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Introduction



Introduction

We regularly run a course on using simulation to evaluate
statistical methods

This talk will go through some of the key points of the course,
with a focus on concepts, Stata issues and avoiding trip-ups

I will do this through a running example
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‘Not’s

This talk is not:

◦ A condensed version of the course (if you want the course,
come to the next one or invite us!)
◦ About how to generate specific types of data
◦ Delving into ‘realistic’ or ‘unrealistic’ data structures
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‘Is’s

This talk is about:

◦ Treating a simulation study as an proper experiment, not just
something dashed-off
◦ A structured approach to planning, based on ADMEP (an

awkward initialism for the elements)
◦ Presenting measures of uncertainty
◦ Exploring how we might present simulation results
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Uses of simulation

Simulation can be used for all sorts of things in statistical
research:

◦ Check that code does the intended analysis
◦ Check robustness of our programs
◦ Understand concepts or commands
◦ Check algebra (esp. approximations)
◦ Evaluation of a method
◦ Comparison of methods
◦ Sizing studies
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Example: meta-analysis of crossover trials

A primer for those unfamiliar with crossover designs:

◦ Trial design suitable for patients with chronic, stable
conditions who undergo repeated treatment
◦ Patients are randomised to a sequence of treatments
◦ Describes a very general class of designs but the most

common is the ‘AB/BA’ design: half assigned to A-then-B; half
assigned to B-then-A
◦ Main advantage is balance→ efficient estimate of treatment

effect
◦ Seminal books are by Jones and Kenward (2003) and Senn

(2002)
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Example: meta-analysis of crossover trials
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Example: meta-analysis of crossover trials

For today we will consider linear models only.

Authors describe and rank three possible ways to include
crossover data in (two-stage) meta-analysis:

1. Include results from paired analysis
2. Include results using data from first period only
3. Include results based on all data but ignoring pairing

Note that (1) is not always possible in meta-analysis when using
published results rather than individual-level data
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Example: meta-analysis of crossover trials

1. Paired analysis
2. Period-1 only
3. Unpaired analysis of all data

Rationale for (2): ‘. . . in a randomize cross-over trial the first
period is, in effect, a parallel group trial.’

Ok to throw away [up to] half of the data?
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Example: meta-analysis of crossover trials

1. Paired analysis
2. Period-1 only
3. Unpaired analysis of all data

Why is (2) > (3), supposedly?
‘At best, it [method (3)] is conservative as it ignores the
within-patient correlation and so does not make use of the
design advantages of a cross-over trial. More importantly, this
approach ignores the fact that the same patients appear in both
arms of the study and so they are not independent of each
other, as required in standard statistical methods.’
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Example: meta-analysis of crossover trials

1. Paired analysis
2. Period-1 only
3. Unpaired analysis of all data

By the authors’ own arguments, (3) > (2). I will demonstrate
why with a simulation study

For simplicity, I will focus on analysis of a single crossover trial,
rather that meta-analysis (results similar either way)
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Does it matter?
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Planning with ADMEP



Planning with ADMEP

Based on the example, I will plan a simulation study using the
following structured approach:

A – Aims
D – Data-generating mechanisms
M – Methods
E – Estimands
P – Performance measures
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ADMEP: Aims

Before starting, need to work out what we want to learn so we
can decide on the best way to learn it

To determine which of the unpaired analyses (2) and (3) is
preferable

Aim to investigate whether (3) is conservative (compared
to what?) and the power/precision of the various methods.
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ADMEP: Data-generating mechanisms

We’re going to consider an AB/BA design and assume a
crossover trial is appropriate (main effects of period may exist
but no carryover of any sort)

Generate (Y1,Y2) ∼ BVN for n = 200 patients

◦ Mean is 0 for control arm, θ for research arm (chosen so
that power for method (3)=80% )
◦ Variance = 1 in both periods
◦ Correlations between (Y1,Y2) of 0 and 0.3

Trivial to do using drawnorm and reshape
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ADMEP: Data-generating mechanisms

Here, we are not looking for something realistic and have used
something simple which is sufficient to make the point

More generally, choosing data-generating mechanisms can be
very hard, especially when the mechanism/s impact on how
misspecified the methods are.
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ADMEP: Methods to evaluate

1. Paired analysis of crossover trial (comparator/benchmark)
. regress y trt period i.id

2. First period only
. regress y trt if period==1

3. Unpaired analysis of all data
. regress y trt period
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ADMEP: Estimands

(Estimand = the quantity we wish to estimate)

We are interested in estimation of the treatment effect θ

This is the mean of (YA − YB) and is the estimand of primary
interest in crossover trials – the design is predicated on
minimising Var(θ)

20



ADMEP: Estimands

For our example the estimand is obvious. This is not always
true.

◦ Marginal vs. conditional estimands can be subtle
◦ For prognostic models may need many estimands for the

many quantities people are interested – need to cover
these
◦ Methods for modelling nonlinear effects: parameters

themselves may not be comparable, for example
comparing categorisation vs. splines vs. fractional
polynomials
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ADMEP: Performance measures

No issue of bias in θ̂ for any analysis

Elbourne et al. claim that method (3) is ‘conservative’. They
mean that V̂ar(θ̂) is positively biased, leading to confidence
intervals that are too wide / over-coverage, so these must be
evaluated.
Our performance measures are:

◦ Coverage of 95% confidence intervals
◦ Empirical SE of each method, and relative SE of (2) & (3)

vs. (1)
◦ Model SE for each method and relative error
◦ Power of each method
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Choosing the number of repetitions nsim

A very common question. Performance measures will dictate
the number of repetitions required: the issue is Monte Carlo
error (representation of uncertainty due to using finite nsim)

◦ Could just try something and see if MC error is suitably low,
then decide whether more are needed→ a bit ad hoc
◦ Prefer to start by selecting performance measures of

central interest and work out uncertainty we would be
prepared to accept (can always increase if needed)
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Choosing the number of repetitions nsim

For example, say key performance measures are coverage and
power. Monte Carlo SE is√

π(1− π)
nsim

We expect coverage ≥ 95% and chose θ s.t. power ≥ 80% for
analysis (3). Say we are willing to accept MC error (SEreq) of
0.4%. Then plug into

nsim =
π(1− π)(
SEreq)2

Then, for coverage, nsim ≈ 2, 969
For power, nsim = 10, 000
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Code for the DGM

mat def sd = (1,1)

mat def corr = (1, .3 \.3, 1)

drawnorm y1 y2 , sds(sd) corr(corr) n(200) clear

gen int id = _n

gen byte tperiod = 1 in 1/100

replace tperiod = 2 in 101/200

reshape long y , i(id) j(period)

gen byte trt = period==tperiod

drop tperiod

replace y = y + ‘trteff’ if trt

Henceforth this chunk = -dgm-
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Generating, analysing, posting (post)

local nsim 10000

local sigma 1 ...

tempname tim

postfile ‘tim’ int(rep) str7(method) float(corr)

> double(theta se) int(df) using estimates, replace

forval r = 1/‘nsim’ {

foreach c of numlist 0 .3 {

-dgm-

-analysis 1-

post ‘tim’ (‘r’) ("Paired") (‘c’) (_b[trt])

> (_se[trt]) (e(df_r))

-analysis 2- ...

}

}

postclose ‘tim’
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Generating, analysing, posting (simulate)

The simulate command is an alternative to post.

You write an rclass program that does one repetition and
returns what you would have posted.

It has some serious drawbacks so I avoid it.

Ok fine, I’ll show you then. Here’s how we would code our
simulation study with simulate. . .
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Generating, analysing, posting (simulate)

program define crosssim, rclass

syntax [ , n(integer 200) sd(real 1) corr(real .3) ]

return scalar corr = ‘corr’

-dgm-

-analysis 1-

regress y trt period i.id

return scalar theta1 = _b[trt]

return scalar se1 = _se[trt]

return scalar df1 = ‘e(df_r)’

-analysis 2-

...

end

crosssim // test with a single run

return list // check what it returns
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Running the reps (simulate)

program define crosssim, rclass

syntax [ , n(integer 200) sd(real 1) corr(real .3) ]

return scalar corr = ‘corr’

-dgm-

regress y trt i.id

return scalar theta1 = _b[trt]

return scalar se1 = _se[trt]

return scalar df1 = ‘e(df_r)’

-analysis 2-

return scalar theta2 = _b[trt]

...

end

simulate corr=r(corr) theta1=r(theta1) se1=r(se1) df1=r(df1)

> theta2=r(theta2) se2=r(se2) df2=r(df2) ... , reps(10000):

> crosssim
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So what’s wrong with simulate?

1. Doesn’t post a repetition number. I want a unique
identifier and sort order as I don’t trust it not to change.
Could say ‘Who cares! They are independent repetitions so
the order doesn’t matter.’ Perhaps.

2. You can’t post strings
For what you have just seen, you could argue that it’s more
efficient to store ‘method’ as byte (1, 2 and 3) and label the
resulting values afterwards. True.

Hold those thoughts. . .
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Pseudo-randomness, seeds and states



Coding simulation studies and the RNG

All simulation files will loosely follow:

◦ Generate data involving some element of random sampling
◦ Apply some method to data
◦ Store results of method
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Pseudo, seeds and states

At the core, simulation studies involve using (pseudo-)random
sampling from probability distributions. This means it is actually
deterministic.

This shouldn’t concern us. A coin-toss or die-roll can be viewed
as equally deterministic (albeit as a result of unknown factors
that act in a completely unpredictable fashion, rendering
reproduction of a long sequence difficult).
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Pseudo, seeds and states

The ‘pseudo’ element is sometimes characterised negatively.
The main negative arises if the random number generator
(RNG) is misused. Can lead to the state ‘jumping in’ on a
previous state, resulting in lack of independence across
simulated datasets (implications for parallelisation).

Positive:

◦ Having planted a seed, the state evolves in a completely
deterministic manner, with each random number generated
moving the position of the state forwards by one
◦ If there is a failure for repetition 4,870 you can reproduce

the exact data and explore to understand better
35



Pseudo, seeds and states

Advice:

1. Set the seed at the beginning, once only
2. Store the state as often as necessary

This avoids ‘jumping in’ through manipulation of the seed but
facilitates reproducibility
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Set the seed once

With post, set the seed before any random numbers are
generated and outside of the main loop.

set seed 827271

local nsim 10000

local sigma 1

...
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Set the seed once

With simulate, it’s an option:

simulate ... , reps(10000) seed(827271):

> crosssim
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Storing the state

In Stata 13, it was called c(seed) and looked like this:
X075bcd151f123bb5159a55e50022865700053e56

In Stata 14 (Mersenne Twister), it’s called c(rngstate) and is
much longer
. di strlen("‘c(rngstate)’") > 5011

Storing the state requires strL format

39



Storing the state with post (v14)

When using post, you can post up to str2025. So, to store the
state in Stata 14:

tempname poststate

postfile ‘poststate’ int(repno) str2000(state1 state2)

> str1100(state3) using statefile.dta

...

post ‘poststate’ (‘r’) (substr(c(rngstate),1,2000))

> (substr(c(rngstate),2001,2000))

> (substr(c(rngstate),4001,.))

...

postclose ‘poststate’

Resulting file size for 1,000 reps: >5mb
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Storing the state with post (v13)

Previously, in Stata 13:

tempname poststate

postfile ‘poststate’ int(repno) str41(state) using

statefile.dta

...

post ‘poststate’ (‘r’) (c(rngstate))

...

postclose ‘poststate’

Resulting file size for 1,000 reps: ∼43kb
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Storing the state with simulate

When using simulate, you can’t post strings, so you have to
work out another way to reproduce simulated datasets (there
are ways)

42



Store the state often

Not just important if you anticipate errors (you should)

Necessary if you want to increase nsim without jumping in

Useful if you want to add a method (which you may wish to in
future), but wish to avoid repeating the entire simulation study
and potentially getting slightly different results for original
methods

(Note: point only applies if there is a stochastic element in the
analysis)
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Analysis of estimates data

Have a dataset of estimates in long or wide format. Here are
results for first rep. in long format:
rep method corr theta se df

1 1 0 .59832 .09165 199

1 2 0 .59832 .09397 398

1 3 0 .62074 .1328 198

1 1 .3 .47513 .08136 199

1 2 .3 .47513 .09920 398

1 3 .3 .53624 .14550 198
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Analysis of estimates data

Results for first rep. in wide format:
rep corr theta1 se1 df1 theta2 se2 df2 ...

1 0 .59832 .09165 199 .59832 .09397 398 ...

1 .3 .47513 .08136 199 .47513 .09920 398 ...
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Analysis of estimates data

Computing performance measures across DGMs and methods
is often done without Monte Carlo error and presented in a
table.

Stuff like this. . .
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Jackson,White & Thompson,Stat. Med. (2009)
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Analysis of estimates data

Please, for the sake of the children, avoid this sort of table
(except in an appendix)

Instead, suggest:

1. Plots of estimates data
2. Plots of performance measures

We do not claim to have perfect answers, but some ideas follow.
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Plot θ̂i by DGM and method
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Plot θ̂i by DGM and method

What does this tell us?

1. All methods are unbiased
2. Paired and unpaired analysis of all data closer on average to

true θ than analysis of period 1 data only: they have lower
empirical SE

3. Paired and unpaired analysis almost indistinguishable
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Compare θ̂i across methods
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Plot θ̂i by DGM and method

What does this tell us?

1. Paired and unpaired analysis return identical point estimates
(this is obvious on hindsight because of full balance)
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Plot ŜE(θ̂i) by DGM and method
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Compare θ̂i across methods
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Plot of CIs: coverage
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More interesting alternative
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Plot of CIs: power
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Analysis of estimates data

For information on estimation of performance measures and
Monte Carlo error, see:

White IR. simsum: Analyses of simulation studies including
Monte Carlo error. Stata Journal 2010; 10(3):369–385.

Koehler E, Brown E, Haneuse. On the assessment of Monte
Carlo error in simulation-based statistical analyses. The
American Statistician 2009; 63:155–162
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Estimate and tabulate performance measures

Performance meas. Paired Unpaired Period 1
relating to θ̂ Corr
Coverage % 0 94.9 0.22 94.8 0.22 94.6 0.23

0.3 95.1 0.22 98.0 0.14 95.3 0.21

Empir. SE (×100) 0 10 0.07 10 0.07 14.2 0.1

0.3 8.2 0.05 8.2 0.05 13.9 0.09

% gain in precision 0 0 . 0 . −50.4 0.69

(vs. paired) 0.3 0 . 0 . −64.7 0.58

Model SE (×100) 0 10.0 0.005 10.0 0.004 14.1 0.007

0.3 8.4 0.004 10.0 0.004 14.1 0.007

Power % 0 97.8 0.1 97.8 0.1 79.8 0.4

0.3 99.8 0.04 99.3 0.1 80.4 0.4
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Estimate and plot performance measures
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Estimate and plot performance measures
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Estimate and plot performance measures
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Sample-conditional performance

A cautionary principle: do not estimate performance measures
conditional on sample statistics.

An example:

1. Draw samples from N(0, 1)
2. In each, compute mean and t-based CI
3. Estimate coverage overall and in tertile-based groups of SE

nsim Coverage SE

Overall 30,000 95.0 0.1

Lowest third of SEs 10,000 91.5 0.2

Middle third of SEs 10,000 95.5 0.2

Highest third of SEs 10,000 98.0 0.1
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Preparing to fail?

For some simulation studies it is inevitable that some
repetitions will result in failure – even after efforts to robustify
(user-written) commands.

Implications:

◦ Need to ensure results get stored as failures (i.e. avoid
accidentally posting leftovers from previous reps)
◦ Need an approach to analysis (could regard results for a

method as ‘encouraging conditional on a method
converging’ – but see previous slide)
◦ May need to consider incomplete-data methods
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Meta-analysis of crossover trials

1. Paired analysis
2. Period-1 only
3. Unpaired analysis of all data

Why is (2) supposedly superior to (3)?
‘At best, it [method (3)] is conservative as it ignores the
within-patient correlation and so does not make use of the
design advantages of a cross-over trial. More importantly, this
approach ignores the fact that the same patients appear in both
arms of the study and so they are not independent of each
other, as required in standard statistical methods.’
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Meta-analysis of crossover trials

1. Paired analysis
2. Period-1 only
3. Unpaired analysis of all data

Why is (3) actually superior to (2)?
At best, it [method (3)] is as good as method (1) – despite the
fact that it ignores the within-patient correlation and does not
make use of the design advantages of a cross-over trial. More
importantly, compared with method (2), this approach is at less
risk of making either a type I or a type II error, and so should be
preferred.
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Meta-analysis of crossover trials

I have a strong view on this, but one could argue that in fact
method (2) > method (3) if:

1. You care that coverage must be as advertised and don’t want
extra for free (‘I don’t take charity!’)

2. You have an obsession with model SE ≈ empirical SE
(‘randomisation validity’)
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Simulation recommendations

◦ Plan simulation studies on paper before coding
◦ Structure is key and ADMEP is a useful general approach

(you may go back and forth. . . lots), which is a ready-written
methods section
◦ Use theoretical knowledge of the problem (e.g. we did not

need to evaluate bias)
◦ Build code up slowly
◦ In general, use postfile and not simulate (until it’s fixed!)
◦ Report Monte Carlo SEs (simsum)
◦ Make the elements of ADMEP coherent in tabulations or

plots of performance measures
◦ Do all you can to make results reproducible
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