

Handling interactions in Stata, especially with continuous predictors

Patrick Royston & Willi Sauerbrei

UK Stata Users' meeting, London, 13-14 September 2012

Interactions – general concepts

- General idea of a (two-way) interaction in multiple regression is effect modification:
 - $\eta(x_1, x_2) = f_1(x_1) + f_2(x_2) + f_3(x_1, x_2)$
- Often, $\eta(x_1, x_2) = E(Y | x_1, x_2)$, with obvious extension to GLM, Cox regression, etc.
- Simplest case: η(x₁,x₂) is linear in the x's and f₃(x₁,x₂) is the product of the x's:

• $\eta(x_1, x_2) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$

Can extend to non-linear functions of x₁ & x₂

The simplest type of interaction: Binary x binary

- E.g. in the MRC RE01 trial in kidney cancer
- 12 month % survival since randomisation
- Substantial treatment effect in patients with low white cell count
- Little or no treatment effect in those with high white cell count
- But really, white cell count is a continuous variable ...

Treatment group	White cell count low (<=10)	White cell count high (>10)
MPA	34% (se 4)	24% (se 4)
Interferon	49% (se 4)	21% (se 7)

Overview

- Fitting linear interaction models in Stata
- General case: analyzing interactions between continuous covariates in observational studies
 - Focus on continuous covariates
 - Maximize power
 - People may not know how to handle them
- Special case: analyzing interactions between treatment and continuous covariates in randomized controlled trials

Fitting models with linear x linear interactions in Stata

Binary x continuous interactions

- Use c. prefix to indicate continuous variable
- Use the ## operator

. regress _t trt##c.wcc

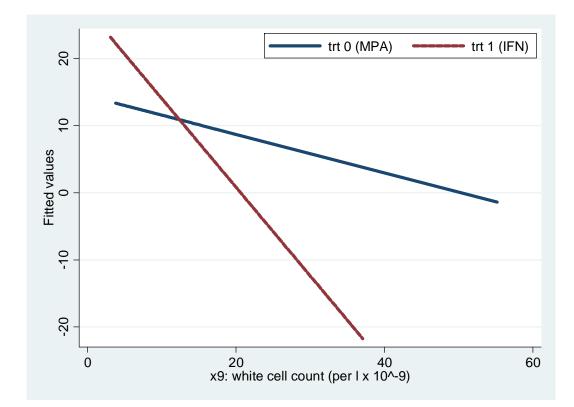
Source	SS	df	MS		Number of obs F(3, 343)	
Model Residual	5678.62935 87228.7534		2.87645 .311234		Prob > F R-squared Adj R-squared	= 0.0001 = 0.0611
Total	92907.3828	346 268	.518447		Root MSE	= 0.0329 = 15.947
t	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.trt	12.81405	4.124167	3.11	0.002	4.702208	20.92589
WCC	2867831	.2741174	-1.05	0.296	8259457	.2523796
trt#c.wcc						
1	-1.034239	.4327233	-2.39	0.017	-1.885365	1831142
_cons	14.45292	2.712383	5.33	0.000	9.117919	19.7879 ⁵ 1

Binary x continuous interactions (cont.)

- The main effect of wcc is the slope in group 0
- The interaction parameter is the difference between the slopes in groups 1 & 0
- Test of trt#c.wcc provides the interaction parameter and test
- Results are nicely presented graphically
 - Predict linear predictor xb
 - Plot **xb** by levels of the factor variable
 - Also, 'treatment effect plot' (*coming later*)

Plotting a binary x continuous interaction

- . regress t trt##c.wcc
- . predict fit
- . twoway (line fit wcc if trt==0, sort) (line fit wcc if trt==1, sort lp(-)), legend(lab(1 "trt 0 (MPA)") lab(2 "trt 1 (IFN)") ring(0) pos(1))



Continuous x continuous interaction

• Just use c. prefix on each variable

. regress t c.age##c.t mt

Number of obs = 347 Source SS df MS F(3, 343) = 10.357714.26052 3 2571.42017 Prob > F = 0.0000Model R-squared = 0.0830 Residual 85193.1223 343 248.37645 Adj R-squared = 0.0750Total 92907.3828 346 268.518447 Root MSE = 15.76_t | Coef. Std. Err. t P>|t| [95% Conf. Interval] age .0719063 .0876542 0.82 0.413 -.1005011 .2443137 .0128802 5.12 0.000 .040644 .0913122 t mt .0659781 -.0008783 .0001861 -4.72 0.000 -.0012443 -.0005124 c.age#c.t mt 8.055213 5.256114 1.53 0.126 -2.28306 18.39349 cons ---8--

Continuous x continuous interaction

- Results are best explored graphically
- Consider in more detail next

Continuous x continuous interactions

- Many people only consider linear by linear interactions
- Not sensible if main effect of either variable is non-linear
- Mismodelling the main effect may introduce spurious interactions
 - E.g. false assumption of linearity can create a spurious linear x linear interaction
- Or, people categorise the continuous variables
 - Many problems, including loss of power

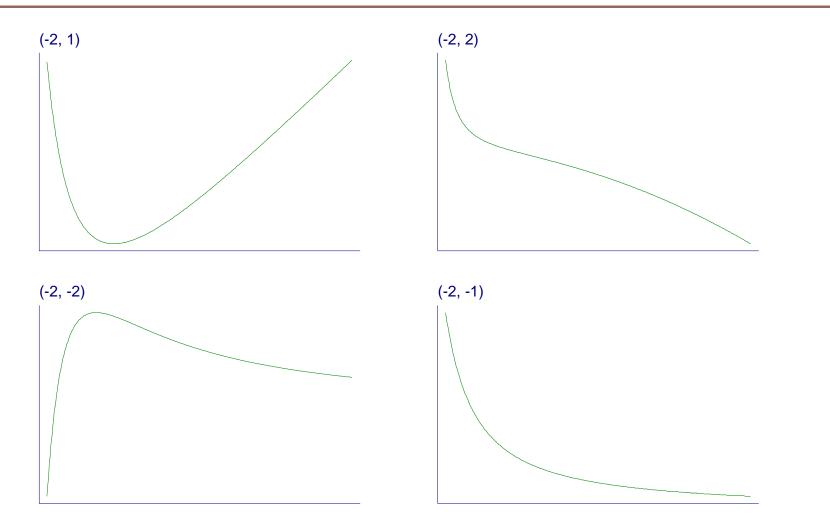
MFPIgen

- MFP = multivariable fractional polynomials
- I = interaction
- gen = general
- Fractional polynomials (FPs) can be used to model relationships that may be non-linear
- In Stata, FPs are implemented through the standard fracpoly and mfp commands
- MFPIgen is implemented through a userwritten command, mfpigen

Fractional polynomial models

- Fractional polynomials are an extension of ordinary polynomials
- Degree 1: FP1(x) = $\beta_0 + \beta_1 x^{\rho}$
- Degree 2: FP2(x) = $\beta_0 + \beta_1 x^p + \beta_1 x^q$
- Powers p, q are taken from a special set S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3}
- 8 FP1, 36 FP2 models
- Flexibility many function shapes are available

Examples of FP2 curves - varying powers



14

Several predictors - MFP

- With many continuous predictors, selection of best FP for each becomes more difficult \rightarrow
- The MFP algorithm is a standardized approach to variable and function selection
- The MFP algorithm combines backward elimination with a systematic FP function selection procedure
- Allows continuous, categorical and binary predictors

The MFPIgen approach in principle

- MFPIgen aims to identify non-linear main effects and their two-way interactions
- Suppose x_1 are x_2 continuous covariates
- Apply MFP to x_1 and x_2
 - Selects FP functions $FP_1(x_1)$ and $FP_2(x_2)$
 - (Linear functions could be selected)
- Add interaction term $FP_1(x_1) \times FP_2(x_2)$ to the chosen model
- Apply likelihood ratio test of interaction
- (Can include confounders *z* in the model)

- Prospective cohort study of 17,260 Civil Servants in London
- Studied various standard risk factors for common causes of death
- Also studied social factors, particularly job grade
- We consider 10-year all-cause mortality as the outcome
- Logistic regression analysis

Example: Whitehall 1 (2)

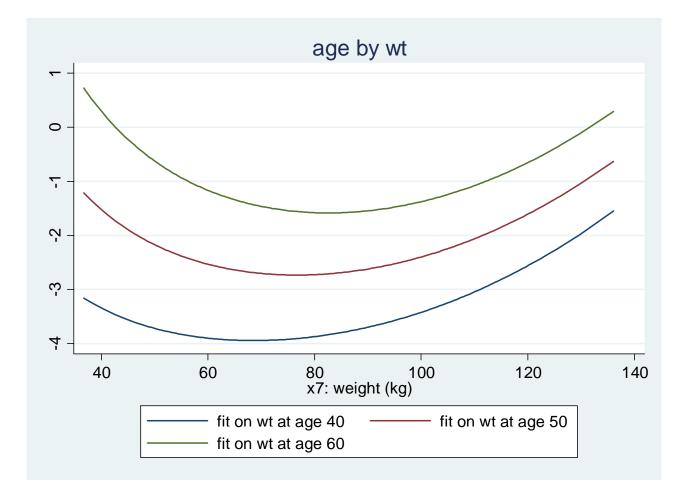
- Consider weight and age
- . mfpigen: logit all10 age wt

MFPIGEN - interaction analysis for dependent variable all10							
variable 1	function 1	variable	2 function 2	dev. diff.	d.f.	P Sel	
age	Linear	wt	FP2(-1 3)	5.2686	2	0.0718 0	
Sel = number	of variables	selected	in MFP adjustmen	nt model			

- Age function is linear, weight is FP2(-1, 3)
- No strong interaction (P = 0.07)

Plotting the interaction model

. mfpigen, fplot(40 50 60): logit all10 age wt



Mis-specifying the main effects function(s)

- Assume age and weight are linear
- The dfdefault(1) option imposes linearity
- . mfpigen, dfdefault(1): logit all10 age wt

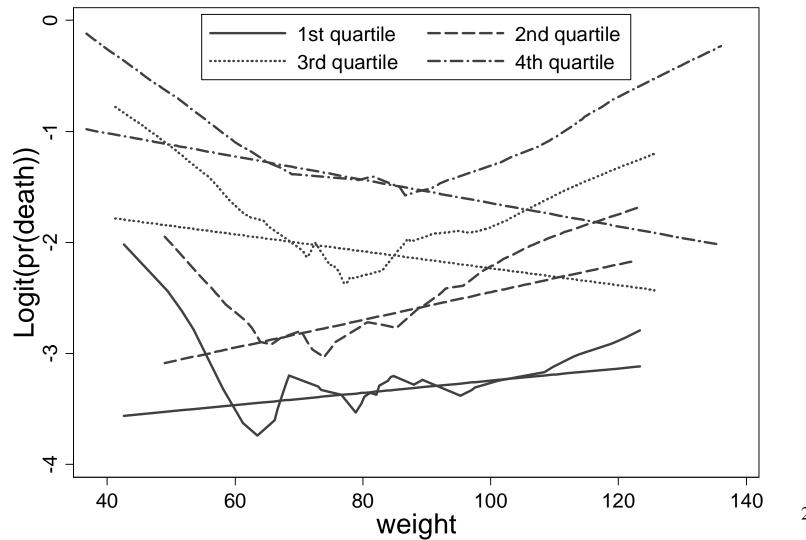
MFPIGEN - interaction analysis for dependent variable all10							
			2 function 2				
age	Linear	wt	Linear	8.7375	1	0.0031 0	
Sel = number	of variables	selected	in MFP adjustme	nt model			

 There appears to be a highly significant interaction (P = 0.003)

Checking the interaction model

- Linear age x weight interaction seems important
- Check if it's real, or the result of mismodelling
- Categorize age into (equal sized) groups
 - for example, 4 groups
- Compute running line smooth of the binary outcome on weight in each age group, transform to logits
- Plot results for each group
- Compare with the functions predicted by the interaction model

Whitehall 1: Check of age x weight linear interaction



22

- Running line smooths are roughly parallel across age groups ⇒ no (strong) interactions
- Erroneously assuming that the effect of weight is linear ⇒ estimated slopes of weight in agegroups indicate strong interaction between age and weight
- We should have been more careful when modelling the main effect of weight

The MFPIgen approach in practice

- Consider a pair of covariates of interest
- mfpigen uses MFP to select a suitable function (FP/linear) simultaneously for each covariate
- mfpigen tests interaction between the 2 functions
 - use a low significance level, e.g. 1%
- Present the interaction model graphically
- Check the model graphically for artefacts
- mfpigen can use MFP to adjust for other covariates (confounders)
- mfpigen can analyze all pairs of covars in one run
- Can apply forward selection of interactions

Whitehall 1: 7 variables, any interactions?

. mfpigen, select(0.05): logit all10 cigs sysbp age ht wt chol i.jobgrade

MFPIGEN - interaction analysis for dependent variable all10									
variable 1	function 1	variable 2	function 2	dev. diff.	d.f.	P S	Sel		
cigs	FP1(.5)	sysbp	FP2(-2 -2)	0.7961	2	0.6716	5		
	FP1(.5)	age	Linear	0.0028	1	0.9576	5		
	FP1(.5)	ht	Linear	2.1029	1	0.1470	5		
	FP1(.5)	wt	FP2(-2 3)	0.1560	2	0.9249	5		
	FP1(.5)	chol	Linear	1.7712	1	0.1832	5		
	FP1(.5)	i.jobgrade	Factor	4.3061	3	0.2303	5		
sysbp	FP2(-2 -2)	age	Linear	3.1169	2	0.2105	5		

(remaining output omitted)

What mfpigen is doing (Whitehall example)

- See the Stata log just given
- The select(0.05) option tests confounders for inclusion in each interaction model at the 5% significance level
- The Sel column in the output shows how many variables are actually included in each confounder model

Results: P-values for interactions

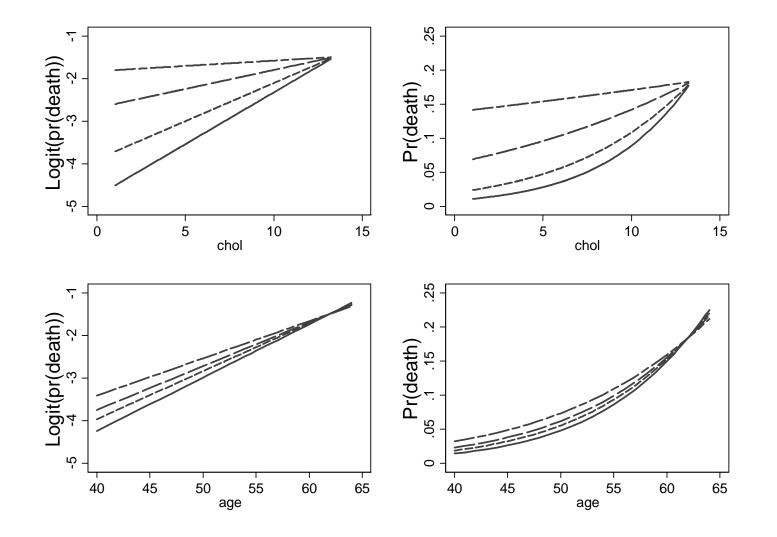
Variable	cigs^*	${\tt sysbp}^*$	age	height	\texttt{weight}^*	chol
cigs*	_					
${\tt sysbp}^*$	0.7	_				
age	0.9	0.2	_			
height	0.1	0.5	1.0	_		
\texttt{weight}^*	0.9	0.5	0.1	0.4	_	
chol	0.2	0.07	0.001	0.8	0.2	_
grade	0.2	0.2	0.2	0.2	0.04	0.4

*FP transformations were selected; otherwise, linear

Graphical presentation of age x chol interaction

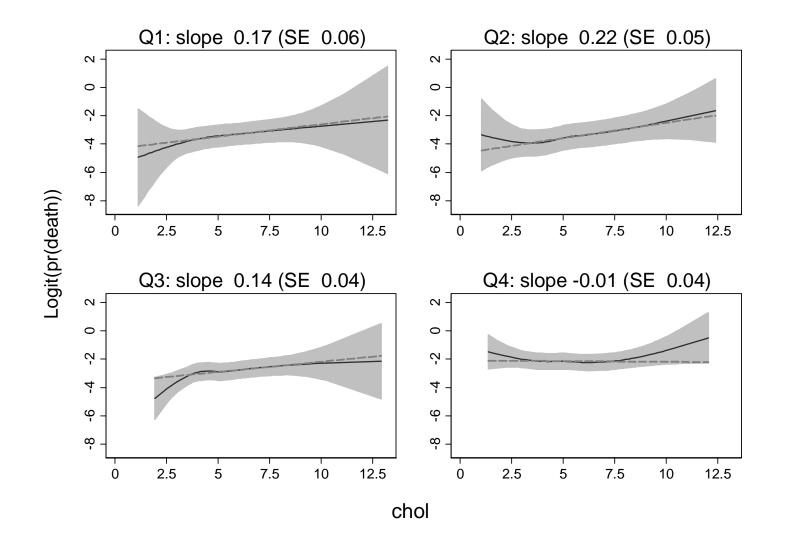
- . fracgen cigs .5, center(mean)
- . fracgen sysbp -2 -2, center(mean)
- . fracgen wt -2 3, center(mean)
- . mfpigen, linadj(cigs_1 sysbp_1 sysbp_2
- > wt_1 wt_2 ht i.jobgrade) df(1)
- > fplot(%10 35 65 90): logit all10 age chol

Graphical presentation of age X chol intn.



29

Checking the chol x age interaction model



Interactions with continuous covariates in randomized trials

MFPI method (Royston & Sauerbrei 2004)

- Consider continuous covariate x, binary randomized treatment variable t
 - Can adjust for other covariates
- Analysis follows the same principles as MFPIgen
- Get a function of x in each treatment group (level of t), based on main-effect model for x
- Consider just 2 groups t binary
- Get an FP function with the same powers in each of the two treatment groups

- MFPI is implemented as a user command, mfpi
- mfpi is available on SSC
- Details are given by Royston & Sauerbrei, Stata Journal 9(2): 230-251 (2009)
- Program was updated in 2012 to support factor variables

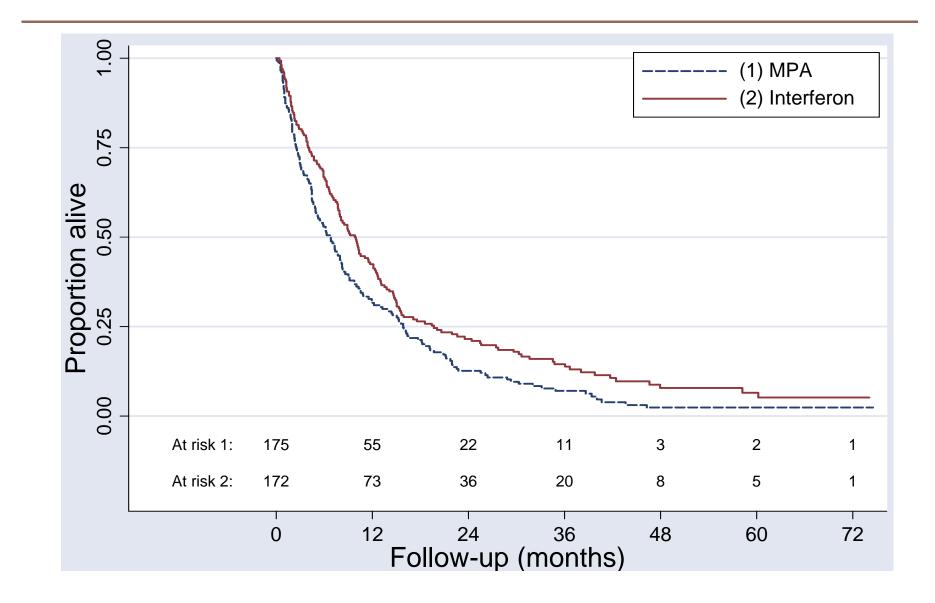
Treatment effect function

- Have estimated two functions one per treatment group
- Plot the difference between functions against x to show the interaction
 - i.e. the treatment effect at different x
- Pointwise 95% CI shows how strongly the interaction is supported at different values of x
 - i.e. variation in the treatment effect with x

Example: MRC RE01 trial in kidney cancer

- Survival analysis (Cox regression)
- Main analysis: Interferon improves survival
- HR: 0.76 (0.62 0.95), P = 0.015
- Is the treatment effect similar in all patients?
- Nine possible covariates available for the investigation of treatment-covariate interactions
- Only one is significant white cell count (wcc)

Kaplan-Meier showing treatment effect



The mfpi command: example

• wee has outliers, first truncate at 99th centile

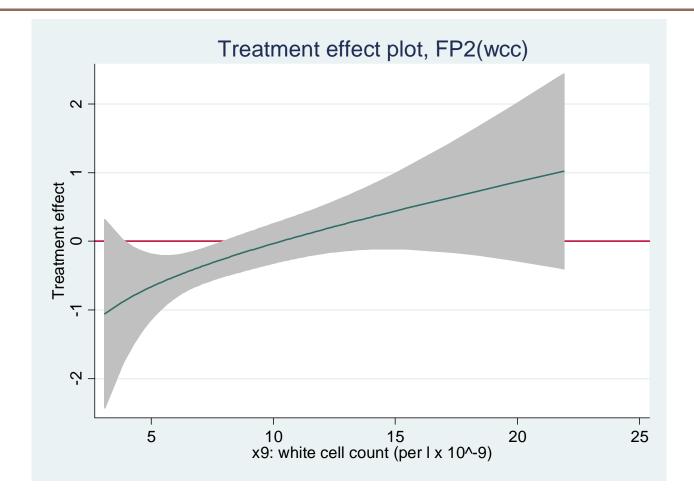
. mfpi, linear(wcc) fp1(wcc) fp2(wcc) with(trt)
gendiff(d): stcox
[treating trt as a factor variable, i.trt]

Interactions with i.trt (347 observations). Flex-1 model (least flexible)

Var	Main	Interact	idf	Chi2	Р	Deviance (tdf	AIC
wcc	Linear	Linear	1	8.13	0.0043	3186.561	3	3192.561
WCC	FP1(2)	FP1(2)	1	5.62	0.0178	3187.954	4	3195.954
WCC	FP2(5 1)	FP2(5 1)	2	8.19	0.0166	3185.237	7	3199.237
idf = interaction degrees of freedom; tdf = total model degrees of freedom								

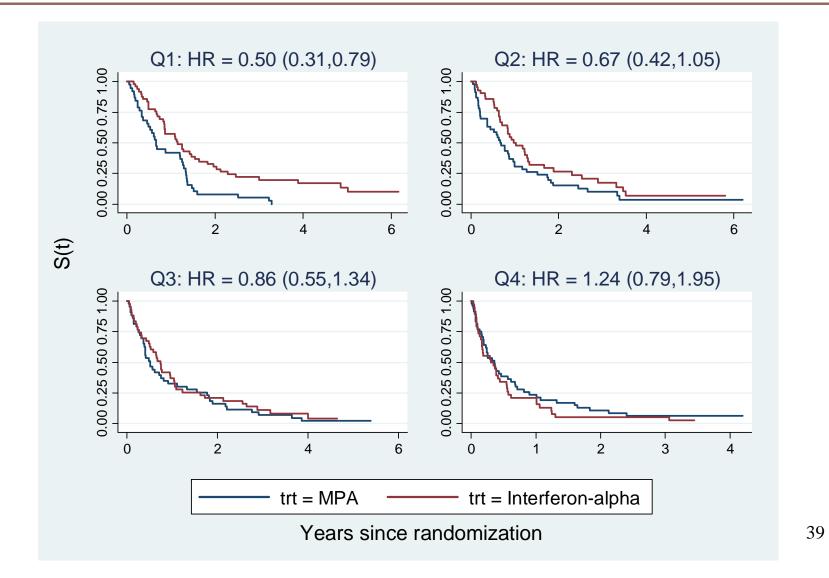
. mfpi_plot wcc, vn(3)
[using variables created by gendiff(d)]

Treatment effect plot for wcc



About 25% of patients, those with WCC > 10 seem not to benefit from interferon

Checking the wcc x trt interaction model



- mfpigen and mfpi should help researchers detect, model and visualize interactions with continuous covariates
- Usually, we are searching for interactions, so small P-values are required
- Other methods not considered
 - STEPP mainly graphical

• ..

Thank you.