Nature of Inequality and Allocation of Talents: Some Empirical Evidence

SBA Research Seminar AUS, April 2025

FACCHINI François

University of Paris 1, Sorbonne Economic Center (CES) (France)

JAECK Louis

School of Business Administration, American University of Sharjah, (United Arab Emirates)

Hajer Kratou

College of Business Administration, Ajman University, Ajman, (United Arab Emirates)

Outline

- Background / Motivation
- Stylized Facts
- Hypotheses
- Overview of the empirical model and main results
- Data and methodology
- Results and conclusion

- Natkhov and Polishchuk (2019), Kyklos: talent allocation explained by the quality of institutions
 - Murphy et al. (1991), *QJE*:
 - Education in sciences, an investment specific to productive activities
 - Legal education, helpful in unproductive activities such as redistribution ("legal human capital", Hadfield, 2007)
 - (Number of law students characterize the nature of an economy:
 - Laband et al. 1988, *Public Choice*)

Natkhov and Polishchuk (2019): positive relationship between the quality of institutions and the graduation in sciences, and a negative one between institutional quality and the graduation in law

- <u>Related literature:</u>
 - Ebeke et al. (2015): graduation of university students in law / business / social sciences; AND engineering and technical sciences, is affected by resource wealth and the quality of national institutions
 - Massive resource sector increases the attractiveness of rentseeking activities discouraging to invest in STEM
 - Alexeev et al. (2018): enrolment of over a million Russian university students:
 - Students more responsive to the quality of regional institutions when deciding to seek education in STEM

- Effect of income inequality in talent allocation:
 - Natkhov and Polishchuk (2019):
 - Control variable, high level of inequality affect career choices in law (positive relation)
 - When institutions are included, effect of income inequality become insignificant
 - Acemoglu and Robinson (2012): "rent-seeking institutions" ("weak institutions") benefiting privileged elites at the expense of the rest of society associated with high income inequality
 - Would that suggest that inequalities driven by rent-seeking institutions affect career choice in law ???
 - Our argument in this paper:
 - Income inequality when conditioned by institutions affect the allocation of talents in productive or unproductive field

• Our objective:

- Analyse the effects of the nature of income inequality on the allocation of talents
- The nature of income inequality is driven by the nature of institutions:
 - Facchini et al. (2023), *EJPE*: the nature of income inequality affect the growth-inequality debate:
 - "Profit-seeking institutions" (productive inequalities) : positive relation
 - "Rent-seeking institutions" (unproductive inequalities): negative relation
- Why the type of inequality matters ? Personal enrichment:
 - Through rent-seeking activities: need to acquire legal skills
 - Through profit-seeking activities: need to acquire scientific and entrepreneurial skills

- Rent-seeking society generate rent opportunities, fueling the demand for legal competences and skills:
 - Rent-seeking society is full of public sector jobs
 - Jobs provided by State monopolies in the area of the judiciary, higher education, diplomacy and military etc.
 - Rent-seeking society displays a high level of regulated economic activities
 - Develop skills to know the different tax exemptions offered by the law
 - Legal skills to optimize your tax level
 - Need to know all the subsidy schemes offered by the government to create your business and/or for hiring

- Free-market society with "profit-seeking" ("good") institutions, legal skills are useless:
 - Reward risk taking behaviors and provide a lower job protection for employees
 - Young talents decide to embrace an entrepreneurial journey since the status of employee is less protected
 - Welfare state is less developed, and the labor law does not favor employees that much

Entrepreneurship become a credible career option fueling students' enrolment in business studies, sciences and engineering (Gibb 2011; Divert 1982)

Measuring the nature income inequality?

Capturing institutional dimension:

- Facchini et al. (2023) recent contribution:

- The Institutions Productivity Indicator (IP):
 - Derived by Baumol (1990,2004)
 - Captures the predominance of profit-seeking institutions over rent-seeking ones

 $IP = \frac{Property Rights}{10 - Rigorous and Impartial Public Administration}$

Measuring the nature income inequality?

- IP captures the institutional environment that drives the nature of inequalities
- Nature of inequalities affect allocation of talents
 - Countries with high IP score: productive inequalities favor talents allocation in Sciences and Engineering
 - Countries with low IP score: unproductive inequalities favors talents allocation in Law
 - Nature of inequalities is an important driver of talents allocation

Stylized Facts: Countries with Low IP Score

Difference in law graduates and science graduates

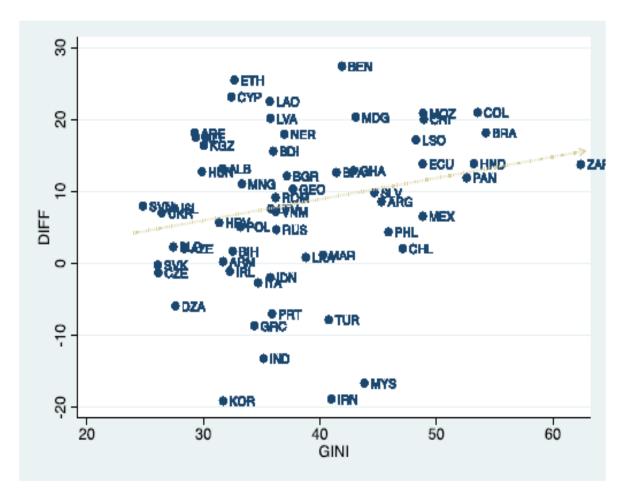


Figure 1: Income inequality and allocation of talents

Hypotheses

- Hypothesis 1: In countries in which institutions are productive, income inequality favors enrollment in sciences university degrees
- Hypothesis 2: In countries in which institutions are unproductive income inequality favors enrollment in law university degrees

Model's Overview / Main Results

- We empirically test our hypothesis using panel data covering the 2000-2020 for 81 countries with different income level
- We find a positive relationship between productive inequalities and talents allocation in productive fields (Science and Engineering)

Data and Methodology

• Two ways FE and system-GMM:

Following Natkhov and Polishchuk (2019), we estimate equation 1:

Productive activities_{it} = $\alpha + \beta_1 Gini_{it} + \beta_2 IP_{it} * Gini_{it} + \beta_3 IP_{it}$

$$+ \beta_4 \quad X_{it} + \mu_i + \sigma_t + \varepsilon \tag{1}$$

- Where Productive activities_{it} is share of those majoring in sciences
- The nature of income inequality measured by IP it * Giniit.
- X is a vector of socio-economic and demographic control variables for country i at time t
- μ_i , σ_t are country and period fixed effects and ε is the error term

Data and Methodology

- Data
 - -UNESCO Institute of Statistics
 - Information on the number of graduates in tertiary education for 23 educational programs in 102 countries
 - -WDI
 - World Bank

Data and Methodology

- Socio-economic and demographic control variables
 - GDP per capita (expected +)
 - School enrollment in tertiary education (expected +)
 - GDP structure (share of service in GDP):
 - (expected for sciences and expected + for law)
 - R&D expenditures (expected +)
 - Population (market size) (expected +)

Table 1

FE and GMM regressions for share in science graduates

	FE	GMM	GMM
	1	2	3
Log IP	-0.398**	-2.668***	-0.371***
	(-2.074)	(-7.734)	(-2.791)
Log Gini	-0.411***	-0.801***	-0.143**
	(-3.652)	(-5.513)	(-2.112)
Interaction IP . Gini	<mark>0.103*</mark>	0.771***	0.0932**

Table 1

FE and GMM regressions for share in science graduates

	FE		GMM	GMM
Log GDP per capita				
growth				0.00520***
				(4.189)
Log school_enrollment				
tertiary				0.00323
				(0.0779)
Log service (% GDP)				-0.152*
				(-1.786)
R&D				0.131***
				(15.73)
Log population				0.0508***
				(5,836)
Constant	4.565***		5.903***	3.276***
	(11.34)		(11.48)	(8.323)
Observations		679	679	441
Number of countries		72	72	62
R-squared	0.028			
Hansen			0.143	0.307

Table 2: FE and GMM regressions:

Difference between shares of law school and science graduates

	FE	GMM	GMM
	1	2	3
Log IP	0.443	21.67***	31.03***
	(0.350)	(49.59)	(19.87)
Log Gini	2.089***	5.147***	4.656***
	(3.286)	(15.61)	(10.19)
Interaction IP. Gini	-0.0228	-6.273***	-8.897***

Table 2: FE and GMM regressions:

Difference between shares of law school and science graduates

	1	s of him school and schence graduates			
	FE	GMM	GMM		
	1	2	3		
Log GDP per capita					
growth	-5.721**		0.0909***		
	(-2,499)		(25.67)		
Log school_enrollment					
tertiary			0.892***		
			(5.066)		
Log service (% GDP)			1.068***		
			(2.733)		
R&D			-1.601***		
			(-22.55)		
Log population			-0.0396		
			(-1.138)		
Constant		-16.11***	-20.66***		
		(-13.46)	(-7.038)		
Observations	456	456	294		
Number of countries	59	59	49		
R-squared	0.053				
Hansen		0.555	0.556		

20

Variable	Mean	S.D	Min	Max
Difference between the shares of law				
school (graduates as a proxy for the				
allocation of talent to redistribution)				
and science graduates	2.11	1.06	-3.44	3.86
Institutions' Productivity indicator	0.85	1.27	-1.13	4.83
GINI	3.55	0.21	3.14	4.17
GDP per capita growth	0.96	0.96	-4.79	3.49
Log school_enrollement tertiary	3.60	0.91	-0.25	4.96
Log service (% GDP)	4.00	0.192	3.07	4.38
R&D	1.06	0.91	0.01	4.79
Population	16.38	1.53	12.54	21.05

Conclusion

- Productive inequalities affect talents allocation in productive fields in sciences and engineering
- Our results are in line with Natkhov and Polishchuk (2019) but they go beyond
 - More than the quality of institutions:
 - The nature of income inequalities matters
 - The way to get wealthy matters

THANK YOU !