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What is Somers’ D?

I We assume that pairs of (X,Y)–pairs (Xi,Yi) and (Xj,Yj) are
sampled from a specified population of (X,Y)–pairs, under a
specified sampling scheme.

I Kendall’s τa is defined as the expectation

τXY = E[sign(Xi − Xj)sign(Yi − Yj)],

or as the difference between the probabilities of concordance
and discordance between the two (X,Y)–pairs.

I Somers’ D is defined as the ratio

D(Y|X) = τXY/τXX,

or as the difference between the two corresponding conditional
probabilities, given that one X–value is known to be larger than
the other X–value.

I Somers’ D has the useful property that a higher–magnitude
D(Y|X) cannot be secondary to a lower–magnitude D(W|X).
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What is the 21st–century Rubin method of confounder adjustment?

I The Rubin method of confounder adjustment, in its 21st–century
version[6], is a 2–phase method for estimating the causal effect
of a proposed intervention, using observational data.

I In Phase 1 (“design”), we find a model in the sample data,
predicting the exposure (which we propose to intervene to
change) from confounders (expected to be unaffected).

I This model is used to define a propensity score, predicting
“exposure–proneness” as a function of the confounders.

I In Phase 2 (“analysis”), we add in the outcome data, and use the
propensity score in a regression model to estimate a
propensity–adjusted exposure effect on the outcome.

I This adjusted effect is interpreted as a difference between mean
outcomes in two scenario populations, with the same
propensity distribution, but different exposure levels.

I This is usually done using propensity matching, propensity
weighting, or propensity stratification[2].
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So what is the role of Somers’ D in propensity modelling?

I The package somersd[5] can be downloaded from SSC, and
estimates many versions of Somers’ D.

I These may be weighted or matched (using pweights), or
within–strata (using the wstrata() option).

I In propensity modelling, we want to limit the level of spurious
treatment effect that may remain, after propensity matching
and/or weighting and/or stratification.

I A good measure of this limit is Somers’ D(W|X), where X is an
exposure, W is a confounder or a propensity score, and
Somers’ D is matched and/or weighted and/or stratified.

I If Y is an outcome, then a higher–magnitude D(Y|X) cannot be
secondary to a lower–magnitude D(W|X), defined using the
same matching and/or weighting and/or stratification.
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But what is the meaning of Somers’ D(Y|X)?

I Under a wide variety of regression models, D(Y|X) can be
transformed to give a treatment effect of X on Y[3].

I For instance, if X and Y are both binary, then D(Y|X) is exactly
the difference Pr(Y = 1|X = 1)− Pr(Y = 1|X = 0).

I Similarly, if X is binary, and Y is Normally distributed with
standard deviation σ in both sub–populations defined by X, and
−0.5 < D(Y|X) < 0.5, then 2D(Y|X) is approximately the
standardized mean difference (µ1 − µ0)/σ.

I So, either way, a small Somers’ D(W|X) (matched and/or
weighted and/or stratified) can be used to give an upper bound to
the spurious treatment effect attributable to the confounder (or
propensity score) W.

I And, a large D(W|X) (matched and/or weighted and/or stratified)
indicates a problem of non–overlap, which our matching and/or
weighting and/or stratification has not balanced.
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Example: the ldw_exper dataset of Abadie et al., 2004
I We will demonstrate our methods using a dataset distributed by

The Stata Journal as online supplemental material for an article
on propensity matching[1].

I The dataset has 1 observation per subject in a 1970s
observational study, in which 185 subjects participated in a job
training program and 260 did not.

I We aim to measure the effect of the training program on 1978
earnings (in 1000s of 1978 dollars), adjusted for a list of 10
confounding covariates, using a logit propensity score computed
by the SSC package psmatch2.

I We demonstrate propensity adjustment, using matching,
weighting, and stratification.

I In Phase 1 of the Rubin method, we check for balance and
variance inflation, using the SSC packages somersd and
haif[4], respectively.

I And, in Phase 2, we measure the average treatment effect on
the treated (ATET), using the SSC package scenttest.
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The ldw_exper data
And here are the variables, after compressing and adding variable
labels:
. desc, fu;

Contains data from ldw_exper.dta
obs: 445
vars: 12 7 Apr 2004 21:48
size: 9,345

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
storage display value

variable name type format label variable label
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
t byte %16.0g t Participation in the job training program
age byte %8.0g Age
educ byte %8.0g Years of education
black byte %8.0g Indicator for African-American
hisp byte %8.0g Indicator for Hispanic
married byte %8.0g Indicator for married
nodegree byte %8.0g Indicator for > grade school but < high-school education
re74 float %9.0g Earnings in 1974 (1000s of 1978 $)
re75 float %9.0g Earnings in 1975 (1000s of 1978 $)
re78 float %9.0g Earnings in 1978 (1000s of 1978 $)
u74 byte %9.0g Indicator for unemployed in 1974
u75 byte %9.0g Indicator for unemployed in 1975
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Sorted by:

The outcome is re78, the exposure is t, and the other 10 are
confounders.
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Adding propensity scores and weights using psmatch2

We use the SSC package psmatch2, with the logit option (output
omitted):

. psmatch2 t age educ black hisp married nodegree re74 re75 u74 u75, logit;

This adds some new underscored variables, of which the most
important are a propensity score and a weight:

. desc _pscore _weight, fu;

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
_pscore double %10.0g psmatch2: Propensity Score
_weight double %10.0g psmatch2: weight of matched controls

The weight is 1 for trainees, missing for unmatched controls, and
equal to number of matched trainees for matched controls.
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Balance checks for propensity matching
To compute the unadjusted Somers’ D of the propensity score and
confounding covariates with repect to exposure to training, we use the
somersd command:

somersd t _pscore age educ black hisp married nodegree re74 re75 u74 u75, tdist;

To compute sensible matching weights for balance checks, we recall
that matching is a special case of weighting, with zero weights for
unmatched controls:

gene matchwei=cond(missing(_weight),0,_weight);
lab var matchwei "Propensity-matching weight";

We can now do balance checks for matching by computing adjusted
Somers’ D statistics, weighted by the matching weight:

somersd t _pscore age educ black hisp married nodegree re74 re75 u74 u75
[pwei=matchwei], tdist;

Both somersd commands generate output for 11 parameter
estimates, which we will omit. However. . .
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Unadjusted and matched Somers’ D of covariates with respect to training

I . . . we can plot the two
types of Somers’ D and
see instantly how well
matching has balanced
the covariates.

I Matching has balanced
the propensity score well,
but not all the component
covariates.

I Note that confidence
limits and P–values are
not really interesting here.
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Variance inflation for propensity matching

The costs of matching are summarized using the haif package[4],
which measures how much propensity–matching would inflate the
required sample number and the confidence interval widths for an
equal–variance regression, assuming that propensity–matching was
not really necessary:

. haif t, pweight(matchwei);
Number of observations: 445
Homoskedastic adjustment inflation factors
for variances and standard errors:

Variance SE
t 1.989675 1.410558

_cons 3.38057 1.838633

We see that the variance and standard error of the treatment effect t
may be greatly inflated. This is not surprising, as matching discards a
lot of controls, and weights the others unequally. However. . .
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Proceeding to Phase 2 after propensity matching
. . . if we decide to proceed to Phase 2 after all, and add in the outcome
(earnings in 1978 Kdollars), then we use a regression command:
regress re78 t [pweight=matchwei], vce(robust);

This produces some alien–looking output (omitted), but we then use
the scenttest command to do a scenario t–test, comparing treated
and untreated scenarios in trainees and their matched controls:
. scenttest, at(t=0) atzero(t=1);
Scenario 0: t=1
Scenario 1: t=0
Confidence intervals for the arithmetic means under Scenario 0 and Scenario 1
and for their comparison (arithmetic mean difference)
Total number of observations used: 295
------------------------------------------------------------------------------

| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

Scenario_0 | 6.349145 .5788231 10.97 0.000 5.209967 7.488323
Scenario_1 | 4.207207 .4140692 10.16 0.000 3.39228 5.022134
Comparison | 2.141939 .7116808 3.01 0.003 .7412844 3.542593

------------------------------------------------------------------------------

We see that these subjects are expected to earn 6.349K dollars if
trained, or 4.207K dollars if untrained. The difference is 2.142K
dollars (95% CI, 0.741K to 3.543K dollars).
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Balance checks for propensity weighting

On the other hand, we might decide not to proceed to Phase 2, and to
ask ourselves whether we should use weighting instead of matching,
in order to use all the controls. To compute sensible ATET weights
for balance checks, we compute weights to be equal to 1 for treated
subjects, and to the exposure odds for control subjects:

gene atetwei=cond(t==1,1,_pscore/(1-_pscore));
lab var atetwei "Propensity weight for ATET";

We can now do balance checks for weighting by computing
Somers’ D statistics, weighted by the ATET propensity weights:

somersd t _pscore age educ black hisp married nodegree re74 re75 u74 u75
[pwei=atetwei], tdist;

Again, we will omit the command output.
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Unadjusted and weighted Somers’ D of covariates with respect to training

I This time, the weighted
Somers’ D values are
much closer to zero than
the unadjusted ones.

I This is the case for the
propensity score and for
the component covariates.

I So, the possibilities for
spurious
exposure–outcome
associations are limited, if
we use weighting to
compute ATETs.
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Variance inflation for propensity weighting

When we measure the costs of weighting using haif, the results are
again encouraging:

. haif t, pweight(atetwei);
Number of observations: 445
Homoskedastic adjustment inflation factors
for variances and standard errors:

Variance SE
t 1.098882 1.048276

_cons 1.237852 1.112588

We see that the variance and standard error of the treatment effect t
will only be 10 percent and 5 percent larger, respectively, even if the
propensity weighting is not really necessary. This is a benefit of using
all the controls.
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Proceeding to Phase 2 after propensity weighting
This time, we might have better reason to proceed to Phase 2, and add
in the outcome (earnings in 1978 Kdollars), again using a weighted
regression command:
regress re78 t [pweight=atetwei], vce(robust);

Again, we omit the regression output, and use scenttest to do a
scenario t–test on the ATET:
. scenttest, at(t=0) atzero(t=1);
Scenario 0: t=1
Scenario 1: t=0
Confidence intervals for the arithmetic means under Scenario 0 and Scenario 1
and for their comparison (arithmetic mean difference)
Total number of observations used: 445
------------------------------------------------------------------------------

| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

Scenario_0 | 6.349145 .5781584 10.98 0.000 5.212871 7.485419
Scenario_1 | 4.594593 .3984515 11.53 0.000 3.811503 5.377683
Comparison | 1.754553 .7021615 2.50 0.013 .3745712 3.134534

------------------------------------------------------------------------------

This time, subjects like the trained ones are expected to earn 6.349K
dollars if trained, or 4.595K dollars if untrained. The difference is
1.755K dollars (95% CI, 0.375K to 3.135K dollars).
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Balance checks for propensity stratification

Alternatively, we might use propensity stratification. The strata will
be quintiles, which are thought by some to be a fine enough
stratification most of the time. For this, we use xtile:

xtile propgp=_pscore, nq(5);
lab var propgp "Propensity group";

This time, we do balance checks for stratification by computing
Somers’ D statistics, limited to within–strata comparisons by the
wstrata() option:

somersd t _pscore age educ black hisp married nodegree re74 re75 u74 u75,
tdist wstrata(propgp);

Again, we will omit the command output.
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Unadjusted and stratified Somers’ D of covariates with respect to training

I The stratified Somers’ D
values are close to zero
for the component
covariates.

I However, the Somers’ D
for the propensity score is
suspiciously positive.

I This suggests that there is
residual
exposure–propensity
association within the
quintiles, implying that 5
equal groups are not
enough after all.
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Variance inflation for propensity stratification

This time, we measure the costs of stratification using the haifcomp
module of haif, and a generated unit variable const:

. haifcomp t, nadd(ibn.propgp) dadd(const) noconst;
Number of observations: 445
Homoskedastic adjustment inflation factor ratios
for variances and standard errors:

Variance SE
t 1.0549393 1.0271024

We see that the variance and standard error of the treatment effect t
will only be 6 percent and 3 percent larger, respectively, if the
propensity stratification is not really necessary. Note that we are
assuming a non–interactive regression model. However. . .
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Proceeding to Phase 2 after propensity stratification
. . . if we then decide to proceed to Phase 2, and add in the outcome
(earnings in 1978 Kdollars), then we should use an interactive model:
regress re78 ibn.propgp ibn.propgp#c.t, noconst vce(robust);

This time, there is even more regression output (omitted), as we have
a 10–parameter model, with 1 parameter per treatment level per
propensity quintile. scenttest summarizes the ATET:
. scenttest, at(t=0) atzero(t=1) subpop(if t==1);
Scenario 0: t=1
Scenario 1: t=0
Confidence intervals for the arithmetic means under Scenario 0 and Scenario 1
and for their comparison (arithmetic mean difference)
Total number of observations used: 445
------------------------------------------------------------------------------

| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

Scenario_0 | 6.349145 .5811033 10.93 0.000 5.207026 7.491265
Scenario_1 | 4.498153 .3630063 12.39 0.000 3.784689 5.211617
Comparison | 1.850993 .6851676 2.70 0.007 .5043419 3.197643

------------------------------------------------------------------------------

This time, the trained subjects are expected to earn 6.349K dollars if
trained, or 4.498K dollars if untrained. The difference is 1.851K
dollars (95% CI, 0.504K to 3.198K dollars).
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Summary: Balance checks using Somers’ D

I Here are the unadjusted,
matched, weighted and
stratified Somers’ D
parameters, for the
propensity score and
component covariates.

I Of the 3 adjustment
methods, weighting
seems best at balancing
the propensity score and
the component covariates.

I Propensity weighting
therefore seems to be the
“best buy”.
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Summary: Costs and benefits of adjustment methods

I The costs of adjustment
are measured using the
variance and SE inflation
factors.

I The benefits of
adjustment are measured
using reduction in
Somers’ D of propensity
score with respect to
exposure.

I Again, propensity
weighting seems to be the
“best buy”.
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This presentation, and the do–file producing the examples, can be
downloaded from the conference website at
http://ideas.repec.org/s/boc/usug16.html

The packages described and used in this presentation can be
downloaded from SSC, using the ssc command.
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