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Getting the most out of xtmixed

The Linear Mixed Model

Model Statement

y = Xβ + Zu + ǫ

where

y is the n × 1 vector of responses

X is the n × p fixed-effects design matrix

β are the fixed effects

Z is the n × q random-effects design matrix

u are the random effects

ǫ is the n × 1 vector of errors such that

[

u

ǫ

]

∼ N

(

0,

[

G 0

0 σ2
ǫ
In

])
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The Linear Mixed Model

Variance components

Random effects are not directly estimated, but instead
characterized by the elements of G, known as variance

components

You can, however “predict” random effects. These are known
as best linear unbiased predictions (BLUPs)

As such, you fit a mixed model by estimating β, σ2
ǫ
, and the

variance components in G

We can fit linear mixed models in Stata using xtmixed and
gllamm. In the special case of a random-intercept model, we
can also use xtreg
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Getting the most out of xtmixed

The Linear Mixed Model

Panel Representation (Laird and Ware, 1982)

Classical representation has roots in the design literature, but
can make model specification difficult

When the data can be thought of as M independent panels, it
is more convenient to express the mixed model as (for
i = 1, ...,M)

yi = Xiβ + Ziui + ǫi

where ui ∼ N(0,S), for q × q variance S, and

Z =











Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM











; u =







u1
...

uM






; G = IM ⊗ S
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Example 1: Standard Random Coefficients

Analysis of growth curves

Example

Goldstein (1986) analyzed data on weight gain of Asian
children in a British community (Rabe-Hesketh and Skrondal
2008, section 5.10)

We analyze a subset of their data, namely 68 children weighed
between one and five times inclusive

The graph of growth curves will suggest the following model
features:

overall quadratic growth
child-specific random intercepts
(perhaps) child-specific linear trends
child-specific quadratic components would perhaps be a bit
much
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Example 1: Standard Random Coefficients

Graphing growth curves

. use http://www.stata.com/icpsr/mixed/child, clear
(Weight data on Asian children)

. sort id age

. graph twoway (line weight age, connect(ascending)), ///

> xtitle(Age in years) ytitle(Weight in Kg) ///
> title(Growth Curves For Child Data)
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Example 1: Standard Random Coefficients

Growth-curve model

Graphical features suggest the following model for the jth
weighing of the ith child

weightij = β0 + β1ageij + β2age
2
ij + ui0 + ui1ageij + ǫij

This is a standard random-coefficients model, the bread and
butter of xtmixed

It is good practice to use cov(unstructured) and not
assume the two random-effects terms are independent, the
default

You can always do an LR test to ensure that the added
covariance term is significant
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Example 1: Standard Random Coefficients

Random-coefficients model with xtmixed

. gen age2 = age^2

. xtmixed weight age age2 || id: age, cov(unstructured) variance

Mixed-effects REML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1

avg = 2.9
max = 5

Wald chi2(2) = 1940.65
Log restricted-likelihood = -262.4327 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

age 7.703451 .2408987 31.98 0.000 7.231298 8.175604

age2 -1.66009 .0890272 -18.65 0.000 -1.834581 -1.4856
_cons 3.494664 .1384934 25.23 0.000 3.223222 3.766106

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured
var(age) .2617525 .0912799 .1321462 .5184738

var(_cons) .4172866 .1686882 .1889453 .9215797
cov(age,_cons) .085354 .0904636 -.0919514 .2626593

var(Residual) .3341601 .058922 .2365176 .4721128

LR test vs. linear regression: chi2(3) = 114.39 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.R. Gutierrez (StataCorp) September 8-9, 2008 9 / 36
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Example 2: Grouped Covariance Structures

Assessing a gender effect

The previous model grouped boys and girls together

Is there a systematic difference (in the overall mean curve)
between boys and girls?

Do boys and girls demonstrate different variability about their
respective average curves?

We can certainly check graphically

. graph twoway (line weight age, connect(ascending)), by(girl) ///
> xtitle(Age in years) ytitle(Weight in Kg)
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Example 2: Grouped Covariance Structures

Gender-specific growth curves
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Example 2: Grouped Covariance Structures

Expanding the model

The deficiency of our previous model is that it assumed the
variance components were the same for both boys and girls

weightij = β0 + β1ageij + β2age
2
ij + β3girlij + ui0 + ui1ageij + ǫij

Our graph indicates that girls’ curves are bunched closer
together

As such, a better model would be to have gender-specific
random effects, i.e. distinct r.e. covariance matrices for boys
and girls

In other words we want the portion in red above replaced by

ub
i0boyij + ub

i1

(

ageij × boyij

)

+ u
g
i0girlij + u

g
i1

(

ageij × girlij

)
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Example 2: Grouped Covariance Structures

Block-diagonal covariances

In our new model, the covariance matrix of the random effects
is block diagonal, i.e.

Var









ub
i0

ub
i1

u
g
i0

u
g
i1









=

[

Σb 0

0 Σg

]

where both Σb and Σg are 2 × 2 unstructured covariance
matrices

You can achieve this effect by “repeating level specifications”

We will also add corresponding fixed-effects terms, boy/girl
dummy variables and boy/girl interactions with age.
Otherwise we would be imposing dubious constraints
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Example 2: Grouped Covariance Structures

Our new model

We wish to fit the following model

weightij = β2age
2
ij +

β3boyij + β4

(

ageij × boyij

)

+

β5girlij + β6

(

ageij × girlij

)

+

ub
i0boyij + ub

i1

(

ageij × boyij

)

+

u
g
i0girlij + u

g
i1

(

ageij × girlij

)

+ ǫij

At this point I recommend using ML instead of the default
REML estimation. ML permits LR tests for models where the
fixed-effects structures differ

For example, say you wanted to test against a model with no
interactions, fixed or random
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Example 2: Grouped Covariance Structures

Our new model with xtmixed

. gen boy = !girl

. gen boyXage = boy*age

. gen girlXage = girl*age

. xtmixed weight age2 boy boyXage girl girlXage, nocons ///

> || id: boy boyXage, nocons cov(un) ///
> || id: girl girlXage, nocons cov(un) mle var

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group: min = 1

avg = 2.9
max = 5

Wald chi2(5) = 7095.79
Log likelihood = -248.70821 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

age2 -1.641597 .0867182 -18.93 0.000 -1.811562 -1.471633
boy 3.766094 .1618969 23.26 0.000 3.448782 4.083406

boyXage 7.782752 .2609228 29.83 0.000 7.271353 8.294152

girl 3.257528 .178941 18.20 0.000 2.90681 3.608246
girlXage 7.538577 .2386229 31.59 0.000 7.070885 8.006269

--more--
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Getting the most out of xtmixed

Example 2: Grouped Covariance Structures

Our new model with xtmixed

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

id: Unstructured

var(boy) .2887796 .1915665 .078688 1.059801
var(boyXage) .4557309 .1794435 .210644 .9859798

cov(boy,boyXage) .0227221 .1373405 -.2464604 .2919046

id: Unstructured

var(girl) .4799603 .2223231 .1936061 1.189848
var(girlXage) .0423413 .0608414 .0025331 .7077496

cov(girl,girlXage) .0645366 .0869897 -.1059602 .2350333

var(Residual) .3211566 .0555259 .2288493 .4506964

LR test vs. linear regression: chi2(6) = 113.34 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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Example 2: Grouped Covariance Structures

Some notes

It turns out the greater spread in the boys’ curves is due to
larger variability in the linear component, not the intercept

Neither covariance appears to be significant. You can drop
both by simply reverting to xtmixed’s default independent
covariance structure

The identity could be used to further restrict the model
(equality constraints)

Using repeated level specifications, each separated by ||, for
achieving gender-specific error structures is equivalent to
using the GROUP option of some PROCedure for fitting
MIXED models employed by Some Alternative Software
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Example 3: Heteroskedastic Residual Errors

Heteroskedastic errors

What about heteroskedasticity in the residual errors?

Example

Dempster et al. (1984) analyze data from a reproductive study
on rats to assess the effect of an experimental compound on
pup weights (Rabe-Hesketh and Skrondal 2008, exercise 3.5)

27 litters were recorded over three treatment groups: control,
low dose, and high dose

Weight is related to dosage level and litter size, which are
“litter-level” covariates

Weight is also related to sex, a pup-level covariate
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Getting the most out of xtmixed

Example 3: Heteroskedastic Residual Errors

. use http://www.stata.com/icpsr/mixed/rats, clear
(Weights of rat pups)

. egen mnw = mean(weight), by(litter)

. twoway (scatter mnw size if dose==0) ///

> (scatter mnw size if dose==1, msymbol(plus)) ///
> (scatter mnw size if dose==2, msymbol(x) msize(large)), ///

> ytitle(Mean weight (grams)) ///
> legend(order(1 "control" 2 "low dose" 3 "high dose")) ///
> legend(position(1) ring(0))
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Example 3: Heteroskedastic Residual Errors

Random-intercept model

Our initial model is

weightij = β0 + β1dose1ij + β2dose2ij + β3sizeij + β4femaleij +

ui + ǫij

for i = 1, ..., 27 litters and j = 1, ..., ni pups within litter

This is a standard random-intercept model, fit by xtmixed or,
even, xtreg

Residual plots vs. the linear predictor are always a good idea.
In our case, we produce these plots by variable female

because we are curious about heteroskedasticity
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Example 3: Heteroskedastic Residual Errors

Random-intercept model with xtmixed

. xi: xtmixed weight i.dose size female || litter:

i.dose _Idose_0-2 (naturally coded; _Idose_0 omitted)

(output omitted )

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Idose_1 -.4416666 .1513553 -2.92 0.004 -.7383176 -.1450157

_Idose_2 -.8706054 .1830525 -4.76 0.000 -1.229382 -.511829
size -.1299602 .0190485 -6.82 0.000 -.1672946 -.0926259

female -.3626441 .0477374 -7.60 0.000 -.4562077 -.2690805

_cons 8.324096 .2770569 30.04 0.000 7.781074 8.867118

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

litter: Identity

sd(_cons) .3140074 .0532536 .2252069 .4378225

sd(Residual) .4045051 .0166929 .3730758 .4385822

LR test vs. linear regression: chibar2(01) = 90.73 Prob >= chibar2 = 0.0000
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Example 3: Heteroskedastic Residual Errors

Residual plots by female

. predict xbeta

(option xb assumed)

. predict r, residuals

. twoway (scatter r xbeta, by(female))
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Getting the most out of xtmixed

Example 3: Heteroskedastic Residual Errors

Heteroskedastic errors

In our previous model, we want ǫij replaced by

ǫij = ǫm
ij (1 − femaleij) + ǫf

ijfemaleij

The bad news is that xtmixed will always produce a single,
overall residual term. The good news is we can express the
above instead as

ǫij = ǫm
ij + (ǫf

ij − ǫm
ij )femaleij

and we can estimate the additional variability due to female

This alternate form allows us to fit this model in xtmixed,
provided we create a pseudo two-level model, with the
lowest-level “groups” being the observations (pups)
themselves, nested within litters
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Getting the most out of xtmixed

Example 3: Heteroskedastic Residual Errors

Heteroskedastic residuals with xtmixed

. gen pup = _n

. xi: xtmixed weight i.dose size female || litter: || pup: female, nocons var

Mixed-effects REML regression Number of obs = 321

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

litter 27 2 11.9 18

pup 321 1 1.0 1

Wald chi2(4) = 107.22

Log restricted-likelihood = -196.90368 Prob > chi2 = 0.0000

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Idose_1 -.4500473 .15523 -2.90 0.004 -.7542925 -.1458021
_Idose_2 -.8780883 .18757 -4.68 0.000 -1.245719 -.5104578

size -.1307603 .0196311 -6.66 0.000 -.1692365 -.092284
female -.3634425 .04821 -7.54 0.000 -.4579324 -.2689526

_cons 8.339868 .2845412 29.31 0.000 7.782177 8.897558

--more--
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Getting the most out of xtmixed

Example 3: Heteroskedastic Residual Errors

Heteroskedastic residuals with xtmixed

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

litter: Identity
var(_cons) .1046383 .035361 .053956 .2029279

pup: Identity

var(female) .0558646 .02933 .0199636 .1563272

var(Residual) .1370851 .0161837 .108768 .1727743

LR test vs. linear regression: chi2(2) = 94.55 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. nlcom ( male: exp(2 * [lnsig_e]_cons)) ///

> (female: exp(2 * [lnsig_e]_cons) + exp(2 * [lns2_1_1]_cons))

male: exp(2 * [lnsig_e]_cons)
female: exp(2 * [lnsig_e]_cons) + exp(2 * [lns2_1_1]_cons)

weight Coef. Std. Err. z P>|z| [95% Conf. Interval]

male .1370851 .0161837 8.47 0.000 .1053657 .1688044

female .1929497 .023584 8.18 0.000 .1467259 .2391734
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Example 3: Heteroskedastic Residual Errors

Handling non-convergence

Fitting heteroskedastic-error models using this procedure will
often result in non-convergent models

The reason is that implicit in the above is the assumption that
σ2

f ǫ
> σ2

mǫ

If not true, the variance component representing added
variability will tend towards zero and form a ridge in the
likelihood surface

The solution? Simply model the added variability as due to
male rather than as due to female
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Example 4: Smoothing Via Penalized Splines

Spline smoothing

Finally, you can also use xtmixed for spline smoothing:

Example

Silverman (1985) analyzed 133 measurements taken from a
simulated motorcycle crash

Head acceleration (y) was measured over time (x)

Because of the changing nature of the curve over time and
the heteroskedasticity of errors, these data are a staple of the
smoothing literature
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Example 4: Smoothing Via Penalized Splines

Scatterplot

. use http://www.stata.com/icpsr/mixed/motor, clear

. graph twoway (scatter accel time)
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Example 4: Smoothing Via Penalized Splines

Smoothing via linear splines

A linear-spline smoothing model has the form

yi = β0 + β1xi +
M

∑

j=1

γj |xi − κj |+ + ǫi

for M knot points κj , usually chosen to form a grid

Think of linear smoothing splines as just a series of
interlocking line segments, the slopes of which need to be
estimated

The above suggests plain linear regression, with the
appropriately-generated regressors, of course. Call this the
“fixed-effects” approach
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Example 4: Smoothing Via Penalized Splines

Spline coefficients as fixed effects

. local i 1

. forvalues k = 1(1)60 {
2. gen time_‘i’ = cond(time - ‘k’ > 0, time - ‘k’, 0)
3. local ++i
4. }

. qui regress accel time time_*

. predict accel_fixed
(option xb assumed; fitted values)

. graph twoway (line accel_fixed time) (scatter accel time)
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Example 4: Smoothing Via Penalized Splines

Spline coefficients as fixed effects
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Example 4: Smoothing Via Penalized Splines

Penalized splines and xtmixed

As you may have noticed, the problem with the fixed-effects
approach is that it tends to interpolate the data

One solution is to use penalized splines, which adds a
roughness penalty to the likelihood from the linear-regression
approach

Ruppert et al. (2003), among others, show that this is
equivalent to treating the slopes as random rather than fixed,
and estimating them as BLUPs of a mixed model

As such, a “random-effects” approach yields a much
nicer-looking smooth, and we can get xtmixed to do all the
heavy lifting
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Example 4: Smoothing Via Penalized Splines

Penalized-spline coefficients as random effects

. xtmixed accel time || _all: time_*, noconstant cov(identity)

(output omitted )

accel Coef. Std. Err. z P>|z| [95% Conf. Interval]

time -.4672689 13.33173 -0.04 0.972 -26.59698 25.66244

_cons -.0152613 34.32348 -0.00 1.000 -67.28805 67.25753

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity

sd(time_1..time_56)(1) 7.01774 1.479116 4.642918 10.60727

sd(Residual) 22.53256 1.462753 19.84051 25.58988

LR test vs. linear regression: chibar2(01) = 151.17 Prob >= chibar2 = 0.0000

(1) time_1 time_2 time_3 time_4 time_6 time_7 time_8 time_9 time_10 time_11
time_12 time_13 time_14 time_15 time_16 time_17 time_18 time_19 time_20

time_21 time_22 time_23 time_24 time_25 time_26 time_27 time_28 time_29
time_30 time_31 time_32 time_33 time_34 time_35 time_36 time_37 time_38

time_39 time_40 time_41 time_42 time_43 time_44 time_45 time_47 time_48
time_49 time_50 time_52 time_53 time_55 time_56
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Example 4: Smoothing Via Penalized Splines

Penalized-spline coefficients as random effects

. predict accel_random, fitted

. graph twoway (line accel_random time) (scatter accel time)
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Fitted values: xb + Zu Head acceleration (m/s)
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Example 4: Smoothing Via Penalized Splines

Conclusions

Conclusions

xtmixed is versatile

You can repeat level specifications to achieve structured
covariance matrices

When combined with xtmixed available structures, covariance
matrices can be constrained even further

BLUPs are a useful smoothing tool. Their shrinkage
properties keep them from overfitting the data
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