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Introduction
A rich and growing literature exploits machine learning to facilitate
causal inference.

A central focus: high-dimensional controls and/or instruments,
which can arise if
I we observe many controls/instruments
I controls/instruments enter through an unknown function

Belloni, Chernozhukov, and Hansen (2014) and Belloni et al.
(2012) propose estimators relying on the Lasso that allow for
high-dimensional controls/instruments.
⇒ Available via pdslasso in Stata (Ahrens, Hansen, and

Schaffer, 2020)
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Introduction
What if we don’t want to use the lasso?
I The Lasso might not be the best-performing machine learner

for a particular problem.
I The Lasso relies on the approximate sparsity assumption,

which might not be appropriate in some settings.

Chernozhukov et al. (2018) propose Double/Debiased Machine
Learning (DDML) which allow to exploit machine learners other
than the Lasso.

Our contribution:
I We introduce ddml, which implements DDML for Stata.
I We provide simulation evidence on the finite sample

performance of DDML.
I Our recommendation is to use DDML in combination with

Stacking.
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Background
Motivating example. The partial linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

How do we account for confounding factors xi? — The standard
approach is to assume linearity g(xi) = x ′i β and consider
alternative combinations of controls.

Problems:
I Non-linearity & unknown interaction effects
I High-dimensionality: we might have “many” controls
I We don’t know which controls to include
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Background
Motivating example. The partial linear model:

yi = θdi︸︷︷︸
causal part

+ g(xi)︸ ︷︷ ︸
nuisance

+εi .

Post-double selection (Belloni, Chernozhukov, and Hansen, 2014)
and post-regularization (Chernozhukov, Hansen, and Spindler,
2015) provide data-driven solutions for this setting.

Both “double” approaches rely on the sparsity assumption and use
two auxiliary lasso regressions: yi  xi and di  xi . lasso PDS

Related approaches exist for optimal IV estimation (Belloni et al.,
2012) and/or IV with many controls (Chernozhukov, Hansen, and
Spindler, 2015).
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Background
These methods have been implemented for Stata in pdslasso
(Ahrens, Hansen, and Schaffer, 2020), dsregress (StataCorp)
and R (hdm; Chernozhukov, Hansen, and Spindler, 2016).

Example syntax:
. pdslasso $Y $D (c.($X)#c.($X)), robust

Example 1 (pdslasso) allows for high-dimensional controls.

Example 2 (ivlasso) treats avexpr as endogenous and exploits
logem4 as an instrument. (More details in the pds/ivlasso help
file.)
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Background
There are advantages of relying on lasso:
I intuitive assumption of (approximate) sparsity
I computationally relatively cheap (due to plugin lasso penalty;

no cross-validation needed)
I Linearity has its advantages (e.g. extension to fixed effects;

Belloni et al., 2016)

But there are also drawbacks:
I What if the sparsity assumption is not plausible?
I There is a wide set of machine learners at disposable—Lasso

might not be the best choice.
I Lasso requires careful feature engineering to deal with

non-linearity & interaction effects.
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Review of DDML
The partial linear model:

yi = θdi + g(xi) + εi

di = m(xi) + vi

Naive idea: We estimate conditional expectations `(xi) = E [yi |xi ]
and m(xi) = E [di |xi ] using ML and partial out the effect of xi (in
the style of Frisch-Waugh-Lovell):

θ̂DDML =
(
1
n
∑

i
v̂2

i

)−1 1
n
∑

i
v̂i(yi − ˆ̀),

where v̂i = di − m̂i .

7 / 31



Review of DDML
Yet, there is a problem: The estimation error `(xi)− ˆ̀ and vi may
be correlated due to over-fitting, leading to poor performance.

DDML, thus, relies on cross-fitting (sample splitting with
swapped samples).

DDML for the partial linear model (DML 2)
We split the sample in K random folds of equal size denoted by Ik :
I For k = 1, . . . ,K , estimate `(xi) and m(xi) using sample Ic

k and
form out-of-sample predictions ˆ̀i and m̂i for all i in Ik .

I Construct estimator θ̂ as(
1
n
∑

i
v̂2

i

)−1
1
n
∑

i
v̂i(yi − ˆ̀),

where v̂i = di − m̂i . m̂i and ˆ̀i are the cross-fitted predicted values.
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DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive model

yi = g(di , xi) + ui E [ui |xi , di ] = 0
zi = m(xi) + vi E [ui |xi ] = 0

As in the Partial Linear Model, we are interested in the ATE, but
do not assume that di (a binary treatment variable) and xi are
separable.

We estimate the conditional expectations E [yi |xi , di = 0] and
E [yi |xi , di = 1] as well as E [di |xi ] using a supervised machine
learner.
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DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Partial linear IV model

yi = diθ + g(xi) + ui E [ui |xi , zi ] = 0
zi = m(xi) + vi E [vi |xi ] = 0

where the aim is to estimate the average treatment effect θ using
observed instrument zi in the presence of controls xi . We estimate
the conditional expectations E [yi |xi ], E [di |xi ] and E [zi |xi ] using a
supervised machine learner.
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DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

High-dimensional IV model

yi = diθ + g(xi) + ui

di = h(zi) + m(xi) + vi

where the parameter of interest is θ. The instruments and controls
enter the model through unknown functions g(), h() and f ().

We estimate the conditional expectations E [yi |xi ], E [d̂i |xi ] and
d̂i := E [di |zi , xi ] using a supervised machine learner. The
instrument is then formed as d̂i − Ê [d̂i |xi ] where Ê [d̂i |xi ] denotes
the estimate of E [d̂i |xi ].
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DDML models
The DDML framework can be applied to other models (all
implemented in ddml):

Interactive IV model

yi = µ(xi , zi) + ui E [ui |xi , zi ] = 0
di = m(zi , xi) + vi E [vi |xi , zi ] = 0
zi = p(xi) + ξi E [ξi |xi ] = 0

where the aim is to estimate the local average treatment effect.

We estimate, using a supervised machine learner, the following
conditional expectations: E [yi |xi , zi = 0] and E [yi |xi , zi = 1];
E [D|xi , zi = 0] and E [D|xi , zi = 1]; E [zi |xi ].
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The ddml package
We introduce ddml for Stata:
I Compatible with various ML programs in Stata (e.g.

lassopack, pylearn, randomforest).
→ Any program with the classical “reg y x” syntax and

post-estimation predict will work.
I Short (one-line) and flexible multi-line version
I 5 models supported: partial linear model, interactive model,

interactive IV model, partial IV model, optimal IV.
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Stacking regression
Which machine learner should we use?

ddml supports a range of ML programs: pylearn, lassopack,
randomforest. — Which one should we use?

We don’t know whether we have a sparse or dense problem; linear
or non-linear. We don’t know whether, e.g., lasso or random
forests will perform better.

Stacking, as implemented in pystacked, provides a solution: We
use an ‘optimal’ combination of base learners.
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Stacking regression
Which machine learner should we use?

We don’t know whether we have a sparse or dense problem; linear
or non-linear; etc.

Stacking is an ensemble method that combines multiple base
learners into one model. As the default, we use constrained least
squares:

w = arg min
wj

n∑
i=1

yi −
J∑

j=1
wj ŷ (j)

i

2

, wj ≥ 0,
∑

j
wj = 1

where ŷ (j)
i are cross-validated predictions of base learner j .

Voting regression is a special case with unweighted (or
user-specified) weights.

15 / 31



Extended ddml syntax
Step 1: Initialise ddml and select model:

ddml init model
[

, kfolds(integer) reps(integer) ...
]

where model is either ‘partial’, ‘iv’, ‘interactive’, ‘ivhd’, ‘late’.

Step 2: Add supervised ML programs for estimating conditional
expectations:

ddml eq newvarname
[

, eqopt
]
: command depvar indepvars

[
,

cmdopt
]

where eq selects the conditional expectations to be estimated. command
is a ML program that supports the standard reg y x-type syntax.
cmdopt are specific to that program.

Multiple estimation commands per equation are allowed.
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Extended ddml syntax
Step 3: Cross-fitting

ddml crossfit
[

, shortstack
]

Step 4: Estimation of causal effects

ddml estimate
[

, robust ...
]

Additional auxiliary commands:

ddml describe (describe current model set up), ddml save & ddml
use (to import/save ddml objects), ddml extract (to retrieve objects),
ddml export (export in csv format).
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Extended ddml syntax: Example
We demonstrate the use of ddml using the partially linear model
by extending the analysis of 401(k) eligibility and total financial
wealth of Poterba, Venti, and Wise (1995). The data consists of
n = 9915 households from the 1991 SIPP.

Step 0: Load data, define globals
. use "sipp1991.dta", clear
. global Y net_tfa
. global X age inc educ fsize marr twoearn db pira hown
. global D e401

Step 1: Initialise ddml and select model:
. set seed 42
. ddml init partial, kfolds(4)
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Extended ddml syntax: Example (cont’d.)
Step 2: Add supervised ML programs for estimating conditional
expectations. We use OLS, Lasso and Random Forest.

. *** add learners for E[Y|X]

. ddml E[Y|X]: reg $Y $X
Learner Y1_reg added successfully.
. ddml E[Y|X]: cvlasso $Y c.($X)#c.($X), lopt postresults
Learner Y2_cvlasso added successfully.
. ddml E[Y|X], vtype(none): rforest $Y $X, type(reg)
Learner Y3_rforest added successfully.
. *** add learners for E[D|X]
. ddml E[D|X]: reg $D $X
Learner D1_reg added successfully.
. ddml E[D|X]: cvlasso $D c.($X)#c.($X), lopt postresults
Learner D2_cvlasso added successfully.
. ddml E[D|X], vtype(none): rforest $D $X, type(reg)
Learner D3_rforest added successfully.
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Extended ddml syntax: Example (cont’d.)
Step 3: Cross-fitting with 5 folds

. ddml crossfit, shortstack
Cross-fitting E[Y|X] equation: net_tfa
Cross-fitting fold 1 2 3 4 ...completed cross-fitting...completed short-stacking
Cross-fitting E[D|X] equation: e401
Cross-fitting fold 1 2 3 4 ...completed cross-fitting...completed short-stacking
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Extended ddml syntax: Example (cont’d.)
Step 4: Estimation of causal effects

. ddml estimate, robust
DDML estimation results:
spec r Y learner D learner b SE

1 1 Y1_reg D1_reg 5964.151(1522.426)
2 1 Y1_reg D2_cvlasso 8390.126(1356.633)
3 1 Y1_reg D3_rforest 8054.667(1271.281)
4 1 Y2_cvlasso D1_reg 9350.056(1381.641)

* 5 1 Y2_cvlasso D2_cvlasso 9570.601(1318.880)
ss 1 [shortstack] [ss] 9401.724(1300.628)
... <-click or type ddml estimate, replay full to display full summary

* = minimum MSE specification for that resample.
Min MSE DDML model, specification 5
y-E[y|X] = Y2_cvlasso_1 Number of obs = 9915
D-E[D|X,Z]= D2_cvlasso_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9570.601 1318.88 7.26 0.000 6985.644 12155.56
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qddml example: Partial linear model
qddml is the one-line (‘quick’) version of ddml and uses a syntax
similar to pds/ivlasso.

. qddml $Y $D (c.($X)#c.($X)), model(partial) ///
> cmd(cvlasso) cmdopt(lopt postresults) ///
> robust
DDML estimation results:
spec r Y learner D learner b SE

1 1 Y1_reg D1_reg 9504.777(1368.314)
* 2 1 Y1_reg D2_cvlasso 9512.796(1357.514)

3 1 Y2_cvlasso D1_reg 9534.451(1373.390)
4 1 Y2_cvlasso D2_cvlasso 9483.607(1361.398)

* = minimum MSE specification for that resample.
Min MSE DDML model, specification 2
y-E[y|X] = Y1_reg_1 Number of obs = 9915
D-E[D|X,Z]= D2_cvlasso_1

Robust
net_tfa Coefficient std. err. z P>|z| [95% conf. interval]

e401 9512.796 1357.514 7.01 0.000 6852.117 12173.47
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Simulation I: Advantages of Stacking
Simulation set-up

We consider a linear DGP and a non-linear DGP, and compare
performance of OLS, PDS-Lasso and various machine learners,
including stacking.

We would expect that stacking performs well under both settings,
while linear approaches only perform well if the DGP is linear.
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Simulation I: Advantages of DDML+Stacking
Calibrated simulation based on Poterba, Venti, and Wise (1995),
who estimate the causal effect of 401(k) eligibility on wealth.
1. Construct the partial residuals y (r)

i = yi − τ̂OLSdi , ∀i where τ̂OLS is the full
sample OLS estiamte.

2. We predict y (r)
i with the controls xi either using

I linear regression (Linear DGP)
I gradient boosting (Non-Linear DGP)

and call the fitted estimator h̃.
3. Similarily, predict di given xi and call the estimator g̃ .
3. We draw bootstrap sample Db of size ns from the data
4. To generate 401(k) eligibility and log wealth, we calculate

d̃ (b)
i = 1{h̃(xi ) + νi ≥ 0.5}, νi

iid∼ N (0, κ1)

ỹ (b)
i = τ0d̃ (b)

i + g̃(xi ) + εi , εi
iid∼ N (0, κ2), ∀i ∈ Db

where κ1 and κ2 are chosen to match distributions of di and yi .
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Simulation I: Advantages of DDML+Stacking

Table: Average Stacking Weights

Linear DGP Non-Linear DGP
Y |X D|X Y |X D|X
(1) (2) (3) (4)

OLS 0.06 0.29 0.00 0.02
cv-Lasso 0.35 0.17 0.01 0.00
cv-Ridge 0.35 0.17 0.01 0.00

Series Lasso (w/o interactions) 0.11 0.11 0.08 0.22
Series Lasso (w/ interactions) 0.07 0.13 0.31 0.30

Gradient boosting (low regularization) 0.03 0.05 0.30 0.23
Gradient boosting (high regularization) 0.02 0.05 0.29 0.20

Random forest (low regularization) 0.01 0.01 0.01 0.01
Random forest (high regularization) 0.01 0.01 0.01 0.01

Neural Network 0.00 0.00 0.00 0.00
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Simulation I: Advantages of DDML+Stacking

Table: Coefficient Estimates

ns = 9915 ns = 99150

Panel (A): Linear DGP Bias Rate Bias Rate
(1) (2) (3) (4)

OLS -89.7 0.95 -0.3 0.94
DDML:

cv-Lasso -88.2 0.95 -0.4 0.94
Gradient boosting -103.6 0.95 -7.2 0.94
Ensemble (stacking) -112.5 0.94 -2.5 0.94

Panel (B): Non-Linear DGP Bias Rate Bias Rate
(5) (6) (7) (8)

OLS -2580.0 0.54 -2599.4 0.00
DDML:

cv-Lasso -2615.7 0.53 -2604.0 0.00
Gradient boosting -50.7 0.94 -0.4 0.98
Ensemble (stacking) 248.8 0.94 -1.2 0.98
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Simulation II: Small Sample Performance
Wüthrich and Zhu (2021, henceforth WZ) demonstrate that
PDS-Lasso suffers from a large finite sample bias and tends to
underselect; again using the application of Poterba, Venti, and
Wise (1995) and Belloni et al. (2017).

They use two specifications:
I two-way interactions (TWI) (as in Chernozhukov and Hansen,

2004); p = 167
I quadratic splines & interactions (QSI) (as in Belloni et al.,

2017); p = 272
WZ run their simulations on bootstrap samples of the data
(nb = {200, 400, 800, 1600}) and calculate the bias as the mean
difference to the full sample estimate (N = 9915).
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Simulation II: Small Sample Performance

(a) Bias (TWI specification) (b) Bias (QSI specification)

Notes: The figures report the mean bias calculated as the mean difference to the
full sample estimates. Following WZ, we draw 600 bootstrap samples of size nb =
{200, 400, 600, 800, 1200, 1600}. ‘TWI’ indicates that the predictors have been ex-
panded by two-way interactions. ‘QSI’ refers to the quadratic spline & interactions
specification of Belloni et al. (2017).

Figure: Replication of Figure 8 in WZ
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Simulation II: Small Sample Performance

(a) CV-Lasso (b) CV-Ridge

Figure: Mean bias relative to full sample
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Simulation II: Small Sample Performance

(a) Boosted trees (b) Stacking

Figure: Mean bias relative to full sample

The small sample bias of stacking stabilizes for nb > 600,
suggesting that stacking may perform well for ‘moderate’ sample
sizes.
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Summary
I ddml implements Double/Debiased Machine Learning for

Stata:
I Compatible with various ML programs in Stata
I Short (one-line) and flexible multi-line version
I Uses Stacking Regression as the default machine learner;

implemented via separate program pystacked
I 5 models supported

I The advantage to pdslasso is that we can make use of
almost any machine learner.

I But which machine learner should we use?
I We suggest stacking. We don’t know which learner is best

suited for a particular problem.
I Stacking allows to consider multiple learners in a joint

framework, and thus reduces the risk of misspecification.
I We are in the final phase of development; hopefully we can

make ddml available soon (following your feedback)
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