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1. Summary

• Quantile regression (Koenker and Bassett, 1978) is
increasingly used by practitioners, but there are still some
misconceptions about how diffi cult it is to obtain valid
standard errors in this context.

• In this presentation I discuss the estimation of the covariance
matrix of the quantile regression estimator, focusing special
attention on the case where the regression errors may be
heteroskedastic and/or “clustered”.

• Specification tests to detect heteroskedasticity and
intra-cluster correlation are also discussed.

• The presentation concludes with a brief description of qreg2,
which is a wrapper for qreg that implements all the methods
discussed in the presentation.
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2. Basics of quantile regression

• For 0 < α < 1, the α-th quantile of y given x is defined by

Qy (α|x) = min{η|P(y ≤ η|x) ≥ α}.

• Assume that Qy (α|x) is linear, so that

Qy (α|x) = x ′β (α) ,

which is equivalent to

y = x ′β (α) + u (α) ; Qu(α)(α|x) = 0.
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3. Estimation with clustered data

• Let the data be {(ygi , xgi ), g = 1, . . . ,G , i = 1, . . . , ng },
where g indexes a set of G clusters, each with ng elements
(for simplicity, we set ng = n).

• It is assumed that the disturbances are conditionally
independent across clusters (but can be correlated within
clusters).

• Note that for ng ≡ 1 we have the usual (heteroskedastic) case.
• So the model to be estimated is:

ygi = x ′gi β (α) + u (α)gi .

• Examples include: Cross-sectional regression with clustered
data (by regions, industry, etc.), Pooled quantile regression,
Quantiles with correlated random effects.
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• β (α) can be estimated as

β̂ (α) = argmin
b

1
G

G

∑
g=1

 ∑
ygi≥x ′gib

α
∣∣ygi − x ′gib∣∣+∑

ygi<x ′gib

(1− α)
∣∣ygi − x ′gib∣∣

 ,

• β̂ (α) is usually estimated by linear programming methods.

• Asymptotic theory is non-standard because the objective
function is not differentiable.
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• It is possible to show that (Parente and Santos Silva, 2016):

√
G
(

β̂ (α)− β (α)
) D→ N

(
0,B−1AB−1

)
.

where

A = E
[
∑n
i=1 ∑n

j=1 xgix
′
gj (α− I [ugi < 0]) (α− I [ugj < 0])

]
,

B = ∑n
i=1 E[xgix ′gi f (0|xgi )]

• Notice that the asymptotic results depend on G → ∞.
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4. Robust covariance matrix estimation

• One way to perform robust inference is to use bootstrap.
• This, however, can be quite expensive especially for large
models for large datasets.

• Parente and Santos Silva (2016) show that it is possible to
obtain consistent estimators of A and B :

Â =
1
G ∑G

g=1 ∑n
i=1 ∑n

j=1 xgix
′
gjψα(i)ψα(j),

B̂ =
1

2δGG
∑G
g=1 ∑n

i=1 1
(
−δG ≤

(
ygi − x ′gi β̂ (α)

)
≤ δG

)
xgix ′gi ,

ψα(i) = α− I
[(
ygi − x ′gi β̂ (α)

)
< 0

]
,

where δG is a bandwidth parameter.
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• As in Koenker (2005, p. 81), we can define

δG = κ
[
Φ−1 (α+ hG )−Φ−1 (α− hG )

]
,

where hG is (see Koenker, 2005, p. 140)

hG = (nG )
−1/3

(
Φ−1

(
1− 0.05

2

))2/3
(
1.5
(
φ
(
Φ−1 (α)

))2
2 (Φ−1 (α))2 + 1

)1/3

,

and κ is a robust estimate of scale.

• For example, κ can be defined as the MAD (median absolute
deviation) of the α-th quantile regression residuals.
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5. Specification tests

• When there is no intra-cluster correlation the proposed
covariance estimator is equivalent to a standard
“heteroskedasticity robust” estimator (see Powell, 1984,
Chamberlain, 1994, and Kim and White, 2003).

• This is also the case when ng ≡ 1.

• When the errors are i.i.d., the estimator is equivalent to the
one originally proposed by Koenker and Bassett, 1978).

• Specification tests can be used to detect intra-cluster
correlation and heteroskedasticity.
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• Parente and Santos Silva (2016) proposed a test to check for
intra-cluster correlation.

• Jeff Wooldridge proposed a similar test based on the OLS
residuals.

• These are robust versions of Breusch and Pagan’s (1980) error
components test

• Machado and Santos Silva (2000) proposed a test to check
for heteroskedasticity in quantile regression.

• For α = 0.5, this is the well-known Glejser (1969) test for
heteroskedasticity.

• Simulation results suggest the tests have good performance
both under the null and under the alternative.
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6. The qreg2 command

• qreg2 is a wrapper for qreg which estimates quantile
regression and reports robust standard errors and t-statistics.

• By default the standard errors are asymptotically valid under
heteroskedasticity and misspecification.
• Standard errors that are also robust to intra-cluster correlation
can be obtained with the option cluster.

• By default, the Machado-Santos Silva (2000) test for
heteroskedasticity is reported.

• When the option cluster is used the Parente-Santos Silva
(2016) test for intra-cluster correlation is reported.
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qreg2 depvar [indepvars] [if] [in] [weight] [, options]

quantile(#): estimates # quantile; default is quantile(.5)

cluster(clustvar): standard errors are computed allowing for
intra-cluster correlation

mss(varlist): use varlist in the MSS heteroskedasticity test

silverman: uses Silverman’s rule-of-thumb as a scaling factor for
the bandwidth

epsilon(#): controls the number of residuals set to zero; default
is epsilon(1e-7)
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7. Final notes

• qreg has an option to compute robust standard errors and
t-statistics (but not clustered-robust).

• However, it is not clear to me how this is implemented.

• Simulations suggest that our estimator performs much better.

• The discussion of quantile (median) regression in the Stata
manual could be much improved.

• The comparison with regress and rreg is very misleading.
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