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Chen, Gilbert & Daling (1999)

* Maternal risk factors for Down's syndrome

 Smoking appears to be protective! OR=0.80
(95% CI1 0.68-0.95)

* Then adjusted for age (dichotomised at 35) it is
not significant but still on the protective side:
OR=0.89 (95% CI1 0.73-1.10)

* Finally, adjusted for the precise age in years, it
disappears: OR=1.00 (95% CI 0.82-1.24)



Residual confounding

* Chen, Gilbert & Daling's 2nd analysis was
residually confounded.

* Age was the confounder, and it was measured
coarsely.

* We only know a region within which it might lie
for each of the mothers in the study:.

* Heitjan & Rubin investigated MLE methods for
coarse data, but with covariates we generally
don't care about the marginal distribution



Incomplete data

* This is a bit like missing data (note the
presence of Don Rubin)

* |n fact missing data is a special case of extreme
coarseness.

* \We can try some missing data methods on
these confounding variables, but we might not
know which observations are coarsened.

* For example, digit preference in number of
cigarettes smoked per day.



How to make a medical scare story
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Smith & Ebrahim. Int J Epidemiol (2001); 30: 1-11.



Can we say anything about the true values?
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Artificial data based on statistics of Oda & Kawai. Diab Care (2009); 32(9): e113.



Consider two “current smokers”




Ingredients

* Assumption about form of the conditional
distribution of confounder's true values
(hopefully informed by evidence)

* Any other correlates in the data, leading to
conditional distribution

* Assumption about coarsening mechanism
(hopefully informed by evidence)



Procedure

* Find the parameters of the conditional
distribution of the true confounder, and if
necessary the coarsening mechanism

* Plug these into the conditional distribution of the
true values given all known data

e (under your assumptions...)
* Multiply impute from this
e ordoitallin one by MCMC / HMC

* Analyse the substantive model as normal and
combine by Rubin's rules



Heitjan-Rubin and its extension
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Example: Heaped Poisson
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Example: Heaped Poisson

program define resconf poisson

end

verzion 11

args Infj loglambda logitpi

tempvar pi

tempvar lambda

qui gen double "lambda'=exp(’ loglambda')

qui gen double “pi'=exp( logitpi')/ (l+exp( logitcpi'))

qui replace "lnfi'=(({l-g})*({(-1*%"lamkda') + (cstar* " loglambda'}) + 1ln(l-"pi'}) - lnfactorial(cstar)))
(g# [ (-1* lambda'")+1ln((( lambda'"(cetar+l) ) /round (exp (lnfactorial (cetar+l)))

({"lambda'™ (catar+2) )/ round (exp (lnfactorial (cstar+2)))
({"lambda'®" (cestar+3) ) /round (exp (Infactorial (cetar+3)))
({"lambda'" (cestar+d) ) /round (exp (lnfactorial (cestar+d)))
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Interval-censored normal

* A special case because most stats software has
Tobit-esque regressions for this kind of data

* Get the predicted value and the SE
* Impute truncated normal by rejection sampling
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Interval-censored with overlap...

o Useful sensitivity analysis
* Allows some misclassification
* Linear overlap makes integration simpler

Latent SES



Whitehall Il attrition

Real-life example based on Mein et al (2012)

Gender difference in non-response at phase 2 of the

study, adjusted for age

Occupational grade (3 levels) is confounder — a coarse
proxy for socio-economic status

Looks like grade and sex are more strongly correlated
than SES (including other predictors)

Model Beta 95% CI

Confounded 0.262 0.161 10 0.362
Residually confounded -0.012 -0.127 t0 0.102
Imputed x80 (intreg) 0.028 -0.086to 0.143




What's next?

* Robustness to mispecification

» Collection of likelihood functions for various
common coarsening mechanisms and forms of

conditional distribution

* Application to clustered coarsening such as
coding habits of data collectors
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