Introduction	New Function-Enhancedeba	Examples 0000	Conclusion O	Problems ○

Enhancing the Application of Extreme Bounds Analysis in Stata 2012 Stata User Group Meeting, London

Marie Poprawe

ETH Zurich

September 2012

(4月) イヨト イヨト

ETH Zurich

Enhancing the Application of Extreme Bounds Analysis in Stata

Introduction ●●●	New Function-Enhancedeba	Examples	Conclusion O	Problems ○
Introduction				

Motivation I

Sensitivity Analysis: Can a set of explanatory variables robustly explain a certain dependent variable?

 Leamer (1985): Sensitivity Analysis Would Help (AER) analysis of the extreme bounds of regression coefficients

$$Y_i = \alpha X_i + \beta C_i + \gamma Z_i + u_i \tag{1}$$

・ロ・ ・回・ ・ヨ・ ・ ヨ・

► Y_i is some variable of interest that one wishes to explain by the RHS variables, X_i is a vector of standard explanatory variables (all robust), C_i is an explanatory variable whose robustness needs to be tested, and Z_i is a vector of potential additional explanatory variables.

Introduction ●●●	New Function-Enhancedeba	Examples	Conclusion O	Problems O
Introduction				

Motivation II

- Leamer's extreme bound test for variable C says that if the lower extreme bound of β (the lowest value of β minus two standard deviations) is negative while the upper extreme bound for β (the highest value for β plus two standard deviations) is positive, the variable C is not robustly related to Y.
- Application to growth regressions: Levine and Renelt (1992) (AER)
- In practice: Run regressions with all possible combinations of variables
- Implemented by Impavido (1998): eba

Introduction	New Function-Enhancedeba	Examples	Conclusion	Problems
•••		0000	O	O
Introduction				

Motivation III

Sala-i-Martin (1997): I Just Ran Two Million Regressions (AER)

- Argues that Leamer's criterion is too strong.
- Proposal: Analyse the entire distribution of the estimates of β.
- Sala-i-Martin's criterion: If the average 90% confidence interval of a regression coefficient does not include zero then the variable is correlated with Y.
- Runs cross-country growth regressions to test which variables robustly explain growth
- This has not been implemented in Stata vet

	Number of Regressions = 30,858	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	NAME OF TESTED VARIABLE	Extrame	Estrame	Shanificant	Rela	Deviation	Normal	Non-Normal	Non-Normal
	HARE OF TESTED THICHDEE							(Weighted)	Not Weighted)
1	Equipment Investment	-0.0396	0.5268	99.97%	0.21748	0.04081	1,000	1,000	1.000
2	Number of Years Open Economy	-0.0025	0.0438	99,97%	0.01945	0.00424	1.000	1.000	1.000
3	Fraction of Confucious	0.0038	0.1268	100.00%	0.06757	0.01492	1.000	1.000	1.000
4	Rule of Law	-0.0124	0.0599	92.04%	0.01895	0.00492	1.000	1.000	0.993
5	Fraction of Muslim	-0.0155	0.0368	88.67%	0.01421	0.00353	1.000	1.000	0.988
6	Political Rights	-0.0134	0.0077	33.73%	-0.00265	0.00067	0.999	0.998	0.926
7	Latin American Dummy	-0.0354	0.0112	88.28%	-0.01154	0.00291	1.000	0.905	0.086
8	Sub-Sahara African Dummy	-0.0377	0.0174	76.33%	-0.01212	0.00322	1.000	0.997	0.978
.9	Civil Liberties	-0.0113	0.0130	16.50%	-0.00290	0.00102	0.995	0.997	0.646
10	Revolutions and Coups	-0.0377	0.0356	2.0179	0.03633	0.00492	0.985	0.004	0.739
11	Fraction of GDP in Mining	0.0001	0.0000	25 2056	-0.000003	0.00001	0.993	0.993	0.955
12	S.D. Black Market Premium	-0.0001	0.0000	03.60%	0.000003	0.00536	0.995	0.990	0.993
22	Design of Capitalian	0.0038	0.0089	51 0256	0.00184	0.00079	0.990	0.987	0.944
12	War Duronny	-0.0165	0.0125	17 09%	-0.00582	0.00233	0.992	0.984	0.870
16	Non-Equipment investment	-0.0633	0.2463	76.32%	0.05622	0.02424	0.990	0.982	0.978
17	Absolute Lattitude	-0.0004	0.0009	66.20%	0.00023	0.00009	0.993	0.980	0.985
18	Exch. Rate Distortions	-0.0003	0.0001	54.29%	-0.00006	0.00003	0.975	0.968	0.958
19	Fraction of Protestant	-0.0480	0.0172	57.07%	-0.01286	0.00525	0.993	0.966	0.958
20	Fraction of Buddhist	-0.0142	0.0554	92.47%	0.01485	0.00755	0.975	0.964	0.994
21	Fraction of Catholic	-0.0305	0.0120	84.18%	-0.00891	0.00341	0.995	0.963	0.984
22	Spanish Colony	-0.0258	0.0286	45.42%	-0.00647	0.00321	0.978	0.938	0.889
23	Public Investment Share	-0.2309	0.2714	1,16%	0.04070	0.02758	0.930	0.915	0.691
24	Frac. Pop. Spk. English	-0.0350	0.0165	27.29%	-0.00682	0.00480	0.922	0.910	0.925
25	Defense Spending Share	-0.2120	0.3299	16.30%	-0.06417	0.04693	0.914	0.000	0.863
26	Age	-0.0002	0.0001	15.10%	-0.00004	0.00003	0.907	0.903	0.018
27	Public Consumption Share	-0.2754	0.1040	35.60%	-0.02205	0.01655	0.909	0.000	0.752
28	Average Inflation Rate 60-90	-0.0010	0.0005	0.00%	0.00002	0.00002	0.046	0.015	0.744
29	Size Cabor Force (Scale Effect)	0.0003	0.0000	10 42%	0.000456	0.00304	0.945	0.831	0.843
30	Plack Market Promium	-0.0228	0.0245	3.36%	.0.00391	0.00356	0.554	0.825	0.707
33	S.D. Inflation \$0.90	-0.1684	0.2322	3.81%	-0.00415	0.00465	0.814	0.811	0.560
33	Growth Rate of Population	-1.2817	1.1651	0.31%	0.20409	0.18643	0.663	0.807	0.531
34	Ratio Workers to Population	-0.0491	0.0456	21.75%	0.00482	0.00630	0.819	0.766	0.773
35	Fraction of Jewish	-1.8490	1.0118	0.16%	0.00923	0.01371	0.750	0.747	0.617
36	Liquid Liabilities to GDP	-0.0335	0.0802	69.32%	0.00819	0.01012	0.791	0.735	0.962
37	Avg. Years of Primary School	-3.5131	7.9705	3.91%	-0.00068	0.00117	0.720	0.704	0.811
38	French Colony	-0.0258	0.0306	0.11%	0.00177	0.00315	0.713	0.702	0.650
39	Political Assassinations	-0.1833	0.1587	0.02%	0.01338	0.02534	0.701	0.697	0.675
40	S.D. Domestic Gredit	-0.0004	0.0002	4.75%	-0.00001	0.00001	0.096	0.010	0.710
41	H*log(GDP60)	-0.0055	0.0040	2.20%	-0.00006	0.00011	0.697	0.669	0.606
42	Fraction of Hindu	-0.3100	3.5100	0.50%	0.00008	0.00100	0.646	0.653	0.623
**	Avg. rears or schooling = H	0.0599	0.0771	2.47%	-0.00438	0.01058	0.661	0.649	0.711
72	Etheoliopulatic Erectionalization	-0.0302	0.0253	0.64%	-0.00183	0.00457	0.655	0.643	0.614
44	Outward Orientation	-0.0097	0.0157	2.51%	-0.00081	0.00233	0.635	0.634	0.794
47	Index of Democracy 1965	-0.0402	0.0233	17.73%	-0.00176	0.00498	0.638	0.633	0.890
43	Tariff Restrictions	-0.5715	0.4344	0.53%	0.01793	0.05657	0.624	0.624	0.670
49	Free Trade Openness	-0.1042	0.1490	3.84%	-0.00568	0.01893	0.618	0.617	0.818
50	Avg. Years of Higher School	-3.5045	7.9721	0.01%	-0.00357	0.01416	0.600	0.597	0.643
51	Avg. Years of Sec. School	-3.5069	7.9789	2.94%	0.00061	0.00259	0.593	0.592	0.800
52	Political Instability	-0.0584	0.1024	0.30%	-0.00193	0.01069	0.672	0.561	0.555
53	Gov. Education Spending Share	-0.6854	0.7519	0.53%	0.02522	0.12604	0.589	0.580	0.6/7
24	Higher Educ. Enrollment	-0.1833	0.2323	0.01%	-0.00092	0.00200	0.003	0.579	0.612
55	British Colony	-9.0180	0.0525	1.01%	-0.00156	0.00525	0.575	0.577	0.746
67	Growth of Domestic Credit \$0.90	-0.0105	0.0008	0.02%	-0.000011	0.00004	0.565	0.565	0.542
-	Area (Scale Effect)	-0.0031	0.0043	0.02%	0.00005	0.00084	0.532	0.532	0.539
59	Terms of Trade Growth	-0.3437	0.2348	0.05%	0.00129	0.04117	0.512	0.511	0.628
	Number of Regressions = 32509								
	VARIABLES NOT TESTED								
	log(GDP per capita 1980)	-0.0336	0.0009	99.96%	-0.01325	0.00230	1.000	1.000	1.000
	Primary School Enrolment, 1960	-0.0384	0.0680	47.58%	0.01793	0.00683	0.996	0.992	0.899
	Life Expectancy, 1960	-0.0008	0.0029	95.30%	0.00083	0.00023	1.000	0.999	0.996

Introduction	New Function-Enhancedeba ●●○	Examples	Conclusion O	Problems ○
Enhancedeba				

The advantages of enhancedeba I

eba-function:

- Only Learner's EBA
- Up to 4 explanatory variables
- Only OLS, no options (e.g. robust standard errors)

enhancedeba-function:

- Can use both Leamer's and Sala-i-Martin's methods
- Applicable to any dataset, cross-sectional or panel
- Not just combinations of four variables, but any combinations possible
- Run any kind of regression, not just OLS

・ 同 ト ・ ヨ ト ・ ヨ ト …

Introduction	New Function-Enhancedeba ●●○	Examples	Conclusion O	Problems ○
Enhancedeba				

The advantages of enhancedeba II

Avoid running regressions multiple times

- Usually:
 - ► To test x₁: run regressions reg y x₁ x₂, reg y x₁ x₃, reg y x₁ x₄
 - ► To test x₂: run regressions reg y x₂ x₁, reg y x₂ x₃, reg y x₂ x₄
 - enhancedeba avoids running the same regression twice by running all regressions and later picking out the ones that contain each variable that needs testing.

3

イロト イヨト イヨト イヨト

Introduction	New Function-Enhancedeba ○○●	Examples	Conclusion O	Problems
Enhancedeba				

Enhancedeba I

Syntax: enhancedeba depvar [indepvars] [if] [in] [weight] [, x(varlist) combinations(#) cmd options() preoptions() level(#) noupto logfile() printlog leamer vif(#) outputfile]

Option	Explanation
×(varlist)	variables that should be included in every regression
combinations()	number of variables (n) in each combination
cmd()	type of regression to be run (e.g. xtreg)
options()	regression-type specific options (e.g. fe)
preoptions()	for commands where the options come before the comma (e.g. xi:)
level()	confidence interval
noupto	combinations of n variables or up to n variables
logfile()	log file to record EBA results
printlog	progress of EBA appears in the results window
outputfile	results written to CSV
leamer	uses Leamer methodology
vif	Variance Inflation Factor used as a criterion
onlysignificant	only significant observations are taken into account 🚊 , 👔 🔬 🦿

Introduction	New Function-Enhancedeba	Examples ●●●●	Conclusion O	Problems
Applications				

Examples I

. clear

. sysuse auto (1978 Automobile Data)

. enhancedeba price headroom trunk weight, comb(3) opt(robust) x(length) level(85)

regression co	mmand:	regress	price lengt	h indepvar(s)	, rob	ust
Confidence In Dependent var Independent v x variable(s)	terval used iable: ariable(s): :	: 85% (.15 price headroom length	signficance trunk weig	ə level) ht		
A total of 7 Every explana	regression(tory variab	s) were run le is in 4	1. regression(:	5).		
	min beta	max beta	avg beta	avg se	% sign	CDF(0)
neadroom	9252001	114 0959	-557.5757	91 60060	100	100
crunk	4 674047	4 753066	4 711944	1 749497	100	100
_cons	-4942.297	11488.47	4158.896	4236.28	100	57.14286
Regulte for t	he v variah	lo(s) ·				

	min beta	max beta	avg beta	avg se	% sign	CDF(0)
length	-102.6652	67.31455	-29.50167	39.80032	100	57.14286

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -Э

Introduction	New Function-Enhancedeba	Examples ●●●●	Conclusion O	Problems ○
Applications				

Examples II

. enhancedeba (National Lon panel	_examples x gitudinal S variable:	treg urvey. You idcode (unb	ng Women 14 Dalanced)	-26 years c	f age in 196	3)
enhancedeba 1	n_wage wks_	ue union te	enure hours,	cmd(xtreg)	opt(fe) com	o (2)
regression co	mmand:	xtreg ln	wage inde	pvar(s)	, fe	
Confidence In Dependent var Independent v	terval used iable: ariable(s):	: 95% (.05 ln_wage hours te	i signficanc	e level) wks_ue		
A total of 10 Every explana	regression tory variab	(s) were ru le is in 4	n. regression(s).		
hours	min beta	max beta	avg beta	avg se	% sign 50	CDF(0) 50
union wks_ue	.098657	.1400584	.1154515	.0078037	100 100 75	100 100 100 100

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わえぐ

Introduction	New Function-Enhancedeba	Examples ●●●●	Conclusion O	Problems
Applications				

Examples III

```
. sysuse auto
(1978 Automobile Data)
```

. enhancedeba price mpg rep78 headroom trunk weight length, x(foreign) comb(3) leamer vif(5)

regression command:	regress price foreign indepvar(s) ,
Confidence Interval used: Dependent variable:	95% (.05 signficance level) price
Independent variable(s): « variable(s):	headroom length mpg rep78 trunk weight foreign

```
A total of 41 regression(s) were run. Every explanatory variable is in 16 regression(s).
```

	min beta	max beta	avg beta	avg se	% sign	CDF(0)
headroom	-645.1354	491.5752	-396.7793	410.2221	0	87.5
length	-99.34391	100.3555	28.78662	25.41487	100	68.75
mpg	-303.8203	27.32371	-154.2233	71.68815	43.75	75
rep78	-67.84385	458.6877	164.3009	380.9681	0	87.5
trunk	-88.30739	328.4497	71.85636	93.0781	25	50
weight	3.320737	6.096515	4.29752	.6694643	100	100
cons	-12117.64	12684.65	-620.8968	2897.106	60.97561	53.65854

Results for the x variable(s):

	min beta	max beta	avg beta	avg se	% sign	CDF(0)
foreign	-205.6112	3711.123	2451.23	788.4066	75.60976	97.56098

| ◆ □ > ◆ □ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Introduction	New Function-Enhancedeba	Examples ●●●●	Conclusion O	Problems ○
Applications				

Examples IV

Leamer Results:

	beta	p-value	C-I low	C-I high	VIF	Obs
headroom min	-645.1354	.9734857	-1298.923	8.652284	1.30516	74
headroom_max	491.5752	.1274705	-362.2356	1345.386	1.094511	74
length_min	58.79209	.0122506	7.776386	109.8078	3.776113	69
length_max	100.3555	1.16e-07	65.30391	135.4071	1.845836	74
mpg min	-303.8203	.9999987	-422.4626	-185.1781	1.33706	74
mpg max	27.32371	.3627794	-127.2085	181.8559	3.104604	69
rep78_min	-67.84385	.5629026	-918.8291	783.1414	1.559942	69
rep78_max	458.6877	.127819	-339.1808	1256.556	1.622385	69
trunk min	-88.30739	.8685748	-244.2787	67.66392	1.83222	74
trunk max	328.4497	.001232	119.7532	537.1462	1.879773	74
weight_min	3.320737	1.31e-12	2.531752	4.109721	1.541895	74
weight_max	3.761171	2.76e-07	2.39604	5.126303	4.570416	74
foreign_min	-205.6112	.5845368	-2117.983	1706.761	1.540226	69
foreign max	3711.123	3.57e-07	2348.271	5073.976	1.597047	74

Enhancing the Application of Extreme Bounds Analysis in Stata

Э

・ロト ・回 ト ・ヨト ・ヨト

Introduction	New Function-Enhancedeba	Examples	Conclusion ●	Problems O
Conclusion				

Conclusion I

- New implementation of Extreme Bounds Analysis approach by Leamer(1985) and Sala-i-Martin(1997)
- very flexible with respect to the type of regression, options, number of variables in each combination etc.
- No reason to apply this methodology only to growth regressions
- Can be used for any question of the form "What explains Y?" or "Can X truly explain Y?

Introduction	New Function-Enhancedeba	Examples	Conclusion O	Problems ●
Remaining Problems				

Problems I

- Have to save results to file this is what takes a long time
- Cannot write to macros
- Sometimes "too many literals"
- Ideas?

####