Estimating the random coefficients logit model of demand using aggregate data

David Vincent

Deloitte Economic Consulting
London, UK
davivincent@deloitte.co.uk

September 14, 2012

Introduction

- Estimation of consumer demand in differentiated product industries plays a central role in applied economic analysis
- The conventional approach is to specify a system of demand functions that correspond to a valid preference ordering, and estimate the parameters using aggregate data
- A popular example is the Almost Ideal Demand System of Deaton(1980), where market shares are linear functions of the logarithm of prices, and real expenditure.
- A major concern in adopting this approach, is the large number of parameters that need to be estimated, even after the restrictions of adding-up homogeneity a symmetry have been imposed
- The dimensionality problem can be solved if preferences are assumed to be separable; however, this places severe restrictions on the degree of substitutability between goods in different sub-groups

Introduction

- The logit-demand model (McFadden 1973) is another way to address the dimensionality problem, by assuming instead that consumers' have preferences over product characteristics
- Although easy to estimate, this model again imposes strong a-prior restrictions over the patterns of substitutability
- The purpose of this presentation is to discuss the random coefficients logit demand model (Berry Levinhson Pakes 1995)
- This framework accommodates consumer heterogeneity, by allowing taste parameters to vary with individual characteristics and requires market level data for estimation
- The model produces cross price elasticities that are more realistic and allows for the case where prices are endogenous
- It is very popular in the Industrial Organization literature and routinely applied by regulatory authorities, yet these is no official BLP Stata command!

The Model

- Following Nevo(2005), assume we observe $t=1, . ., T$ markets consisting of I_{t} consumers and J products. For each market, data is available on total quantities sold, prices and product characteristics of all J products
- Markets are assumed to be independent and can be cross-sectional (e.g. different cities) or repeated observations
- let $u_{i j t}$ denote the indirect utility that individual i experiences in market t when consuming product j, and assume this depends on a $K \times 1$ vector of product characteristics $x_{j t}$, price $p_{j t}$ an unobserved component $\xi_{j t}$, and an idiosyncratic error $\epsilon_{i j t}$. If the utility function is quasi-linear utility, then:

$$
\begin{equation*}
u_{i j t}=\alpha_{i}\left(y_{i}-p_{j t}\right)+x_{i j t}^{\prime} \beta_{i}+\xi_{j t}+\epsilon_{i j t} \tag{1}
\end{equation*}
$$

- where y_{i} is income, β_{i} is a $K \times 1$ vector of coefficients and α_{i} is the marginal utility of income.

The Model

- Consumer i also has the choice to buy the outside product $j=0$ with normalized utility $u_{i 0 t}=\alpha_{i} y_{i}+\epsilon_{i 0 t}$.
- Both β_{i} and α_{i} and assumed to be linear functions of characteristics D_{i} and v_{i} of dimensions $d \times 1$ and $(K+1) \times 1$:

$$
\begin{equation*}
\binom{\beta_{i}}{\alpha_{i}}=\binom{\beta_{0}}{\alpha_{0}}+\Pi D_{i}+L v i \tag{2}
\end{equation*}
$$

- where $\mathrm{v}_{i} \sim \operatorname{iid}\left(0, I_{K+1}\right), D_{i} \sim \operatorname{iid}\left(0, \Sigma_{D}\right), \Pi$ is a $K+1 \times d$ matrix of coefficients, and $L L^{\prime}=\Sigma_{V}$
- Although both D_{i} and v_{i} are unobserved, the distribution of the demographics D_{i} including Σ_{D} is assumed to be known
- This is not the case for v_{i} where a parametric distribution is assumed (e.g. normal)
- In practice $F_{D}(D)$ is the empirical non-parametric distribution

The Model

- Define the set: $A_{i j t}=\left\{\epsilon_{i t}: u_{i j t}>u_{i k t}, \forall j \neq k\right\}$, then the probability that individual i selects product j in market t is

$$
\begin{equation*}
P r_{i j t}=\int_{A_{i j t}} d F\left(\epsilon_{i t} \mid D_{i}, v_{i}\right) \tag{3}
\end{equation*}
$$

- Integrating over the unobserved variables D_{i} and v_{i} yields:

$$
\begin{equation*}
P r_{j t}=\int_{D_{i}} \int_{v_{i}} P r_{i j t} d F\left(D_{i} \mid v_{i}\right) d F\left(v_{i}\right) \tag{4}
\end{equation*}
$$

- where $P r_{j t}$ is the same for all i and can be estimated by the product share $s_{j t}=\frac{q_{j t}}{M_{t}}$ where M_{t} is the market size
- The error in this approximation is $O\left(I_{t}^{-1 / 2}\right)$ and will be negligible for large I_{t} which is often the case

The Model: Distributional Assumptions

- To evaluate the integral in (3) first assume that $\epsilon_{i j t}$ are iidd and have a Type I extreme value distribution. Then:

$$
\begin{equation*}
P r_{i j t}=\frac{\exp \left(x_{i j t}^{\prime} \beta_{i}-\alpha_{i} p_{j t}+\xi_{j t}\right)}{1+\sum_{k} \exp \left(1+x_{i j t}^{\prime} \beta_{i}-\alpha_{i} p_{j t}+\xi_{j t}\right)} \tag{5}
\end{equation*}
$$

- To evaluate (4), it is necessary to specify the distributions of D_{i} and v_{i}. At one extreme, we could assume $\Sigma_{D}=\Sigma_{v}=0$
- Although appealing, consider the price elasticities:

$$
e_{j k t}= \begin{cases}-\alpha_{0} p_{j t}\left(1-s_{j t}\right) & \text { if } j=k ; \\ -\alpha_{0} p_{k t} s_{k t} & \text { if } \mathrm{J} \neq k\end{cases}
$$

- As shares are often small, the own price elasticities will be proportional to price. This is unrealistic
- Furthermore, the cross price elasticities restrict proportionate increases to be identical for all goods

The Model: Distributional Assumptions

- When preferences are allowed to differ, the elasticities will be:

$$
e_{j k t}= \begin{cases}-\frac{p_{j t}}{s_{j t}} \int \alpha_{i} P r_{i j t}\left(1-P r_{i j t}\right) d F\left(D_{i}, v_{i}\right) & \text { if } j=k ; \\ \frac{p_{k t}}{s_{j t}} \int \alpha_{i} P r_{i j t} P r_{i k t} d F\left(D_{i}, v_{i}\right) & \text { if } j \neq k .\end{cases}
$$

- The price sensitivity is now a probability weighted average, and can differ over products. As such the model allows for flexible substitution patterns
- To continue, assume $v_{i} \sim \operatorname{iidn}\left(0, I_{K+1}\right)$, let $F\left(D_{i}\right)$ be the EDF, and denote $\delta_{j t}=x_{j t}^{\prime} \beta_{0}-\alpha_{0}+\xi_{j t}$ as the mean-utility. Then the integral in (4) can be approximated by simulation:

$$
\begin{equation*}
s_{j t}=\frac{1}{R} \sum_{r=1}^{R} \frac{\exp \left(\delta_{j t}+\left[p_{j t}, x_{j t}^{\prime}\right]\left(\Pi D_{r}+L v_{i}\right)\right)}{1+\sum_{k} \exp \left(\delta_{j t}+\left[p_{k t}, x_{k t}^{\prime}\right]\left(\Pi D_{r}+L v_{i}\right)\right)} \tag{6}
\end{equation*}
$$

Estimation

- As prices $p_{j t}$ may be correlated with error $\xi_{j t}$, the parameters β_{0}, α_{0}, L and Π are estimated by GMM.
- This is carried out in three steps excluding an initial step

0 . Draw R individuals v_{1}, \ldots, v_{R}, and D_{1}, \ldots, D_{R} from v_{i} an D_{i}

1. For a given value of Π, L, solve for the vector $\delta=\left[\delta_{11}, \ldots, \delta_{J T}\right]^{\prime}$ such that predicted shares using (4) equals observed shares
2. Compute the sample-moment conditions $T^{-1} \sum_{t=1}^{T} Z_{t} \xi_{t}$ where Z_{t} is a $J \times I$ set of instruments, and form the GMM-objective function.
3. Search for the values $\beta_{0}, \alpha_{0}, \Pi, L$ that minimize the objective function in step 4

- To simplify the notation, let $x_{j t}$ contain all variables, assume L is diagonal and define $\theta=\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)^{\prime}$, where:

$$
\begin{equation*}
\theta_{1}=\binom{\alpha_{0}}{\beta_{0}}, \theta_{2}=\binom{\operatorname{vec}\left(\Pi^{\prime}\right)}{\operatorname{diag}(L)} \tag{7}
\end{equation*}
$$

Estimation: Step 1

- For each market $t=1, \ldots, T$, we need the $J \times 1$ vector δ_{t} such that:

$$
\begin{equation*}
s\left(\delta_{t}, \theta_{2}\right)=s_{t} \tag{8}
\end{equation*}
$$

- where $s_{t}=\left[s_{1 t}, \ldots, s_{J t}\right]^{\prime}$. This system of J equations can be solved using the contraction mapping suggested by BLP.
- For a given vector δ_{t}^{n}, this involves computing:

$$
\begin{equation*}
\delta_{t}^{n+1}=\delta_{t}^{n}+\log s_{t}-\log \left(s\left(\delta_{t}^{n}, \theta_{2}\right)\right) \tag{9}
\end{equation*}
$$

- Iteration continues using (8) and (9) until $\left\|\delta_{t}^{n}-\delta_{t}^{n-1}\right\|$ is below a specified tolerance level.
- In the Stata command blp, iteration is over $w_{t}=\exp \left(\delta_{t}\right)$ and δ_{t} is recovered at convergence. This saves considerable time

Estimation: Step 2

- Let Z_{t} be a $J \times I$ matrix of instruments that satisfies $E\left[Z_{t}^{\prime} \xi_{t}\right]=0$ and define the GMM-objective function as:

$$
\begin{equation*}
Q=\bar{h}^{\prime}(\theta) W_{T} \bar{h}(\theta) \tag{10}
\end{equation*}
$$

- where $\bar{h}=T^{-1} Z^{\prime} \xi$ are the sample moments based on δ and W_{T} is a positive definite weighting matrix. If the errors are homoskedastic, a consistent estimator of W is:

$$
\begin{equation*}
\hat{W}=\left(T^{-1} \hat{\sigma}_{\xi}^{2} Z^{\prime} Z\right)^{-1} \tag{11}
\end{equation*}
$$

- If instead the errors are assumed to be correlated over J and heteroskedastic over t, then:

$$
\begin{equation*}
\hat{W}=\left(T^{-1} \sum_{t=1}^{T} Z_{t}^{\prime} \hat{\xi}_{t} \hat{\xi}_{t}^{\prime} Z_{t}\right) \tag{12}
\end{equation*}
$$

- Estimation using (12) is carried out from an initial estimate of $\hat{\theta}$ based on (11). This is often referred to as the two-step method

Estimation: Step 3

- The GMM-estimator $\hat{\theta}$ is the vector that minimizes (10), and is the solution to the following first order conditions:

$$
\begin{align*}
\frac{\partial Q}{\partial \theta_{1}} & =x^{\prime} Z W Z^{\prime} \xi=0 \tag{13}\\
\frac{\partial Q}{\partial \theta_{2}} & =D_{\theta_{2}} \delta^{\prime} Z W Z^{\prime} \xi=0 \tag{14}
\end{align*}
$$

- To reduce search-time, θ_{1} can be written as a function of θ_{2}

$$
\begin{equation*}
\hat{\theta}_{1}=\left(X^{\prime} Z W Z^{\prime} X\right)^{-1} X^{\prime} Z W Z^{\prime} \delta\left(\theta_{2}\right) \tag{15}
\end{equation*}
$$

- The search is now limited to θ_{2}, but to employ a Newton method, the analytical derivatives $D_{\theta_{2}} \delta_{t}^{\prime}$ are required.
- By the implicit function theorem applied to $s\left(\delta_{t}\left(\theta_{2}\right), \theta_{2}\right)=s_{t}$:

$$
\begin{equation*}
D_{\theta_{2}} \delta_{t}^{\prime}=-\left(D_{\delta_{t}} s_{t}\right)^{-1} D_{\theta_{2}} s_{t} \tag{16}
\end{equation*}
$$

Estimation: Step 3

- The elements inside the matrices of (16) are:
- From equation (6), the derivatives are:

$$
\begin{aligned}
\frac{\partial s_{j t}}{\partial \delta_{j t}} & =R^{-1} \sum_{r=1}^{R} \operatorname{Pr}_{r j t}\left(1-P r_{r j t}\right) \\
\frac{\partial s_{j t}}{\partial \delta_{m t}} & =R^{-1} \sum_{r=1}^{R} \operatorname{Pr}_{r j t} \operatorname{Pr} r_{r m t} \\
\frac{\partial s_{j t}}{\partial \sigma_{k}} & =R^{-1} \sum_{r=1}^{R} \operatorname{Pr}_{r j t} v_{r k}\left(x_{j t k}-\sum_{m=1}^{J} x_{m t k} s_{r m t}\right) \\
\frac{\partial s_{j t}}{\partial \pi_{k d}} & =R^{-1} \sum_{r=1}^{R} \operatorname{Pr}_{r j t} D_{r d}\left(x_{j t k}-\sum_{m=1}^{J} x_{m t k} s_{r m t}\right)
\end{aligned}
$$

Stata Command: blp

$$
\begin{aligned}
& \text { blp depvar }[\text { indepvars }][\text { if }][\text { in }] \text { (endogvars=instruments), } \\
& \text { (stochastic }{ }_{1}=\text { varlist }_{1}, ., \text { stochastic }_{K}=\text { varlist }_{K} \text {) } \\
& \text { markets(string) draws(\#) ,[vce(string),demofile(string),twostep] }
\end{aligned}
$$

1. endogvars - specify endogenous variables and instruments
2. stochastic - specify variable with random coefficient and demographic variables (if used)
3. markets - input the market variable
4. draws - specify the number of simulations
5. vce - robust if one-step else standard demotfile - specify the path and name of the demographics data (optional)
6. twostep - uses optimal weighting matrix

Syntax Example

blp s cons $x 1$ x2, stochastic (x1=d1, $x 2, p)$ endog (p=p
x12 x22 expx1 p2 z1 z2) demofile(demodata) markets (mkt) draws (100)

Random coefficients logit model estimates

	Coef.	d. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
Mean Utility						
cons	6.5911	1.7905	3.68	0.000	3.081747	10.10048
x 1	. 21846	. 75414	0.29	0.772	-1.259628	1.696563
x2	. 95836	. 061	15.47	0.000	. 8369611	1.079762
p	-. 85106	. 04698	-18.11	0.000	-. 943158	-. 7589756
x 1						
d1	. 57208	. 26406	2.17	0.030	. 054534	1.089643
SD	. 49639	. 09599	5.17	0.000	. 3082529	. 6845402
x 2						
SD	. 94895	. 26694	3.55	0.000	. 4257588	1.472146
p						
SD	. 26390	. 36210	0.73	0.466	-. 445815	. 9736282

Monte Carlo Experiments: DGP

- To exmaine the properties of the estimator, data is generated from the following DGP where $J=25$ and $T=30$

$$
\begin{aligned}
& u_{i j t}=10+\beta_{1 i} x_{1 j t}+\beta_{2 i} x_{2 j t}+\alpha_{i} p_{j t}+\xi_{j t}+\epsilon_{i j t} \\
& \alpha_{i} \sim N(-1,0.5) \\
& \beta_{1 i} \sim N(1,1) \\
& \beta_{2 i} \sim N(1,1) \\
& \epsilon_{i j t} \sim E V \\
& \binom{x_{1 j t}}{x_{2 j t}} \sim\left[\binom{10}{10}, \quad 2 \begin{array}{cc}
0.2 \\
0.2 & 2
\end{array}\right] \\
& p_{j t} \sim N(10,1) \\
& x_{i t} \sim U(0,1)
\end{aligned}
$$

Monte Carlo Experiments: Parameter Estimates

- The following table sets out the mean and standard deviation of the parameter estimates $\sigma_{\beta_{1}}, \sigma_{\beta_{2}}, \sigma_{\alpha}$ from 50 replications using 500 draws for each.

Monte Carlo Results

	X1	X2	Price
True Parameter	1	1	-0.5
Mean	1.046	1.027	-0.538
Standard deviation	0.162	0.146	0.121

Monte Carlo Experiments: Logit Elasticities

- The following table sets out the price elasticities from the logit model assuming homogeneous preferences

Logit Price Elasticities

Product	1	2	3	4	5
1	-7.94469	0.139519	0.124729	0.17224	0.049108
2	0.061907	-7.53451	0.124729	0.17224	0.049108
3	0.061907	0.139519	-7.67698	0.17224	0.049108
4	0.061907	0.139519	0.124729	-7.56353	0.049108
5	0.061907	0.139519	0.124729	0.17224	-7.84014

Monte Carlo Experiments: Random Parameter Logit

Elasticities

- The following table set out the price elasticities from the random-parameters logit model.

Logit Price Elasticities

Product	1	2	3	4	5
1	-4.24647	0.018311	0.001294	0.009764	0.161759
2	0.338069	-1.25824	0.145928	0.108114	0.504705
3	0.167242	1.021352	-0.23844	0.089002	0.247704
4	0.749224	0.449351	0.052852	-0.06635	0.291488
5	1.733515	0.292954	0.020543	0.040708	-0.76139

