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Motivation

Motivation

Instrumental variables (IV) methods are employed in linear regression
models, e.g., y = Xβ + u, where violations of the zero conditional mean
assumption E[u|X] = 0 are encountered.

Reliance on IV methods usually requires that appropriate instruments are
available to identify the model: often via exclusion restrictions.

Those instruments, Z, must satisfy three conditions: (i) they must
themselves satisfy orthogonality conditions (E[uZ] = 0); (ii) they must
exhibit meaningful correlations with X; and (iii) they must be properly
excluded from the model, so that their effect on the response variable is
only indirect.
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Motivation Challenges in employing IV methods

Finding appropriate instruments which simultaneously satisfy all three of
these conditions is often problematic, and the major obstacle to the use of
IV techniques in many applied research projects.

Although textbook treatments of IV methods stress their usefulness in
dealing with endogenous regressors, they are also employed to deal with
omitted variables, or with measurement error of the regressors (‘errors in
variables’) which if ignored will cause bias and inconsistency in OLS
estimates.
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Motivation Lewbel’s approach

Lewbel’s approach

The method proposed in Lewbel (JBES, 2012) serves to identify structural
parameters in regression models with endogenous or mismeasured
regressors in the absence of traditional identifying information, such as
external instruments or repeated measurements.

Identification is achieved in this context by having regressors that are
uncorrelated with the product of heteroskedastic errors, which is a feature
of many models where error correlations are due to an unobserved
common factor.

Baum, Lewbel, Schaffer, Talavera ( ) IV with heteroskedastic instruments UKSUG’12, London 5 / 1



Motivation Lewbel’s approach

Lewbel’s approach

The method proposed in Lewbel (JBES, 2012) serves to identify structural
parameters in regression models with endogenous or mismeasured
regressors in the absence of traditional identifying information, such as
external instruments or repeated measurements.

Identification is achieved in this context by having regressors that are
uncorrelated with the product of heteroskedastic errors, which is a feature
of many models where error correlations are due to an unobserved
common factor.

Baum, Lewbel, Schaffer, Talavera ( ) IV with heteroskedastic instruments UKSUG’12, London 5 / 1



Motivation Lewbel’s approach

In this presentation, we describe a method for constructing instruments as
simple functions of the model’s data. This approach may be applied when
no external instruments are available, or, alternatively, used to supplement
external instruments to improve the efficiency of the IV estimator.

Supplementing external instruments can also allow ‘Sargan–Hansen’ tests
of the orthogonality conditions to be performed which would not be
available in the case of exact identification by external instruments.

In that context, the approach is similar to the dynamic panel data
estimators of Arellano and Bond (Review of Economic Studies, 1991) et
al., as those estimators customarily make use of appropriate lagged values
of endogenous regressors to identify the model. In contrast, the approach
we describe here may be applied in a purely cross-sectional context, as well
as that of time series or panel data.
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The basic framework

The basic framework

Consider Y1,Y2 as observed endogenous variables, X a vector of observed
exogenous regressors, and ε = (ε1, ε2) as unobserved error processes.
Consider a structural model of the form:

Y1 = X ′β1 + Y2γ1 + ε1 (1)

Y2 = X ′β2 + Y1γ2 + ε2 (2)

This system is triangular when γ2 = 0 (or, with renumbering, when
γ1 = 0). Otherwise, it is fully simultaneous. The errors ε1, ε2 may be
correlated with each other.
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The basic framework

If the exogeneity assumption, E (εX ) = 0 holds, the reduced form is
identified, but in the absence of identifying restrictions, the structural
parameters are not identified. These restrictions often involve setting
certain elements of β1 or β2 to zero, which makes instruments available.

In many applied contexts, the third assumption made for the validity of an
instrument—that it only indirectly affects the response variable—is
difficult to establish. The zero restriction on its coefficient may not be
plausible. The assumption is readily testable, but if it does not hold, IV
estimates will be inconsistent.

Identification in Lewbel’s approach is achieved by restricting correlations of
εε′ with X . This relies upon higher moments, and is likely to be less
reliable than identification based on coefficient zero restrictions. However,
in the absence of plausible identifying restrictions, this approach may be
the only reasonable strategy.
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The basic framework

The parameters of the structural model will remain unidentified under the
standard homoskedasticity assumption: that E(εε′|X ) is a matrix of
constants. However, in the presence of heteroskedasticity related to at
least some elements of X , identification can be achieved.

In a fully simultaneous system, assuming that cov(X , ε2
j ) 6= 0, j = 1, 2 and

cov(Z , ε1ε2) = 0 for observed Z will identify the structural parameters.
Note that Z may be a subset of X , so no information outside the model
specified above is required.

The key assumption that cov(Z , ε1ε2) = 0 will automatically be satisfied
if the mean zero error processes are conditionally independent:
ε1 ⊥ ε2|Z = 0. However, this independence is not strictly necessary.
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Unobserved single-factor models

Unobserved single-factor models

A class of models satisfying the assumptions underlying Lewbel’s method
are those in which cross-equation error correlations are due to the presence
of an unobserved common factor:

Y1 = X ′β1 + Y2γ1 + ε1, ε1 = α1U + V1 (3)

Y2 = X ′β2 + Y1γ2 + ε2, ε2 = α2U + V2 (4)

where U,V1,V2 are unobserved, uncorrelated with X and conditionally
uncorrelated with each other when conditioned on X . V1,V2 are
idiosyncratic errors, while U is an omitted variable that may directly
influence both Y1,Y2.
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Unobserved single-factor models

This general framework subsumes the case of classical measurement error,
where γ2 = 0 and α2 = 1. In this context, the unobserved common factor
U is the measurement error in Y2.

These models also include constructs where an omitted variable causes
bias and inconsistency. For instance, in wage and schooling equations, the
unobserved factor may represent an individual’s ability and initiative, which
influences both her schooling and labor productivity.
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Unobserved single-factor models

To deal with measurement error or omitted variables, we would usually
impose identification restrictions which provide instruments. Imagine there
are no available instruments, and let Z be a vector of observed exogenous
variables: a subvector of X , or X itself. Assume X is uncorrelated with
(U,V1,V2); that Z is uncorrelated with (U2,UVj ,V1V2); and that Z is
correlated with V 2

2 (or, in a simultaneous system, with V 2
1 as well).

Given these assumptions, it can be shown that

cov(Z , ε1ε2) = 0 (5)

cov(Z ,V 2
2 ) 6= 0 (6)

which allow use of this method.
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Unobserved single-factor models

However, the errors need not actually arise from a factor model of this
form; it is sufficient that the conditions

E(X εj ) = 0, j = 1, 2 (7)

cov(Z , ε1ε2) = 0 (8)

hold, along with some heteroskedasticity of εj . Identification is achieved
whether or not Z is a subvector of X .
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Single-equation estimation

Single-equation estimation

In the most straightforward context, we want to apply the instrumental
variables approach to a single equation, but lack appropriate instruments
or identifying restrictions. The auxiliary equation or ‘first-stage regression’
may be used to provide the necessary components for Lewbel’s method.

In the simplest version of this approach, generated instruments can be
constructed from the auxiliary equations’ residuals, multiplied by each of
the included exogenous variables in mean-centered form:

Zj = (Xj − X ) · ε (9)

where ε is the vector of residuals from the ‘first-stage regression’ of each
endogenous regressor on all exogenous regressors, including a constant
vector.
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Single-equation estimation

These auxiliary regression residuals have zero covariance with each of the
regressors used to construct them, implying that the means of the
generated instruments will be zero by construction. However, their
element-wise products with the centered regressors will not be zero, and
will contain sizable elements if there is clear evidence of ‘scale
heteroskedasticity’ with respect to the regressors. Scale-related
heteroskedasticity may be analyzed with a Breusch–Pagan type test:
estat hettest in an OLS context, or ivhettest (Schaffer, SSC; Baum
et al., Stata Journal, 2007) in an IV context.

The greater the degree of scale heteroskedasticity in the error process, the
higher will be the correlation of the generated instruments with the
included endogenous variables which are the regressands in the auxiliary
regressions.
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Stata implementation ivreg2h

Stata implementation

An implementation of this simplest version of Lewbel’s method, ivreg2h,
has been constructed from Baum, Schaffer, Stillman’s ivreg2 and
Schaffer’s xtivreg2, both available from the SSC Archive. The
panel-data features of xtivreg2 are not used in this implementation: only
the nature of xtivreg2 as a ‘wrapper’ for ivreg2.

In its current version, ivreg2h can be invoked to estimate

a traditionally identified single equation, or

a single equation that fails the order condition for identification:
either (i) by having no excluded instruments, or
(ii) by having fewer excluded instruments than needed for traditional
identification.

Baum, Lewbel, Schaffer, Talavera ( ) IV with heteroskedastic instruments UKSUG’12, London 16 / 1



Stata implementation ivreg2h

Stata implementation

An implementation of this simplest version of Lewbel’s method, ivreg2h,
has been constructed from Baum, Schaffer, Stillman’s ivreg2 and
Schaffer’s xtivreg2, both available from the SSC Archive. The
panel-data features of xtivreg2 are not used in this implementation: only
the nature of xtivreg2 as a ‘wrapper’ for ivreg2.

In its current version, ivreg2h can be invoked to estimate

a traditionally identified single equation, or

a single equation that fails the order condition for identification:
either (i) by having no excluded instruments, or
(ii) by having fewer excluded instruments than needed for traditional
identification.

Baum, Lewbel, Schaffer, Talavera ( ) IV with heteroskedastic instruments UKSUG’12, London 16 / 1



Stata implementation ivreg2h

Stata implementation

An implementation of this simplest version of Lewbel’s method, ivreg2h,
has been constructed from Baum, Schaffer, Stillman’s ivreg2 and
Schaffer’s xtivreg2, both available from the SSC Archive. The
panel-data features of xtivreg2 are not used in this implementation: only
the nature of xtivreg2 as a ‘wrapper’ for ivreg2.

In its current version, ivreg2h can be invoked to estimate

a traditionally identified single equation, or

a single equation that fails the order condition for identification:
either (i) by having no excluded instruments, or
(ii) by having fewer excluded instruments than needed for traditional
identification.

Baum, Lewbel, Schaffer, Talavera ( ) IV with heteroskedastic instruments UKSUG’12, London 16 / 1



Stata implementation ivreg2h

In the former case, of external instruments augmented by generated
instruments, the program provides three sets of estimates: the traditional
IV estimates, estimates using only generated instruments, and estimates
using both generated and excluded instruments.

In the latter case, of an underidentified equation, the only the estimates
using generated instruments are displayed. Unlike ivreg2 or ivregress,
ivreg2h allows the syntax
ivreg2h depvar exogvar (endogvar=)

disregarding the failure of the order condition for identification.
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An empirical example

An empirical example

In Lewbel’s 2012 JBES paper, he illustrates the use of his method with an
Engel curve for food expenditures. An Engel curve describes how
household expenditure on a particular good or service varies with
household income (Ernst Engel, 1857, 1895).1 Engel’s research gave rise
to Engel’s Law: while food expenditures are an increasing function of
income and family size, food budget shares decrease with income (Lewbel,
New Palgrave Dictionary of Economics, 2d ed. 2007).

In this application, we are considering a key explanatory variable, total
expenditures, to be subject to potentially large measurement errors, as is
often found in applied research: due in part to infrequently purchased
items (Meghir and Robin, Journal of Econometrics, 1992).

1Not to be confused with Friedrich Engels, Karl Marx’s coauthor.
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An empirical example

The data are 854 households, all married couples without children, from
the UK Family Expenditure Survey, 1980–1982, as studied by Banks,
Blundell and Lewbel (Review of Economics and Statistics, 1997). The
dependent variable is the food budget share, with a sample mean of 0.285.
The key explanatory variable is log real total expenditures, with a sample
mean of 0.599. A number of additional regressors (age, spouse’s age,
ages2, and a number of indicators) are available as controls. The
coefficients of interest in this model are those of log real total expenditures
and the constant term.
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An empirical example
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An empirical example

We first estimate the model with OLS regression, ignoring any issue of
mismeasurement. We then reestimate the model with log total income as
an instrument using two-stage least squares: an exactly identified model.
As such, this is also the IV-GMM estimate of the model.

In the following table, these estimates are labeled as OLS and TSLS1. A
Durbin–Wu–Hausman test for the endogeneity of log real total
expenditures in the TSLS1 model rejects with p-value=0.0203, indicating
that application of OLS is inappropriate.
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An empirical example

Table: OLS and conventional TSLS

(1) (2)
OLS TSLS,ExactID

lrtotexp -0.127 -0.0859
(0.00838) (0.0198)

Constant 0.361 0.336
(0.00564) (0.0122)

Standard errors in parentheses

These OLS and TSLS results can be estimated with standard regress

and ivregress 2sls commands. We now turn to estimates produced
from generated instruments via Lewbel’s method.
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An empirical example

We produce generated instruments from each of the exogenous regressors
in this equation. The equation may be estimated by TSLS or by IV-GMM,
in each case producing robust standard errors. For IV-GMM, we report
Hansen’s J.

Table: Generated instruments only

(1) (2)
TSLS,GenInst GMM,GenInst

lrtotexp -0.0554 -0.0521
(0.0589) (0.0546)

Constant 0.318 0.317
(0.0352) (0.0328)

Jval 12.91
Jdf 11
Jpval 0.299

Standard errors in parentheses
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An empirical example

The greater efficiency available with IV-GMM is evident in the precision of
these estimates. However, reliance on generated instruments yields much
larger standard errors than identified TSLS.2

As an alternative, we augment the available instrument, log total income,
with the generated instruments, which overidentifies the equation,
estimated with both TSLS and IV-GMM methods.

2The GMM results do not agree with those labeled GMM2 in the JBES
article. However, it appears that the published GMM2 results are not the true
optimum.
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An empirical example

Table: Augmented by generated instruments

(1) (2)
TSLS,AugInst GMM,AugInst

lrtotexp -0.0862 -0.0867
(0.0186) (0.0182)

Constant 0.336 0.337
(0.0114) (0.0112)

Jval 16.44
Jdf 12
Jpval 0.172

Standard errors in parentheses
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An empirical example

Relative to the original, exactly-identified TSLS/IV-GMM specification,
the use of generated instruments to augment the model has provided an
increase in efficiency, and allowed overidentifying restrictions to be tested.
As a comparison:

Table: With and without generated instruments

(1) (2)
GMM,ExactID GMM,AugInst

lrtotexp -0.0859 -0.0867
(0.0198) (0.0182)

Constant 0.336 0.337
(0.0122) (0.0112)

Jval 16.44
Jdf 12
Jpval 0.172

Standard errors in parentheses
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Further developments

Further developments

We have illustrated this method with one endogenous regressor, but it
generalizes to multiple endogenous (or mismeasured) regressors. It may be
employed as long as there is at least one included exogenous regressor. If
there is only one, the resulting equation will be exactly identified.

As this estimator has been implemented within the ivreg2 framework, all
of the diagnostics and options available in that program (Baum, Schaffer,
Stillman, Stata Journal, 2003, 2007) are available in this context.

The extension of this method to the panel fixed-effects context is relatively
straightforward, and we are finalizing a version of Schaffer’s xtivreg2

which implements Lewbel’s method in this context. These routines will be
made available via the SSC Archive and announced on Statalist.
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