Sensitivity analysis for randomised trials with missing outcome data

lan White MRC Biostatistics Unit,Cambridge

> 15 September 2011 UK Stata Users' Group

MRC Biostatistics Unit

Motivation

- Analysis of data where the outcome is incomplete always requires untestable assumptions about the missing data – commonly that they are missing at random (MAR)
- Sensitivity analyses are essential
- Especially relevant to clinical trials
- Ideal approach is to express the untestable assumption as an assumption about the value of an unidentified parameter δ, and then explore sensitivity of results as δ is varied over a plausible range (Kenward et al., 2001)

Propose methods for sensitivity analysis to departures from MAR in randomised trials with

- ▶ a single outcome (i.e. not repeated measures)
- continuous / binary outcome
- adjustment for baseline covariates

I will use a **pattern-mixture model (PMM)** estimated by a **mean score** approach

Plan of the talk

- 1. Model & method
- 2. Implementation in rctmiss, demonstrated in two trials
- 3. Fine-tuning to make rctmiss match standard analyses in special cases
- 4. Alternatives & extensions

This is work with James Carpenter (LSHTM) and Nick Horton (Smith College, USA)

Analysis model

If we had complete data...

- Analysis model: $g(E[y_i|\mathbf{x}_i]) = \beta'_A \mathbf{x}_i$
- y is outcome
- ▶ g(.) is link function (typically identity or logit)
- x is a covariate vector including 1's, randomised group r and baseline covariates – we're interested in the component of β_A corresponding to r
- Estimate the analysis model using estimating equations

$$\sum_{i} \mathbf{x}_i \{ y_i - g^{-1}(\boldsymbol{\beta}'_A \mathbf{x}_i) \} = 0$$

Incomplete data:

- Missing data occur in y only
- *m_i* indicates missingness of *y_i*

Mean score approach: imputation model

How do we solve the estimating equations $\sum_{i} \mathbf{x}_{i} \{ y_{i} - g^{-1}(\beta'_{A} \mathbf{x}_{i}) \} = 0 \text{ when } y \text{ is incomplete}?$

- Mean score idea: replace score (estimating equation) with its expectation given the observed data.
- Since estimating equation is linear in y, we only have to replace the missing y_i with their expectation given the observed data.
 - i.e. we need $E[y_i | \mathbf{x}_i, m_i = 1]$
- Model $E[y_i | \mathbf{x}_i, m_i = 0]$ (pattern mixture approach)

• Assume $g(\mathsf{E}[y_i|\mathbf{x}_i, m_i = 1]) = g(\mathsf{E}[y_i|\mathbf{x}_i, m_i = 0]) + \Delta_i$

- ► Δ_i is a user-specified departure from MAR: e.g. Δ_i = δ₁ if randomised to arm 1, δ₀ if randomised to arm 0.
- ► Δ_i = 0 for all i means the data are MAR; Δ ≠ 0 means the data are MNAR.
- Gives imputation model $g(E[y_i|\mathbf{x}_i, m_i]) = \beta'_i \mathbf{x}_i + \Delta_{li} m_i$

Mean score approach: estimation

1. Estimate β_i in imputation model $g(E[y_i|\mathbf{x}_i, m_i]) = \beta'_i \mathbf{x}_i + \Delta_i m_i$ by regressing y on x in complete cases (m = 0)

2. Form
$$y_i^* = \begin{cases} y_i & \text{if } m_i = 0\\ g^{-1}(\beta_I \mathbf{x}_i + \Delta_i) & \text{if } m_i = 1 \end{cases}$$

3. Solve $\sum_{i} \mathbf{x}_{i}(y_{i}^{*} - g^{-1}(\boldsymbol{\beta}_{A}\mathbf{x})) = 0$ using glm ystar x, family(...) – allows fractional outcome for logistic regression

Mean score approach: variance

- Standard errors from glm ystar x, family(...) are too small – don't allow for imputation of the y^{*}_i
- We compute sandwich standard errors based on both estimating equations:

- Variance = $B^{-1}CB^{-T}$ where
 - *B* involves derivatives of $(S_A(\beta), S_I(\beta))$ with respect to (β_A, β_I)
 - C involves sums of squares of score terms
 - both can be computed using matrix opaccum

Strategy for sensitivity analysis

- Recall Δ is the difference in g(E[y_i|x_i, m_i]) between m_i = 1 and m_i = 0
- If the main analysis assumed MAR ($\Delta = 0$), we propose
 - 1. sensitivity analysis assuming $\Delta_i = \delta$ for all individuals
 - 2. sensitivity analysis assuming $\Delta_i = \delta$ for all in intervention arm; $\Delta_i = 0$ for all in control arm
 - 3. sensitivity analysis assuming $\Delta_i = \delta$ for all in control arm; $\Delta_i = 0$ for all in intervention arm

over a range of δ that is plausible in the scientific context.

QUATRO trial

- European multicentre RCT to evaluate the effectiveness of adherence therapy in improving quality of life for people with schizophrenia (Gray et al., 2006)
- Primary outcome: quality of life measured by the SF-36 MCS scale at baseline and 52-week follow up
- Basic results:

	Intervention	Control
Total randomised	204	205
Missing outcome	14%	6%
Mean of observed outcomes	40.2	41.3
SD of observed outcomes	12.0	11.5

► Quantitative outcome: Δ is {mean unobserved outcome mean observed outcome} adjusted for x

QUATRO: MAR analysis

. xi: reg sf_mcs alloc sf_mcsba i.centreid

Source		df	MS		mber of obs	
Model Residual		5 2 343 1	314.68217 04.001182	Pr R-	5, 343) ob > F squared j R-squared	= 0.0000 = 0.2450
Total			135.76384		ot MSE	= 10.198
sf_mcs	Coef.					Interval]
alloc sf_mcsba _Icentreid_2 _Icentreid_3 _Icentreid_5	3993286 .4588515 -2.263799 -4.345429	1.098267 .0482864 1.664294 1.602894 1.530906 2.41699	-0.36 9.50 -1.36 -2.71 -0.14	0.716 0.000 0.175 0.007 0.887 0.000	-2.559515 .3638767 -5.537306 -7.498169 -3.228061 20.01463	1.760858 .5538263 1.009708 -1.19269 2.794231 29.52261

QUATRO: one sensitivity analysis

. xi: rctmiss, pmmdelta(-10): reg sf_mcs alloc sf_mcsba i.centreid

Using 349 observed outcomes and 37 unobserved outcomes Results allowing for MNAR PMM delta: -10

sf_mcs	Coef.	Std. Err.	Z	P> z		Interval]
	+ -1.22321	1.138477	-1.07		-3.454584	1.008164
	· 4577975	.0501139	9.14	0.203	.3595761	.5560189
_Icentreid_2		1.742822	-0.99	0.322		1.690873
_Icentreid_3		1.665751	-1.95	0.052	-6.508476	.0211496
 _Icentreid_5	.8303046	1.596404	0.52	0.603	-2.29859	3.9592
_cons	23.56718	2.520281	9.35	0.000	18.62752	28.50684

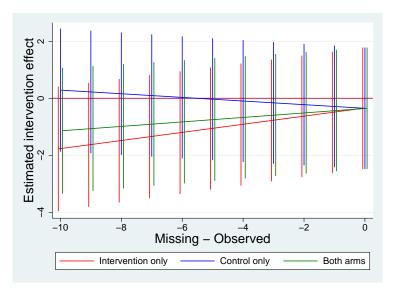
QUATRO: full sensitivity analysis

```
. xi: rctmiss, sens(alloc) pmmdelta(-10/0): reg sf_mcs alloc
```

```
> sf_mcsba i.centreid
```

Using 349 observed outcomes and 37 unobserved outcomes Results allowing for MNAR Performing sensitivity analyses..... Drawing graph...

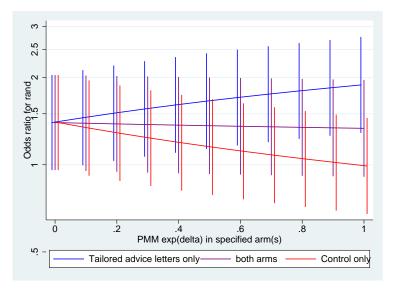
QUATRO: full sensitivity analysis



Incomplete binary outcome in smoking cessation trials

- Outcome is binary (have you quit?) and it is common to impute missing values as failures (still smoking).
- Δ is the log odds ratio between outcome y and missingness m, adjusted for x
- \blacktriangleright Convenient to use the Informative missingness odds ratio $\mathsf{IMOR} = \mathsf{exp}\left(\Delta\right)$
- "Missing=smoking" corresponds to IMOR = 0 for everyone
- We can do a sensitivity analysis over 0 ≤ IMOR ≤ 1: rctmiss, pmmdelta(0(0.1)1, log base(0)) sens(rand): logistic quit rand
- Sutton & Gilbert (2007): Intervn. Control
 Quit 73 51
 Not quit 390 364
 Missing 136 150

Smoking cessation trial: sensitivity analysis



Agreement with MAR and "missing=failure"

- Any user starting out with rctmiss is likely to compare it with other commands
 - MAR analysis e.g. regress and logistic
 - missing=failure analysis logistic
- I think it's very desirable that they should agree exactly
- The point estimate is fine, but standard errors require some understanding of Stata's sandwich variance
- ▶ Stata uses $fB^{-1}CB^{-T}$ where f = n/(n-p) for linear regression and f = n/(n-1) for other GLMs
- ▶ But $n = n_{obs}$ for MAR and $n = n_{total}$ for missing=failure
- I came up with a formula for an effective sample size n = n_{eff} in which individuals with missing outcome receive estimated weights between 0 & 1

Equivalence with missing=failure

. logistic quit_mf rand, robust

. rctmiss, pmmdelta(0, log): logistic quit rand Using 878 observed outcomes and 286 unobserved outcomes Effective sample size: 1164

quit	Odds ratio					_
rand	1.398718 .0992218	.2697208	1.74	0.082	.9584935	2.041131

Equivalence with missing at random

. logistic quit rand, robust

Logistic	regression			Number	of obs =	878	
 quit	Odds Ratio	Robust Std. Err.				Interval]	
rand _cons		.2626823	1.47	0.141	.9087009		
. rctmiss, pmmdelta(0): logistic quit rand Using 878 observed outcomes and 286 unobserved outcomes Effective sample size: 877.99993							

	Odds ratio			P> z	[95% Conf.	-
rand	1.335948 .1401099	.2626823	1.47	0.141	.9087008 .1045028	1.964075

MRC Biostatistics Unit

Stata command rctmiss

- rctmiss, pmmdelta(exp) options: est_cmd
- rctmiss, pmmdelta(numlist) sens(varname) options:
 est_cmd
- Available using net from http://www.mrc-bsu.cam.ac.uk/IW_Stata/
- Imputes missing values in the covariates using mean imputation / missing indicator (White and Thompson, 2005)
 - appropriate only when estimating effect of randomised treatment

Problems and extensions

- Easily extended to cluster-randomised trials: just do clustered sandwich variance
- ▶ Really need an extension to repeated measures:
 - ▶ probably need more ∆ values in principle one for each missing data pattern
 - ► difficulty is deciding how ∆ should vary between individuals with early and late drop-out
 - especially hard for non-monotone missing data patterns
- ► Main practical problem is how to choose Δ I've had some success here (Wallace et al., 2011)
- Alternatives include selection model + IPW (also in rctmiss) and MI

References

- Gray, R., Leese, M., Bindman, J., Becker, T., Burti, L., David, A., Gournay, K., Kikkert, M., Koeter, M., Puschner, B., Schene, A., Thornicroft, G., and Tansella, M. (2006). Adherence therapy for people with schizophrenia: European multicentre randomised controlled trial. *British Journal of Psychiatry*, 189:508–514.
- Kenward, M. G., Goetghebeur, E. J. T., and Molenberghs, G. (2001). Sensitivity analysis for incomplete categorical tables. *Statistical Modelling*, 1:31–48.
- Wallace, P., Murray, E., McCambridge, J., Khadjesari, Z., White, I. R., Thompson, S. G., Kalaitzaki, E., Godfrey, C., and Linke, S. (2011). On-line randomized controlled trial of an Internet based interactive intervention for members of the general public with alcohol use disorders. *PLoS ONE*, 6:e14740.
- White, I. R., Horton, N., Carpenter, J., and Pocock, S. J. (2011). Strategy for intention to treat analysis in randomised trials with missing outcome data. *British Medical Journal*, 342:d40.
- White, I. R. and Thompson, S. G. (2005). Adjusting for partially missing baseline measurements in randomised trials. *Statistics in Medicine*, 24:993–1007.