkes, and M. J. Crowther. Flexible parametric modelling of the cause-specific cumulative incidence function. *Statistics in medicine*, 36(9): 1429--1446, 2017.

References iii

- A. Latouche, A. Allignol, J. Beyersmann, M. Labopin, and J. P. Fine. A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. *J Clin Epidemiol*, 66(6):648--653, Jun 2013.
- S. I. Mozumder, M. J. Rutherford, P. C. Lambert, et al. A flexible parametric competing-risks model using a direct likelihood approach for the cause-specific cumulative incidence function. *Stata Journal*, 17(2):462--489, 2017.
- P. Royston and M. K. B. Parmar. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. *Statistics in Medicine*, 21(15):2175--2197, Aug 2002.
- P. Royston and M. K. B. Parmar. The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. *Stat Med*, 30(19):2409--2421, Aug 2011.

P. Royston and M. K. B. Parmar. Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. *BMC medical research methodology*, 13:152, 2013. ISSN 1471-2288.