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The simsam package 

simsam uses simulation to determine the sample size required to 

achieve given statistical power to detect a given effect, for any 

hypothesis test under any statistical model that can be programmed 
in Stata. 

Hooper R. Versatile sample size calculation using simulation. 

Stata Journal 2013;13(1):21-38 



Why worry about sample size? 

“The number of subjects in a clinical trial should always be large 

enough to provide a reliable answer to the questions addressed. This 

number is usually determined by the primary objective of the trial.” 

International Conference on Harmonisation of technical requirements 

for registration of pharmaceuticals for human use 
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“For scientific and ethical reasons, the sample size for a trial needs 

to be planned carefully, with a balance between medical and 

statistical considerations.” 

CONSORT statement on the reporting of clinical trials, endorsed by 

leading general medical journals 

“This [sample size calculation] is frequently one of the least credible 

components of a trial [funding] application.” 

UK National Institute for Health Research 



Basic syntax of simsam 

. simsam subcommand_name n_name, /// 

>     detect(parameter_name(parameter_value))  /// 

>     null(parameter_name(null_value))  /// 

>     assuming(nuisance_parameter1(par1_value) … )  /// 

>     p(.8) inc(10) prec(0.01) 

where subcommand_name is the name of a user-written program 

which codes the statistical model and the hypothesis test 
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A modular view of a simsam subcommand 

program define subcommand_name, rclass 

        syntax , n_name(integer)  /// 

            parameter_name(real)  /// 

            nuisance_parameter1(real)  /// 

            : 

        drop _all 

        [generate data-set] 

        [analyse data-set] 

        return scalar p = expression_for_pvalue 

end 



Something more complex: a two-stage adaptive design 

program define subcommand_name, rclass 

        syntax , … 

        drop _all 

        [generate data from stage 1] 

        [analyse data from stage 1 and calculate p-value] 

        [choose to stop there, or else adapt the protocol based 
        on stage 1 results, then generate data from stage 2] 

        [analyse data from stage 2 and calculate p-value] 

        [return a combined p-value from the two stages] 

end 



Trials with survival (time-to-event) outcomes 

For an individually-randomised trial where the outcome is time until 

death (possibly censored), the total number of deaths that must be 

observed to detect hazard ratio  with given power is approximately 

(Schoenfeld, 1983) 

Jahn-Eimermacher et al (2011) extend this to cluster-randomised 

trials analysed with frailty models, for which the above formula 

underestimates sample size. Their extended formula still 

underestimates sample size when the cluster size is variable. 
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program define s_survival, rclass 

        syntax , recrdur(integer) recrrate(integer)  /// 

            hr(real) failratec(real)  /// 

            folldur(real) droprate(real) 

        drop _all 

        set obs `=`recrdur'*`recrrate'' 

        gen group=mod(_n,2) 

        gen abs_trecr=sum(-log(runiform())/`recrrate' 

        gen tfail=-log(runiform())/`failratec'*`hr'^group 

        gen tdrop=-log(runiform())/`droprate' 

        gen tstop=`recrdur'+`folldur'-abs_trecr 

        drop if tstop<0 

        gen t=min(tfail, tdrop, tstop) 

        gen fail=(t<min(tdrop, tstop) 

        stset t, failure(fail) 

        stcox group 

        return scalar p=2*normal(-abs(_b[group]/_se[group])) 

end 
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• You have to decide how you would handle errors if they 

occurred in the analysis of the real data. 

• Simplest approach: treat the result as non-significant. 

– To do this you just need to exit the subcommand without 

returning a p-value 

capture noisily { 

    stcox group 

    return scalar p=2*normal(-abs(_b[group]/_se[group])) 

} 
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Capturing errors in the survival analysis 

• Assuming the data are legitimate, the only error you are really 
likely to encounter with stcox is failure to converge. 

– This turns out to be especially a problem with frailty analyses 

of cluster-randomised trials. 

• You have to decide how you would handle errors if they 

occurred in the analysis of the real data. 

• i.e. you need to specify an Analysis Plan 



Capturing errors in the survival analysis 

e.g. if Cox regression fails to converge, try parametric regression 

with a Weibull model for survival times 

capture noisily { 

    stcox group 

    return scalar p=2*normal(-abs(_b[group]/_se[group])) 

} 

if _rc~=0 { 

    streg group, dist(weibull) 

    return scalar p=2*normal(-abs(_b[group]/_se[group])) 

} 



Convergence problems that don't lead to errors: 

controlling the number of iterations used for estimation 

• Generally stcox converges after a few iterations 

• Very occasionally it will continue on to the maximum number of 

iterations (16,000 by default) without producing a non-

convergence error 

• Hence simsam will appear to be hung up but will not halt with an 

error message 



Convergence problems that don't lead to errors: 

controlling the number of iterations used for estimation 

The solution is to re-set the maximum number of iterations: 

. set maxiter 20 

. simsam s_survival recrrate, /// 

>     detect(hr(1.5)) null(hr(1.0))  /// 

>     assuming(failratec(0.5) /// 

>         recrdur(2) folldur(1))  /// 

>     p(.8) inc(1) prec(0.001) 



------------------------------------------------------ 

iteration recrrate              power (99% CI) 

------------------------------------------------------ 

        1      100 ........... 0.6500 (0.5172, 0.7681) 

        2      143 ........... 0.8120 (0.7782, 0.8428) 

        3      139 ........... 0.7971 (0.7866, 0.8074) 

        4      141 ........... 0.8004 (0.7972, 0.8037) 

        5      141 ........... 0.8009 (0.7999, 0.8019) 

        6      140 ........... 0.7988 (0.7978, 0.7998) 
------------------------------------------------------ 

     null      141 ........... 0.0499 (0.0489, 0.0509) 

------------------------------------------------------ 

 

      recrrate = 141 

        achieves 80.09% power (99% CI 79.99, 80.19) 

          at the 5% significance level 

    to detect 

            hr = 1.5 

     assuming 

     failratec = 0.5 

       recrdur = 2 

       folldur = 1 

 

     under null:  4.99% power (99% CI  4.89,  5.09) 



Concluding remarks 

Simulation for sample size calculation 

– is accurate and versatile 

– but must anticipate every contingency 

– needs statistician input 

– forces you to think about the analysis in detail (no bad thing) 

– helps others to develop related applications 

 

 



Thank you 

• More info at http://webspace.qmul.ac.uk/rlhooper/simsam 

• simsam update planned for Jan 2014 


