Introduction 00 Robust regression models

How to deal with dummies 000000000

Examples 000 Conclusions 00

Robustness for dummies

Vincenzo Verardi

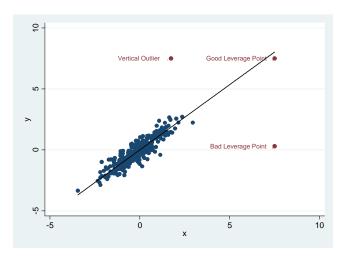
joint with M. Gassner and D. Ugarte

2012 UK Stata Users Group meeting Cass Business School, London

September 2012

∃ ► < ∃</p>

Introduction • O Motivation	Robust regression models	How to deal with dummies	Examples 000	Conclusions 00
Types of	outliers			



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction O Motivation	Robust regression models 0000000000	How to deal with dummies 000000000	Examples 000	Conclusions 00
Robust	estimators			

 $Y_i = X_i^t \theta + \varepsilon_i$

where Y_i is the dependent variable, X_i is the vector of covariates and ε_i is the error term (i = 1, ..., n).

To estimate θ , an aggregate prediction error, based on residuals $r_i(\theta) = Y_i - X_i^t \theta$, is minimized.

• LS-estimator: $\hat{\theta}_{LS} = \arg \min_{\theta} \sum_{i=1}^{n} r_i^2(\theta)$ (regress) fragile to all types of outliers

< 回 ト < 三 ト < 三 ト

Introduction O Motivation	Robust regression models 0000000000	How to deal with dummies 000000000	Examples 000	Conclusions 00
Robust	estimators			

$$Y_i = X_i^t \theta + \varepsilon_i$$

where Y_i is the dependent variable, X_i is the vector of covariates and ε_i is the error term (i = 1, ..., n).

To estimate θ , an aggregate prediction error, based on residuals $r_i(\theta) = Y_i - X_i^t \theta$, is minimized.

- LS-estimator: $\hat{\theta}_{LS} = \arg \min_{\theta} \sum_{i=1}^{n} r_i^2(\theta)$ (regress) fragile to all types of outliers
- M-estimators: $\hat{\theta}_M = \arg\min_{\theta} \sum_{i=1}^n \rho\left(\frac{r_i(\theta)}{\sigma}\right)$ (qreg, rreg) fragile to bad leverage points

Introduction 00 Overview	Robust regression models ••••••	How to deal with dummies 000000000	Examples 000	Conclusions 00
Robust	estimators			

$$Y_i = X_i^t \theta + \varepsilon_i$$

where Y_i is the dependent variable, X_i is the vector of covariates and ε_i is the error term (i = 1, ..., n).

To estimate θ , a measure *s* of the dispersion of the residuals $r_i(\theta) = Y_i - X_i^t \theta$ is minimized.

• LS-estimator:
$$\hat{\theta}_{LS} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} r_i^2(\theta)$$
 or equivalently

(人間) トイヨト イヨト

Introduction 00 Overview	Robust regression models	How to deal with dummies 0000000000	Examples 000	Conclusions 00
Robust	estimators			

$$Y_i = X_i^t \theta + \varepsilon_i$$

where Y_i is the dependent variable, X_i is the vector of covariates and ε_i is the error term (i = 1, ..., n).

To estimate θ , a measure *s* of the dispersion of the residuals $r_i(\theta) = Y_i - X_i^t \theta$ is minimized.

• LS-estimator: $\hat{\theta}_{LS} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} r_i^2(\theta)$ or equivalently • LS-estimator: $\begin{cases} \min_{\theta} s(r_1(\theta), ..., r_n(\theta)) \\ \text{s.t.} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - X_i^t \theta}{s}\right)^2 = 1 \end{cases}$

Introduction 00 Overview	Robust regression models	How to deal with dummies 000000000	Examples 000	Conclusions 00
Robust	estimators			

S-estimator of regression

The square function in LS awards excessive importance to outliers. To increase robustness, another function $\rho_0(\cdot)$ (even, non decreasing for positive values, less increasing than the square with a minimum at zero) should be preferred

• LS-estimator:
$$\begin{cases} \min_{\theta} s(r_1(\theta), ..., r_n(\theta)) \\ \text{s.t.} \frac{1}{n} \sum_{i=1}^n \left(\frac{Y_i - X_i^t \theta}{s}\right)^2 = 1 \end{cases}$$

Remark: for a thorough description of the robust M, S, MM, MS and SD estimators presented in this talk, we advice to refer to: Maronna, R., Martin, D.R. and Yohai, V.J. (2006). "Robust Statistics: Theory and Methods", Wiley.

Ref: Rousseeuw, P. and Yohai, V. (1984), "Robust Regression by Means of S-estimators" in Robust and nonlinear time series analysis, pages 256–272.

Vincenzo Verardi

Introduction 00 Overview	Robust regression models ○●○○○○○○○○	How to deal with dummies 000000000	Examples 000	Conclusions 00
Robust	estimators			

S-estimator of regression

The square function in LS awards excessive importance to outliers. To increase robustness, another function $\rho_0(\cdot)$ (even, non decreasing for positive values, less increasing than the square with a minimum at zero) should be preferred

• LS-estimator:
$$\begin{cases} \min_{\theta} s(r_1(\theta), ..., r_n(\theta)) \\ \text{s.t.} \frac{1}{n} \sum_{i=1}^n \left(\frac{Y_i - X_i^t \theta}{s}\right)^2 = 1 \end{cases}$$

• S-estimator:
$$\begin{cases} \min_{\theta} s(r_1(\theta), ..., r_n(\theta)) \\ \text{s.t.} \frac{1}{n} \sum_{i=1}^n \rho_0 \left(\frac{Y_i - X_i^t \theta}{s}\right) = \delta \end{cases}$$

where $\delta = E \left[\rho_0 \left(u \right) \right]$ with $u \sim N(0, 1)$

Introduction 00 Overview	Robust regression models	How to deal with dummies 0000000000	Examples 000	Conclusions 00
Robust	estimators			

Tukey Biweight Function

Several ρ_0 functions can be used. We chose Tukey's Biweight function here defined as

$$\rho_0(u) = \begin{cases} \frac{c^2}{6} \left(1 - \left[1 - \left(\frac{u}{c} \right)^2 \right]^3 \right) & \text{if } |u| \le c \\ \frac{c^2}{6} & \text{if } |u| > c \end{cases}$$

There is a trade-off between robustness and Gaussian efficiency

• c = 1.56 leads to a 50% BDP and an efficiency of 28%

Introduction 00 Overview	Robust regression models	How to deal with dummies 000000000	Examples 000	Conclusions 00
Robust	estimators			

Tukey Biweight Function

Several ρ_0 functions can be used. We chose Tukey's Biweight function here defined as

$$\rho_0(u) = \begin{cases} \frac{c^2}{6} \left(1 - \left[1 - \left(\frac{u}{c} \right)^2 \right]^3 \right) \text{ if } |u| \le c \\ \frac{c^2}{6} \text{ if } |u| > c \end{cases}$$

There is a trade-off between robustness and Gaussian efficiency

- c = 1.56 leads to a 50% BDP and an efficiency of 28%
- c = 3.42 leads to a 20% BDP and an efficiency of 85%

Introduction 00 Overview	Robust regression models	How to deal with dummies 000000000	Examples 000	Conclusions 00
Robust	estimators			

Tukey Biweight Function

Several ρ_0 functions can be used. We chose Tukey's Biweight function here defined as

$$\rho_0(u) = \begin{cases} \frac{c^2}{6} \left(1 - \left[1 - \left(\frac{u}{c} \right)^2 \right]^3 \right) \text{ if } |u| \le c \\ \frac{c^2}{6} \text{ if } |u| > c \end{cases}$$

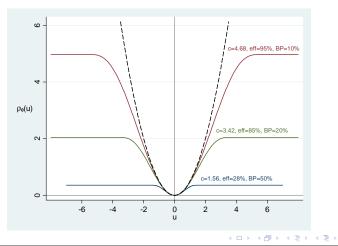
There is a trade-off between robustness and Gaussian efficiency

- c = 1.56 leads to a 50% BDP and an efficiency of 28%
- c = 3.42 leads to a 20% BDP and an efficiency of 85%
- c = 4.68 leads to a 10% BDP and an efficiency of 95%

Introduction	Robust regression models	How to deal with dummies	Examples	
00	000000000	000000000	000	
Overview				

Robust estimators

Tukey Biweight Function



Vincenzo Verardi

 ▲ ■
 ■
 • ○ < ○</th>

 13/09/2012
 8 / 30

Introduction 00 Overview	Robust regression models	How to deal with dummies 0000000000	Examples 000	Conclusions 00
Rohust	estimators			

MM-estimators (Yohai, 1987)

Fit an S-estimator of regression with 50% BDP and estimate the scale parameter

$$\hat{\sigma}_S = s(r_1(\hat{\theta}_S), \ldots, r_n(\hat{\theta}_S)).$$

Take another function $\rho \geq \rho_0$ and estimate:

$$\hat{\theta}_{MM} = \arg\min_{\theta} \sum_{i=1}^{n} \rho(\frac{r_i(\theta)}{\hat{\sigma}_S})$$

The BDP is set by ρ_0 and the efficiency by ρ .

Ref: Yohai., V, J, (1987) "High Breakdown-Point and High Efficiency Robust Estimates for Regression." Ann. Statist. 15 (2) 642 - 656.

Vincenzo Verardi

ntroduction	Robust regression models	How to deal with dummies	Examples	Conclusions
00	000000000	000000000	000	00
ubsampling algo	rithms			
P_subs	- +			

Exact formulas do not exist to estimate these models and subsampling algorithms are needed:

• Consider enough subsets of **p**-points to be sure that at least one does not contain outliers.

ntroduction	Robust regression models	How to deal with dummies	Examples	Conclusions
iubsampling algo		000000000	000	00
P-subse	> †			

Exact formulas do not exist to estimate these models and subsampling algorithms are needed:

- Consider enough subsets of **p**-points to be sure that at least one does not contain outliers.
- For each subset fit the hyperplane connecting all points and use it as a first guess of the robust estimated hyperplane.

ntroduction	Robust regression models	How to deal with dummies	Examples	Conclusions
0	000000000	000000000	000	00
ubsampling algo	rithms			
P_subs	<u>+</u>			

Exact formulas do not exist to estimate these models and subsampling algorithms are needed:

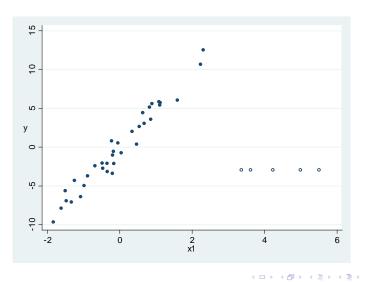
- Consider enough subsets of **p**-points to be sure that at least one does not contain outliers.
- For each subset fit the hyperplane connecting all points and use it as a first guess of the robust estimated hyperplane.
- O some fine tuning using iteratively reweighted least squares based on the residuals estimated in (3) to get closer to the global solution

Introduction	Robust regression models	How to deal with dummies	Examples	Conclusions
00	000000000	000000000	000	00
Subsampling algo	rithms			
P_subse	1 +			

Exact formulas do not exist to estimate these models and subsampling algorithms are needed:

- Consider enough subsets of p-points to be sure that at least one does not contain outliers.
- For each subset fit the hyperplane connecting all points and use it as a first guess of the robust estimated hyperplane.
- O some fine tuning using iteratively reweighted least squares based on the residuals estimated in (3) to get closer to the global solution
- Keep the result associated to the refined estimator associated with the smallest (robust) aggregate error.

Introduction	Robust regression models	How to deal with dummies	Examples	Conclusions
Subsampling algo			000	
Scatter	diagram			
Jeatter	alagian			

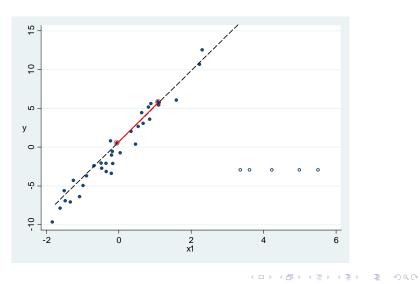


Vincenzo Verardi

13/09/2012 11 / 30

■ のへで

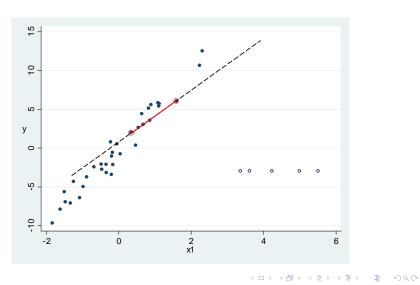
Introduction	Robust regression models	How to deal with dummies	Examples	Conclusions
00	00000000000	000000000	000	00
Subsampling algo	prithms			
First subset				



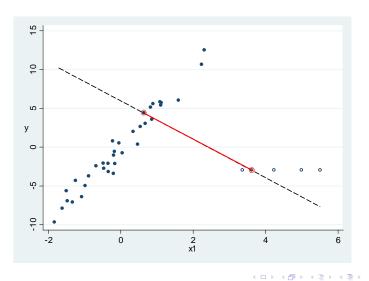
Vincenzo Verardi

13/09/2012 12 / 30

Introduction	Robust regression models	How to deal with dummies	Examples	Conclusions
00	00000000000	000000000	000	00
Subsampling algo	prithms			
Second	subset			



Introduction	Robust regression models ○○○○○○○○○	How to deal with dummies	Examples	Conclusions		
		0000000000	000	00		
Subsampling algo	Subsampling algorithms					
Third s	subset					



Vincenzo Verardi

 ▶
 ▲
 Ξ
 ク へ (~)

 13/09/2012
 14 / 30

 Introduction
 Robust regression models
 How to deal with dummies
 Examples

 00
 0000000000
 000000000
 000

 Subsampling algorithms
 Subsampling algorithms
 Subsampling algorithms
 Subsampling algorithms

Problematic when several dummies are present

It is very likely to observe perfectly collinear subsamples.

id	У	x1	d1	d2	d3
1	0.114251	0.694536	0	0	0
2	0.934258	0.029458	1	1	0
3	0.565081	0.247579	0	0	0
4	0.876498	0.915357	0	0	0
5	0.710484	0.656413	0	0	0
6	0.856098	0.93658	0	0	1
7	0.521096	0.085324	1	1	0

Problem

If there are five independent explanatory dummy variables that, for example, take value 1 with probability 0.1, the likelihood of selecting a non-collinear sample of size 5 is only 1.1%

Vincenzo Verardi

Robustness for Dummies

Conclusions

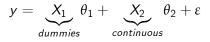
Robust regression models

How to deal with dummies

Examples 000 Conclusions 00

The MS-estimator is a first solution

Consider regression model



 If θ₂ were known, then θ₁ could be robustly estimated using a monotonic M-estimator (no leverage points)

Ref: Maronna, R. A., and Yohai, V. J. (2000). "Robust regression with both continuous and categorical predictors". Journal of Statistical Planning and Inference 89, 197–214.

イロト 不得下 イヨト イヨト 二日

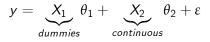
Robust regression models

How to deal with dummies

Examples 000 Conclusions 00

The MS-estimator is a first solution

Consider regression model



- If θ₂ were known, then θ₁ could be robustly estimated using a monotonic M-estimator (no leverage points)
- If θ_1 were known, then θ_2 should be estimated using an S-estimator. The subsampling algorithm **would not** generate collinear subsamples as only continuous variables would be present.

イロト 不得下 イヨト イヨト 二日

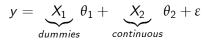
Robust regression models

How to deal with dummies

Examples 000 Conclusions 00

The MS-estimator is a first solution

Consider regression model



- If θ₂ were known, then θ₁ could be robustly estimated using a monotonic M-estimator (no leverage points)
- If θ_1 were known, then θ_2 should be estimated using an S-estimator. The subsampling algorithm **would not** generate collinear subsamples as only continuous variables would be present.

Alternate

$$\begin{cases} \hat{\theta}_1^{MS} = \arg\min_{\theta_1} \sum_{i=1}^n \rho\left([y_i - X_{2i}\hat{\theta}_2] - X_{1i}\theta_1 \right) \\ \hat{\theta}_2^{MS} = \arg\min_{\theta_2} \hat{\sigma}^S\left([y - X_1\hat{\theta}_1] - X_2\theta_2 \right) \end{cases}$$

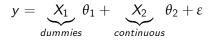
イロト イポト イヨト イヨト 二日

Robust regression models

Examples 000 Conclusions 00

The SD-estimator is a second solution solution

Consider regression model



 To identify outliers matrix M_{n×q} = (y, X₂) is projected in "all" possible directions and dummies are partialled out on each projection using any monotonic M-estimator.

Ref:

Stahel, W. A. (1981). "Robust estimation: Infinitesimal optimality and covariance matrix estimators". Ph.D. thesis, ETH, Zurich and

Donoho, D. L. (1982). "Breakdown properties of multivariate location estimators". Qualifying paper, Dept. Statistics, Harvard Univ.

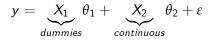
イロト イポト イヨト イヨト 二日

Robust regression models

Examples 000 Conclusions 00

The SD-estimator is a second solution solution

Consider regression model



- To identify outliers matrix M_{n×q} = (y, X₂) is projected in "all" possible directions and dummies are partialled out on each projection using any monotonic M-estimator.
- The outlyingness of a given point is then defined as the maximum distance from the projection of the point to the center of the projected data cloud, i.e. δ_i = max |Z_i(a)| (S(Z(a))).

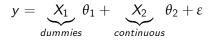
イロト イポト イヨト イヨト 二日

Robust regression models

How to deal with dummies •••••••• Examples 000 Conclusions 00

The SD-estimator is a second solution solution

Consider regression model



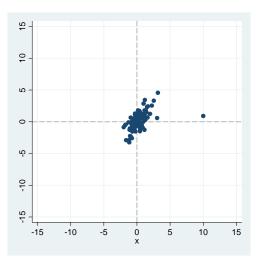
- To identify outliers matrix M_{n×q} = (y, X₂) is projected in "all" possible directions and dummies are partialled out on each projection using any monotonic M-estimator.
- The outlyingness of a given point is then defined as the maximum distance from the projection of the point to the center of the projected data cloud, i.e. $\delta_i = \max_{\substack{||a||=1\\ \hat{s}(\tilde{z}(a)|}} \frac{|\tilde{z}_i(a)|}{\hat{s}(\tilde{z}(a))}$.
- Outlyingness distance δ_i is distributed as $\sqrt{\chi_q^2}$. We can therefore define an individual as being an outlier if δ_i is larger than a chosen quantile of $\sqrt{\chi_q^2}$.

Robust regression models

How to deal with dummies

Examples 000 Conclusions 00

The SD-estimator: a graphical explanation



Vincenzo Verardi

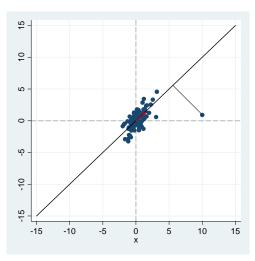
Robust regression models

How to deal with dummies

Examples

Conclusions 00

The SD-estimator: a graphical explanation



Vincenzo Verardi

 Image: 13/09/2012
 Image: 19/30

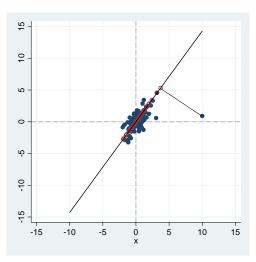
(日) (同) (三) (三)

Robust regression models

How to deal with dummies

Examples 000 Conclusions 00

The SD-estimator: a graphical explanation



Vincenzo Verardi

 Image: 13/09/2012
 Image: 10 × 0

イロト イヨト イヨト イヨト

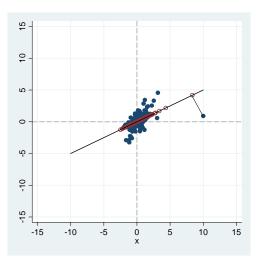
Robust regression models

How to deal with dummies

Examples

Conclusions 00

The SD-estimator: a graphical explanation



Vincenzo Verardi

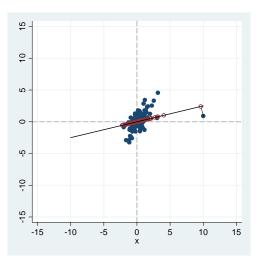
Robust regression models

How to deal with dummies 0000000000

Examples

Conclusions 00

The SD-estimator: a graphical explanation



Vincenzo Verardi

 Image: 13/09/2012
 Image: 12/30

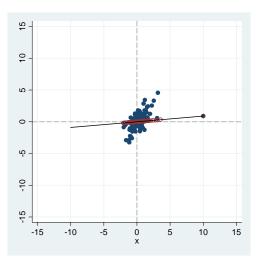
Robust regression models

How to deal with dummies 0000000000

Examples

Conclusions 00

The SD-estimator: a graphical explanation



Vincenzo Verardi

 Image: 13/09/2012
 Image: 13/09/2012

Robust regression models

How to deal with dummies 0000000000

Examples 000 Conclusions 00

Comparative advantages

- We programmed both estimators. They are available upon request; robregms and sdmultiv
- Both estimators can be used to fit distributed intercept models (such as LSDV)
- MS is more intuitive as it relies on IRWLS. SD is slightly more complicated theoretically.
- SD can be used to identify outliers in a wide variety of models since it does not rely on the dependent-explanatory relation (i.e. Logit, Heckman)
- SD can be used in multivariate analysis (i.e. calculate robust leverage taking into account dummies)

(日) (同) (三) (三)

Robust regression models

Examples 000 Conclusions 00

Computing time (5% of contamination in $\times 1$)

Model:
$$y = \sum_{j=1}^{5} \beta_j x_j + \sum_{k=1}^{K} \gamma_j d_j + \varepsilon$$
 for $K = 1, 11, 21, ..., 191$.

# Dummies	MS	SD	# Dummies	MS	SD
1	2.52	1.26	101	29.19	14.59
11	3.46	1.73	111	44.94	22.47
21	4.03	2.01	121	47.42	23.71
31	5.97	2.99	131	57.06	28.53
41	8.02	4.01	141	67.19	33.60
51	10.26	5.13	151	69.62	34.81
61	11.73	5.86	161	260.07	130.03
71	16.23	8.12	171	139.56	69.78
81	20.83	10.42	181	134.95	67.48
91	27.23	13.61	191	185.18	92.59
N = 1000					

N = 1000

(日) (周) (三) (三)

Introduction 00 Simple examples Robust regression models

How to deal with dummies 0000000000

Examples •00 Conclusions 00

Creating a contaminated sample

clear set obs 1000 drawnorm x1-x5 e gen y = x1 + x2 + x3 + x4 + x5 + eforvalues i=1(1)5 { gen d'i'=round(uniform()) replace y=y+d'i'ł replace $\times 1=10$ in 1/100robregms y x* d* sdmultiv y x* d*, gen(a b) reg y x^* d* if a==0 reg y x* d*

MS-estimator

		Robust	
У	Coef.	Std. Err.	z
×1	1.015749	.0847334	11.99
x2	.9840165	.0588595	16.72
x 3	1.083979	.0527653	20.54
x4	1.052281	.0752983	13.97
x5	1.052403	.0676575	15.55
d1	1.124173	.1066948	10.54
d2	1.120287	.1195124	9.37
d3	1.011536	.1144117	8.84
d4	.7388712	.1095223	6.75
d5	1.124374	.1448934	7.76
_cons	0289221	.1153801	-0.25

Introduction 00 Simple examples Robust regression models

How to deal with dummies 0000000000

Examples

Conclusions 00

Creating a contaminated sample

clear set obs 1000 drawnorm x1-x5 e gen y = x1 + x2 + x3 + x4 + x5 + eforvalues i=1(1)5 { gen d'i'=round(uniform()) replace y=y+d'i' ł replace $\times 1=10$ in 1/100robregms y x* d* sdmultiv y x* d*, gen(a b) reg y x^* d* if a==0 reg y x* d*

SD-estimator

У	Coef.	Std. Err.	t
x1	1.041384	.0362514	28.73
x2	1.04519	.0344185	30.37
x 3	1.031552	.0345838	29.83
x4	1.066473	.0356224	29.94
x5	1.081784	.0346054	31.26
d1	1.061789	.0644784	16.47
d2	.9851284	.064193	15.35
d3	.9224563	.0643582	14.33
d4	.8450953	.0647661	13.05
d5	1.112151	.0643558	17.28
_cons	.0504445	.0767734	0.66
_			

< ロト < 同ト < ヨト < ヨト

Introduction 00 Simple examples Robust regression models

How to deal with dummies 0000000000

Examples

Conclusions 00

Creating a contaminated sample

clear set obs 1000 drawnorm x1-x5 e gen y = x1 + x2 + x3 + x4 + x5 + eforvalues i=1(1)5 { gen d'i'=round(uniform()) replace y=y+d'i'ł replace $\times 1=10$ in 1/100robregms y x* d* sdmultiv y x^* d*, gen(a b) reg y x^* d* if a==0 reg y x* d*

LS-estimator

У	Coef.	Std. Err.	t
x1	.095752	.0137521	6.96
x2	1.041461	.0443404	23.49
х3	1.049491	.0440445	23.83
x4	.9723244	.0442183	21.99
x5	1.031377	.0436638	23.62
d1	.925825	.0866913	10.68
d2	1.018304	.0866161	11.76
d3	1.005827	.0867442	11.60
d4	.9866187	.0868825	11.36
d5	1.084528	.0867098	12.51
$-^{cons}$	130481	.1048221	-1.24

< ロト < 同ト < ヨト < ヨト

Introduction 00 Robust regression models

How to deal with dummies 000000000

Examples 000 Conclusions ●0

Main points of the talk

- Robust models can cope with dummies
- Codes are relatively fast and stable
- SD opens the door to outlier identification in a very large variety of models
- SD can be used in many other contexts than regression analysis

.