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The research question

When confronting a research problem or question, we have to decide which ap-
proach to use and what kind of model to apply in order to achieve our objectives.
Indeed, out standards of evaluation may depend on the kind of knowledge we
seek for our purposes. In this approach, we will examine how to assess our
forecasts and to select the model based on the evaluation. Are we engaging in
exploratory data analysis in order to determine what factors may be of interest
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in evaluating situational impact? Are we attempting to study a variety of alter-
native hypotheses explaining the nature of a relationship between variables of
significant theoretical interest? Are we attempting to determine which factors
are useful in warning us of an imminent or emerging threat to our security. Or
are we endeavoring to evaluate policy options or their implementation? The
answer to these questions may provide the focus needed to determine which
factors we must apply to evaluate the models we are considering.

Assume that we are moving into an area where little research has been
conducted. We engage in exploratory data analysis and for about for factors
that may relate to our factors are broadly at work and may be focusing on
the solution of a particular problem. We wish to know which series covary so
that we may find time series that drive or influence the series of interest. A
tentative model may be used for the purpose of exploring a new frontier of
knowledge. A dynamic factor analysis could be applied to an environment of
many financial series over time to ascertain which time series covary and cobreak
in a preliminary attempt to ascertain what are the common forces driving an
economy. These models may incorporate many correlated time series, with
some series more correlated than others. We may be interested in how wide a
theoretical spectrum we are encompassing.

Other models are used to test scientific hypotheses. These models are used to
test alternative explanations of particular relationships among these series. We
may have several models that we apply. Different models are based on different
assumptions about the relationship between our key variables. We wish to
compare some models against others, with respect to their forecast accuracy.
In this way we may determine which models better capture the regularity that
comprises the basis of the forecasts following from these models.

Motivation

Other models are designed for forecasting. After scientific and theoretical issues
have been resolved, the purpose of the model may be one of practical warning.
These models may contain signature variables that are easier to measure and
more stable over time. The parameter constancy provides a more reliable basis
for forecasting. Forecasting with such models is generally important as their the
purpose is to warn people of an emerging serious situation, or looming danger to
life and limb. Forecasting extreme or severe weather systems, health-threatening
air quality, and disease diffusion are some prominent examples. Forecasting
is not only essential for emergency planning and management, it is also an
essential phase of needs assessment, resource allocation and mobilization, policy
planning, implementation, and evaluation. However precisely programmatic a
protocol may seem, each situation is to some extent different. The physicist Nils
Bohr once said, ”Prediction is difficult, especially when its about the future.”
And George E. P. Box is reported to have maintained that All models are
wrong, but some are useful (Box and Draper, 1987). Proper preparation for
potentially disastrous situations remains a challenge for countries, governments,
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or organizations with limited resources.
Michael Clements and Sir David Hendry (2001) suggest some reasons why

conditional models, misspecified in unknown ways yield model error. They
maintain that a model is an attempt to extract regularities while excluding ir-
regularities from nature. Although modeling and forecasting require covariance
stationarity, we live in a nonstationary and changing world (Ibid, 2). Our mod-
eling theory, from which we derive our forecasts, must allow for intermittent
structural breaks (Ibid, 2).” The data generating mechanism, from which our
time series realization stems, can change over time. Furthermore, some data
generating processes change more rapidly than others. Shifts in deterministic
factors can cause shifts in equilibrium means over time. In subsequent sections,
I will endeavor to clarify nomenclature, discuss study design, and with respect
to Box-Jenkins modeling, describe how to assess forecast bias, directional accu-
racy, out-of-sample and ex ante forecast evaluation using Stata to assess point
and interval forecasts. For this presentation, I will deal with forecast evaluation
for exponential smoothing and ARIMA models, whereas in later presentations,
I will discuss forecast evaluation for ARCH/GARCH, dynamic factor analysis,
and state space models. Moreover, I will focus on the forecasts from specific
types of forecasts and leave others for treatment at a later time.

Nomenclature

Types of forecasts

Before proceeding further, we need to clarify key concepts of the forecasting
nomenclature. Without proper elaboration, some of these concepts may be mis-
interpreted. There are several classifications of forecasts. One scheme classifies
forecasts according to the nature of the forecast horizon, compared to the data
available. The forecast horizon is the number of temporal periods over which
the forecast is generated and its point of origin provides the basis for com-
mon forecast terminology. Another classification of forecasts is by the number
of periods forecast at once. One-step-ahead forecasts and multi-step dynamic
forecasts are included in this classification. Each of these classifications can use
clarification. Among these types of forecasts are point forecasts, interval fore-
casts, and density that need explanation. Another classification of forecasts is
based on the aspect of the forecast being generated. Point forecasts are those
which estimate a particular value of the variable being forecast at a particular
time in the future. Interval forecasts are predictions that estimate an interval
within which the forecast should reside for a particular percentage of the time.
There are also density forecasts which yield a probability density distribution of
repeated forecasts. In this presentation, we will focus on two types of fixed win-
dow forecasts–namely, ex post forecasts and ex ante forecasts. Rolling window
forecasts are deferred for a more detailed treatment at a later time and date.
We now attempt to clarify misconceptions about these types of forecasts.
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Data preparation and sample segmentation

Prior to forecasting, the time series that comprise the model have to be, if they
are not already stationary, transformed so that they are covariance stationarity.
They need to have a stable mean, variance and autocovariance throughout the
series. By such a conversion, the only thing that determines the autocorrelation
of a series will be the extent of the lag interval measured. The transformation
entails detrending either by regression on a trend term or by differencing to
change levels to rates. Clements and Hendry suggest that double-differencing
(Hendry and Clements, 1999; Castle and Hendry, 2008) may be necessary.

Another phase of the ARIMA diagnosis entails structural break analysis
and management. Structural breaks as level shifts and/or outliers should be
detected, identified, and modeled. Intercept corrections may be necessary if
there are level shifts are discovered in the series. Pulse or path dummies may
be required to model the additive outliers or outlier patches.

Moreover, the sample needs to be segmented into an estimation segment
and a validation segment. Depending on the size of the time series, a one-
fifth to one-half of it is reserved for predictive validation. Ideally, there would
be enough observations in the validation sample to provide enough statistical
power to statistically determine whether there is significant forecast bias and
whether one forecast is statistically significantly better than another. If the
validation segment is too small, the research will not have enough power to
properly evaluate the forecast against the real data or against another forecast.

Moreover, the researcher needs to be able to distinguish the estimation (his-
torical) from the validation (test) sample. One way to do this is to use Stata’s
e(sample) function. This function = 0 if the sample is not the one on which the
estimation occurred and it equals 1 if it is the sample on which the estimation
occurs.

I prefer to construct a segment dummy so I can observe the coding when I
am proofreading my computer code. I let the segment dummy, segment = 0

if the sample is the estimation sample and segment = 1 if the sample is the
validation segment.

Ex post forecasts

One of the principal types of forecasts that we address is an ex post forecast. We
must evaluate our models for predictive validity. To do so, we divide our sam-
ple into segments. Forecast evaluation requires at least two segments, although
there can be three segments if the model applied is easily or likely to be overfit.
The first segment is called the estimation segment or historical segment. The
second segment is called the validation or test segment. We estimate the model
on the estimation segment and we forecast over the validation segment. Ex post
forecasts are sometimes referred to as “out-of-sample forecasts.” This phrase
can be misleading to those unfamiliar with the jargon. According to Hendry,
this kind of prediction is really “out-of-estimation-sample” forecast because the
forecast horizon begins at the end of the estimation segment and at the begin-
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Figure 1: Data preparation for prediction

ning of the validation segment. Forecast evaluation is performed by comparing
the ex post forecast to the actual data within the validation segment of the data.
The difference between them is called the forecast error. An optimal forecast
is generally deemed to be one that minimizes the sum of squared errors. The
nature of that forecast error is assessed according to some criterion of forecast
accuracy. The goodness of fit of the model may be assessed by comparing the es-
timated to the actual values of the data within the estimation segment, whereas
the predictive validity of the models may be compared according to their rela-
tive forecast accuracy over the validation segment of the data. An example of
an “out-of-estimation-sample” forecast is shown in Figure HS

Ex ante forecasts

Another principal type of forecast is called the ex ante forecast. Frequently, we
need to forecast beyond the end of the sample data at a particular time. Our
point of forecast origin in this type of forecast begins where the actual data
cease to exist. Unless we have some conventional “gold standard” of forecast
accuracy against which to compare these forecasts, we may have no baseline for
comparison at the time of forecast origin. Forecasters customarily generate a
“naive” forecast against which to compare this kind of forecast. Makridakis,
Wheelwright, and McGee (1983) refer to two kinds of naive forecasts. The
“naive” forecast of the first kind is one in which a random walk is extended
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Figure 2: An ex post forecast of US Housing Starts (in thousands) 1959-2005

from the last value of the variable being forecast, whereas a “naive” forecast
of the second kind is a deseasonalized extension of the variable being forecast
as a basis for comparison (Ibid). Those who do ex ante forecasting, usually
wait until the real data are collected and retrospectively evaluate their earlier
forecast. They then compare empirical evaluation against the naive approach
used earlier. Depending upon whether we employing an ex post forecast or an
ex ante forecast, our forecast horizon will begin at a different point of forecast
origin, (Pindyck and Rubinfeld, 1997) as shown in Figure 1. An example of an
ex ante unconditional forecasts of U.S. imports after 2005 is shown in Figure 3

Forecast evaluation is a means by which predictive validity of models are
assessed. It is customary to evaluate models for omnibus goodness of fit and
other criteria for the purpose of model comparison and evaluation. Without
such an assessment model selection would be impossible when there is no unique
solution for a particular model.

One-step-ahead forecasts

Another classification of forecasts pertains to the type of algorithm applied.
If the forecasts are uncorrelated with one another and they are generated so
that each point projected is an iterated projection of values, then an iterated
projection of values is a form of a one-step-ahead forecast. Each forecast of
this type assumes that the previous forecast is actual data upon which the one-
step ahead forecast is based. Because this forecast builds on previous optimal
estimates this type of forecast can generally be more accurate than a multi-
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Figure 3: A unconditional ex ante forecast of US imports after 2005

step dynamic forecast. The state space models generally perform this kind of
forecast with the Kalman filter. An example of this iterated projection is shown
in Figure 4.

Static forecasts

Static models, such as extrapolations, presume that the world does not change.
The ability to apply an extrapolative forecast implies a stability of the situa-
tion. With an evolving world, more complex models that permit dynamics are
required. In the short run, the models must accommodate observable dynamics.
In the relatively long run, the process is one of a kind of dynamic equilibrium
or relatively static. There are some exceptions of course. Static regressions con-
tain contemporaneously interdependent endogenous series and predictive series,
although their lagged values may exhibit no relationship, yet these phenomenon
are unusual(Hendry, 1995).

Dynamic forecasts

Some people may be inclined to think that a dynamic forecast is any forecast
generated from time-series data. These models must take the lag structure into
account and may have variables to measure. There may be measurement error
in the variables and this may change over time. They may entail adjustment
to rational expectations. They may involve leading indicators. They may vary
about a dynamic equilibrium. In so doing, they distinguish this kind of fore-

7



Figure 4: A 6 year one-step-ahead forecast of U.S. housing starts (in thousands)
from 2004

cast from a static forecast, which might be generated prediction intervals from
a cross-sectional regression. Another view of a dynamic forecast is a multi-
step-ahead forecast that can be distinguished from a one-step-ahead forecast.
Whereas the one-step-ahead forecast is an iterated projection of uncorrelated
forecasts, generated by an ARIMA predict command, with the Kalman filter,
the multi-step dynamic forecast with prais has been considered a simultaneous
projection h-steps based only on the data prior to the point of forecast origin.
Because such dynamic prediction is based only on the data prior to the forecast
origin, it can be considerably less accurate than the iterative one-step ahead
projection of the Kalman filter. Dynamic forecasts do not build upon incre-
mental projections that could enhance its accuracy. Consequently, this type of
forecast may not be as accurate as the one-step-ahead forecast. Others refer to
it as another types of forecast (Stata Time Series Reference Manual, Release
11).

Rolling origin forecasts

There are two kinds of rolling origin forecasts. A rolling origin forecast can
have a fixed length window. This approach is often applied when there are
unusual end-effects in a time series being forecast. The end-effects can seriously
bias a forecast. Because end effects are not common throughout the whole
time series, a fixed-length window may be rolled along the time path, period
by period, until it reaches the end of the data. The point of forecast origin is
therefore incrementally moved forward until the window cannot move further
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without being compressed. For each movement of the window, the measures of
forecast accuracy are computed and stored. After the rolling ceases, the average
of those computed forecast accuracy measures is calculated and this is used to
assess the general forecast accuracy. The advantage of this approach is that
unusual outliers or outlier patches or level shifts do not wreak havoc on the
whole assessment. The other kind of rolling origin forecast is one where the
window has a variable length. The origin can move either forward or backward
but the window is either respectively shortened or widened over the remaining
time periods. The advantage of this form of recursive least squares estimation
is that the overall evaluation becomes less dependent upon the length of the
forecast horizon. But a detailed discussion of evaluation for these kinds of
forecasting is beyond the scope of this introductory exposition.

Unconditional and conditional forecasting

Predictability is necessary but not sufficient for forecastability (Ibid, 8). Fore-
castability requires not only a systematic relationship but a knowledge of how
the information set enters the conditional density of the data generating process
(Ibid, 8). Misspecification can arise there due to hidden or unanticipated corre-
lations with excluded or unknown variables but they may also come about due
to unanticipated changes in variables over the forecast horizon. An important
distinction should be made between unconditional and conditional forecasts.
Sometimes smoothers are used to perform simple and quick forecasts. Some-
times an ARIMA model is based on a single series. These forecasts are not
conditional on exogenous time series that influence them. They are uncondi-
tional forecasts. Other forecasts have a time series regression framework. An
endogenous variable may be influence by proximate, indirect, or direct effects as-
sociated with it. These forecasts depend on predetermined or weakly exogenous
variable to constitute the model from which the forecast is generated. These
types of forecasts entail preliminary prediction of all such exogenous or weakly
exogenous variables over the forecast horizon, before the formulated model can
be applied to generate the forecast of the endogenous variable over that forecast
horizon. The preparation for the conditional forecast is the preliminary forecast
of all of the predetermined or weakly exogenous variables over the forecast hori-
zon. In Figure 5, we observe a conditional forecast of an error correction model
of personal consumption expenditures as a function of per capita disposable
income.

Measuring forecast accuracy

Simple non-causal methods may forecast more accurately than more complex
causal models. E.g., some exponential smoothers have outperformed more com-
plex models in the international M-3 forecasting competition. One of the models
that performed superbly in the M-3 competition in 2000 was the “Theta model
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Figure 5: A conditional forecast of personal consumption expenditures as a
function of personal disposable income

(Assimakopoulos and Nikolopoulos, 2000).” The theta model, in its simplest
form, is merely the average of the simple exponential smoother and a linear
regression line. Figure 6 displays the theta model forecast in comparison to the
raw data of life expectancy of all races in the United States over the years shown
on the horizontal axis.

For a model to be well-specified, it should optimize the encompassment of the
driving forces within a system of time series. When the system is not as closed
as the models imply, there may be unanticipated level shifts or impacts from
changes in other fields owing to innovations, discoveries, interactions and cor-
relations with legislative, administrative, or policy changes. Sir David Hendry,
Graham Mizon, Neil Ericsson and others have referred to this part of a model
as the extent to which the model “encompasses” the theory under consideration
(Hendry and Mizon, 2005 ; Ericsson, 1994). Hendry has also maintained in
his writings that econometric models should fulfill the model assumptions that
indicate proper specification. The model should exhibit linear functional form,
no structural breaks, no significant residual autocorrelation or ARCH effects,
residual homoskedasticity, residual normality, as well as parameter constancy.
For a model to be theoretically and statistically congruent, it has to fulfill these
assumptions. Failure to pass the assumptions would detract from the validity
of the model.

The forecast error is defined as

êt+h = (ŷt+h − yt+h) (1)
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Figure 6: A Theta model forecast of life expectancy of all races in the U.S.

which means that the sum of squared forecast error (SSFE) is

SSFE = (ŷt+h − yt+h)
2 (2)

where h = the number of time periods over which forecasting is performed.
If we divide the number of time periods over which the forecast is generated

into the sum of squared forecast errors, we obtain the forecast error variance,
otherwise called the mean square forecast error (MSFE).

MSFE = SSFE/h =

∑T+H
T (ŷt+h − yt+h)

2

H
(3)

where H = the total number of time periods over which forecasting is performed.
Alternatively, we could take use the root mean square forecast error (RMSFE),

which is simply the square root of the mean square forecast error.

RMSFE =
√
MSFE (4)

Although the forecast competition has been described as a tournament to
ascertain what model can obtain a minimum forecast error variance, the use of
the forecast error variance or its square root as a criterion of forecast accuracy
has been criticized. Scott Armstrong notes that the forecast error variance is
vulnerable to outlier inflation, owing to the squaring of the difference between
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the actual and the forecast. If the series being forecast contains outliers, other
measures of forecast accuracy that are not so inflatable by the presence of out-
liers would be preferred. One such measure is the absolute error, sum of absolute
errors, or mean absolute deviation, mean absolute percentage error, or one of
the various forms of the symmetric mean absolute percentage error.

Forecast bias

To determine whether there is significant forecast bias, we perform a nonpara-
metric Wilcoxon signed-rank test between the actual data within the validation
segment and the forecast. The nonparametric test allows the observations to
be correlated and it does not require parametric assumptions about the nature
of the forecast distribution. This permits evaluation of forecast financial series
that have non-Gaussian fat-tailed distributions (a t distribution with the de-
grees of freedom less than six) or survival or extreme value distributions, which
are notoriously non-Gaussian. The drawback is that the power efficiency of this
test is only about 95% of that of a paired t-test. Ideally, the forecast horizon
will be long enough to provide the necessary power to detect a small to medium
effect size here.

The Stata command to perform this test is signrank actual = forecast.
If we were to employ a Diebold-Mariano test we would be relying on some
parametric assumptions.

Theil-Mincer-Zarnowitz test for Weak rationality of fore-
cast

Were we to insist on a joint test of no significant constant and a slope of unity,
we could use a Newey West regression of the actual data on the forecast. If the
data generating process were correctly modeled, there would be no statistically
significant slope and there would be a regression coefficient equal to unity. Ja-
cob Mincer and Victor Zarnowitz proposed a regression model, shown in Eq. 5,
in a paper entitled ”The Evaluation of Economic Forecasts” a test for the weak
rationality of the forecast (B. Hansen lecture notes, 2010). In this case, the
actual data within the forecast horizon, is regressed upon the forecast in that
same segment, the value of the constant (c) should equal zero and the value of
the regression coefficient (b) should equal one for the condition of weak forecast
rationality to exist. When the actual data was regressed on the Forecast, the
constant had to be equal to zero and the regression coefficient had to be equal
to unity for this weak rationality of the forecast to hold. We allow for some het-
eroskedasticity and residual autocorrelation to be corrected by the Newey-West
autocorrelation correction to the Halbert White heteroskedastically consistent
variance estimator.

Actualt = c+ b ∗ Forecastt (5)
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Directional accuracy

Sometimes people are interested in the directional accuracy of the endogenous
series with respect to an exogenous series. Correlations test this covariance. A
Pearson correlation coefficient and a Spearman’s Rho rank-order correlation to
test the monotonicity of the two series are given. The latter provides a relative
scale from minus one to plus one, indicating the level of monotonicity obtained
between these two series.

Absolute measures of forecast accuracy

In addition to the measures based on squared errors, we have a number of
measures that are based on absolute error that are measured over the out-of-
estimation sample forecast horizon. Among these is the sum of absolute errors
(SAE), shown in Eq. 6, the mean absolute error (MAE), in Eq. 7, the mean
absolute percentage error (MAPE), displayed in Eq. 9, and the median absolute
percentage error (MdAPE), which is the middle observation of the rank-ordered
absolute percentage error (APE) over the forecast horizon, if h is an odd number,
or, if h is an even number, the MdAPE is the average of the h/2 and the h/2 +
1 observation of those rank-ordered APEs.

SAE =
T+h∑
t=T

|Actualt+h − Forecastt+h| (6)

where T=point of forecast origin (h=0).

MAE =

∑T+h
t=T |Actualt+h − Forecastt+h|

h
(7)

APE = 100
T+h∑
t=T

|(Actualt+h − Forecastt+h)/(Actualt+h)| (8)

MAPE = (100)/(h)
T+h∑
t=T

|(Actualt+h − Forecastt+h)/(Actualt+h)| (9)

Each of these measures has their relative advantages and disadvantages. The
SAE and MAE have no scale by which they can be relatively measured. The
MAPE is somewhat scale dependent in that when forecasting very low values
or integers—such as a one or two– the size of the measure is easily inflated to
100% or more. Therefore, when using the MAPE, it is important to accompany
it with the MAE or an MSFE to provide a sense of balance. Because of this
inflation, several scholars have proposed a symmetric MAPE (sMAPE).
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The earliest version of the symmetric MAPE uses the addition of the forecast
and the actual in the denominator, rather than just the actual. (O’Conner and
Lawrence, 1993). The disadvantage is that this summation in the denominator
places the symmetric MAPE not on a scale of 0 to 100, but on a scale of
0 to 200 (sMAPE1) For this reason, Michele Hibon and Spyros Makridakis
(2000) proposed a revised version of the symmetric MAPE (sMAPE2), whereby
we avoid the scale inflation with small numbers and restrict the fluctuations
between -200 to 200 instead of a lack of any boundaries.

sMAPE1 =
(100)

(h)

T+h∑
t=T

|(Actualt+h − Forecastt+h)|/(Actualt+h + forecastt+h)

(10)

sMAPE2 = (200)/(h)
T+h∑
t=T

|(Actualt+h − Forecastt+h)/(Actualt+h + forecastt+h)|

(11)

The second version appears to be one of the preferred ones. It is the one
that is included in these programs.

A Relative Measure of forecast accuracy

Henri Theil developed a relative measure of forecast accuracy. The measure is
designed to compare the forecast error variance to that of a naive forecast or
that of a random walk. This measure is particularly useful for ex ante forecasts,
which frequently have to be compared to an artificial baseline. In 1983 Richard
Meese and Ken Rogoff, reported in the International Journal of Economics, that
many econometric structural models did not forecast as accurately as a random
walk (cited in Hansen notes, 2010). Henri Theil’s U, shown in Eq. 12 formed
a ratio of the proportional error of the forecast to that of the naive forecast
or random walk extension of the last value carried over the forecast horizon.
Models with values less than one were deemed respectable whereas those with
U values greater than one were not so respectable.

Theil′s U =

√√√√∑T+h
t=T ((Actualt+h − Forecastt+h)/(Actualt+h))2∑T+h
t=T ((Naive1t+h − forecastt+h)/(Actualt+h))2

(12)
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Forecast evaluation modules

oforeval.ado for ex post forecasts

Version 2.0.0. of oforeval.ado has been written by this author to provide an
out-of-sample ARIMA forecast evaluation over the forecast horizon specified by
the user. A help file is also available, called oforeval.hlp. Both of these files
should be stored in the c : /ado/personal/o ( where / represents a backslash
in the pathname of the) directory on the hard drive of the user’s computer or
wherever he deposits his personal ado programs.

Preprocessing

1)The user constructs a segment variable, to be coded 0 during the estimation
segment and 1 during the forecast evaluation.
2)The user performs his ARIMA analysis over the estimation segment.
For example, arima dlnwpi if segment == 0, ar(13) ma(8)
3)The user performs his forecasting over the validation segment of the data. He
gives it the name “oforecast.”
for example, predict oforecast if segment == 1

Command syntax

oforeval arg1 arg2 arg3

where
arg1 = the variable name of the variable being forecast
after transformations.
arg2 = the observation number representing point of forecast origin.
arg3 = highest order of autocorrelation used in command.

Examples:

oforeval ds12.air 122 0

oforeval dlnwpi 116 3

(continued on the next page)
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oforeval output

. predict oforecast if segment==1
(option xb assumed; predicted values)

. oforeval dlnwpi 116 4

Out of estimation sample forecast evaluation
of dlnwpi

Date: 23 Nov 2010
Time: 22:37:35

Forecast bias tests

Paired t-test over forecast horizon

t = -0.5898
p-value = 0.5716

Signrank test of difference between Forecast and Actual

Signrank Z = -0.5331
Probability > |Z| = 0.2970

Theil-Mincer-Zarnowitz Test of weak forecast rationality
using a Newey - West regression of
Actual = cons + B*Forecast

Joint test of cons=0 and B=1
F value = 11.0174
df = 2
p-value = 0.0069

(continued on the next page)
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Measures of directional accuracy

Pearson correlation between
forecast and actual = -0.1230

Spearman rank correlation
between forecast & actual = -0.1833
p-value of Spearman Rho = 0.6368

Measures of forecast accuracy

Sum of Squared Errors = 0.0013
Mean Square Forecast Error = 0.0000
Root Mean Square Forecast Error = 0.0001
Sum of Absolute Errors = 0.0935
Mean Absolute Error = 0.0104
Mean Absolute Percentage Error = 171.8847
Median Absolute Percentage Error = 70.8047
Symmetric Mean absolute percentage

error v.1 = 109.7530
Length of Forecast Horizon (h) = 8

(continued on the next page)
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Theil’s U test of Forecast Accuracy

Forecast Accuracy compared to Naive 1 forecast

Theil’s U = 0.8031

note bene: Theil’s U Scoring

Theil’s U = 1 when the naive method is as good as the
forecasting technique being evaluated

Theil’s U > 1: There is no point in using a formal
forecasting technique because naive method
generates better results.

Theil’s U < 1: The Forecasting Technique being used is
better than the naive method.

Naive method 1 is using the last value carried
forward as a forecast.

Caveat: Statistical tests performed over short
forecast horizons may lack sufficient statistical power
to detect real differences between forecasts and
actual data. Power analysis may be in order under
such circumstances.

Acknowledgements:
I want to thank Kerry Kammire and Brian Poi
for their helpful programming advice and assistance.
Other references can be found in the help file.

Author: Robert Alan Yaffee
New York University
robert.yaffee@nyu.edu

foreval.ado for ex ante forecasts

Version 1.0.0. of foreval.ado has been written by this author to provide an ex
ante ARIMA forecast evaluation based on a naive1 extension of the last value
carried forward. This is essentially a random walk extension of that value to
provide a basis of comparison for a forecast projected beyond on the of the
available data. A help file is also available, called foreval.hlp. Both of these
files should be stored in the c : /ado/personal/f directory, where the / may
represent a backslash on the computer hard drive of the user or wherever his
personal ado programs reside.

Preprocessing

1)The user constructs a segment variable, to be coded 0 during the estimation
segment and 1 during the forecast evaluation.
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2)The user decides how far into the future he intends to forecast.
3)The user performs his ARIMA analysis over the estimation segment.
For example, arima dlnwpi if segment == 0, ar(1 3) ma(8)
4)The user extends the date-time variable over the intended forecast horizon
with: tsappend, add(h)
where h = the number of temporal periods over which he will forecast.
5) If other predictor series or event-dummy variables serve as regressors in the
model, their need to be forecast over the planned forecast
horizon at this juncture in the protocol, before the endogenous series can be
forecast.
6)The user performs his forecasting over the validation segment of the data. He
gives it the name “oforecast.”
for example, predict forecast if segment == 1

Command syntax

foreval arg1 arg2 arg3

where
arg1 = the variable name of the variable being forecast
after transformations.
arg2 = the observation number representing point of forecast origin.
arg3 = highest order of autocorrelation used in command.

Examples:

foreval ds12.air 122 0

foreval dlnwpi 116 3

(continued on the next page)
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Output

. foreval dlnwpi 124 3

Ex ante ARIMA forecast evaluation

Date: 24 Nov 2010
Time: 08:50:05

Evaluations cover forecast horizon only

Test of Forecast Bias against naive 1 baseline

Paired t-test
t = -1.355
df = 11
p-value = 0.203

Wilcoxon paired rank test

Signrank Z = 1.334
Probability > |z| = 0.909

Caveat: appears missing if forecast = straight line

Theil’s test of weak forecast rationality

Newey-West Regression joint test
of constant=0 and regression coefficient
of actual data on forecast = 1

F = 43.9
df = 1
p > |F| = 0.000

If either slope or constant or both are omitted,
the omission may be due to collinearity where
both are approximately equal to zero.

(continued on the next page)
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Measures of Forecast Accuracy

Sum of Squared Errors (SSE) = 0.001
Mean Square Forecast Error (MSFE) = 0.000
Root Mean Square Forecast Error (RMSFE) = 0.008
Mean Absolute Error (MAE ) = 0.007
Mean Absolute Percentage Error (MAPE) = 8.809%
Symmetric MAPE version one (SMAPE1)= 9.790
Symmetric MAPE version two (SMAPE2)= 16.761
Median Absolute Percentage Error(MdAPE) = 46.658%
Forecast horizon = (h) = 12 obs

Caveats:
1) Forecast is compared to random walk extension of

variable being forecast.
2) if h < 30 statistical power

of forecast evaluation will be limited.

Directions for further development

In this paper we only address the forecast evaluation for ARIMA models. In
later versions, we address issues of structural breaks, and present programs for
ARCH/GARCH forecast evaluation as well as those for dynamic factor analysis
and state space models.

(continued on the next page)
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