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Conditional likelihood models in a nutshell

• Fit a parametric distribution function
fθ(y) ...
• θ is a small vector of parameters

(typically, say, 2–4 parameters)
• e.g., a (log-)normal, a gamma, a beta

distribution, etc.
• ... conditioning on vector of covariates,
fθ(X)(y)
• ... by specifying a parametric relationship
between X and θ
• For example, θ(X) = Xβ (or
θ(x) = exp(Xβ) if θ(X) must be > 0)
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Uses of conditional likelihood models

• Functional outcomes (Biewen and Jenkins,
2005)
• Quantile regression... without running
quantile regression (Noufaily and Jones,
2013)
• Censored data (Jenkins et al., 2011)
• Endogenous selection (Van Kerm, 2013)
• Instrumental variables (Briseño Sanchez
et al., 2020)
• Marginalisation and counterfactual
distributions (Van Kerm et al., 2017)
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Array of models for conditional distributions FX

Many models and estimators available, more or less parametrically restricted, e.g.,

• quantile regression (Koenker and Bassett, 1978)
• distribution regression (Foresi and Peracchi, 1995, Chernozhukov et al., 2013,
Van Kerm, 2016)
• duration models (Donald et al., 2000, Royston, 2001)
• conditional likelihood models (Biewen and Jenkins, 2005, Van Kerm et al., 2017)



1 Quantile regression

2 Distribution regression

3 Conditional likelihood models



Linear quantile regression model

Assume a particular relationship (linear) between conditional quantile and x:

Qτ(y|x) = xβτ

(Or equivalently yi = xiβτ + ui where F−1
ui|xi

(τ) = 0)

β̂τ = arg min
β

∑
i

ρτ(yi − xiβ)

(Koenker and Bassett, 1978)

Estimate of the conditional quantile (given linear model):

Q̂τ(y|x) = xβ̂τ

β̂τ can be interpreted as the marginal change in the τ conditional quantile for a
marginal change in x

(Stata: qreg)



Recovering υ(Fx)

Estimation of Q̂τ(y|x) for a continuum of τ in (0, 1) provides a model for the entire
conditional quantile function of Y given X (the quantile ‘process’–See Blaise Melly’s
presentation and qrprocess for fast implementation)

After estimation of the quantile process (0, 1), estimation of the distributional statistic
conditional on X is relatively easy by simulation:

• a set of predicted conditional quantile values {xiβ̂θ}θ∈(0,1) is a pseudo-random
draw from Fx (if grid for θ is equally-spaced) (Autor et al., 2005)

• so, a simple estimator for υ from unit-record data can be used to estimate υ(FXi)



Disadvantage?

Linearity of the model Qτ(y|x) = xβτ may possibly be problematic in some situations

• discontinuities (e.g. minimum wage)

• quantile crossing within the support of X (Simple solution is re-arrangement of
quantile predictions (Chernozhukov et al., 2009))
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‘Distribution regression’

Fx(y) = Pr {yi 6 y|x} is a binary choice model once y is fixed (dependent variable is
1(yi < y))

Estimate Fx(y) on a grid of values for y spanning the domain of definition of Y by
running repeated standard binary choice models, e.g. a logit:

Fx(y) = Pr{yi 6 y|x}
= Λ(xβy)

=
exp(xβy)

1 + exp(xβy)

or a probit Fx(y) = Φ(xβy) or else ...



‘Distribution regression’

• Estimate distributional process by repeating estimation at different values of
y—makes little assumptions about the overall shape of distribution

• Discontinuities are handled without difficulties

• Estimation of these models is well-known and straightforward (probit, logit)

• Faster to run than quantile regression

• Evidence that provides better fit to conditional quantile processes than quantile
regression (Rothe and Wied, 2013, Van Kerm et al., 2017)



Disadvantage

Drawback: Conditional statistic υ(Fx) often less easy to recover from the F̂X
predictions than with quantile regression

• invert the predicted Fx to obtain predicted quantiles

• proceed as with quantiles predicted from quantile regression (see above)



1 Quantile regression

2 Distribution regression

3 Conditional likelihood models



Conditional likelihood models

Assume that the conditional distribution has a particular parametric form: e.g.,
(log-)normal (2 parameters – quite restrictive), Gamma (2 params), Singh-Maddala (3
param.), Dagum (3 param.), GB2 (4 param.), ... or any other distribution that is likely
to fit the data at hand (think domain of definition, fatness of tails, modality)

Let parameters (say vector θ) depend on x in a particular fashion, typically linearly (up
to some transformation satisfyng range of variation of pthe arameters), e.g.,
θ1
X = exp(xβ1), θ2

X = exp(xβ2) and θ3
X = xβ3

This gives a fully specified parametric model which can be estimated using maximum
likelihood (=⇒ inference is straightforward).



Functionals derived from conditional likelihood models

• With parameter estimates θ̂X, we can recover conditional quantiles, CDF, PDF
and all sort of functionals υ(Fx) (means, dispersion measures, etc.) often from
closed-from expressions
• Typically much less computationally expensive than estimating full
quantile/distributional processes
• Price to pay is stronger parametric assumptions! (Look at goodness-of-fit
statistics (KS, KL, of predicted dist – contrast with non-parametric fit also useful;
see (Rothe and Wied, 2013))
• User-written commands in Stata do these estimations for many models (Stephen
Jenkins, Nick Cox and colleagues): smfit, dagumfit, gb2fit, lognfit,
paretofit, fiskfit, gammafit, betafit, gevfit, invgammafit,
weibullfit) – and relatively easy to program new distributions



Likelihood framework makes several important extensions easy

• Censoring (e.g., top-coding in income data, minimum wage)
• Involves minor modification to likelihood contribution for censored observations

(1 − F(y) instead of f(y))

• Endogenous selection
• Standard selection model à la Heckman (joint normal) (relatively) easily extended to

other distributional assumptions in likelihood framework using copula-based
representations (Van Kerm, 2013) Details

• Multivariate distributions Details



Example: Modelling income with a Singh-Maddala distribution

Household income in Luxembourg, by educational achievement
of father and mother (cf. inequality of opportunity analysis)
3-parameters Singh-Maddala distribution often provides good fit
to income distributions
• Constrained version of 4-parameter GB2; similar to a
Dagum distribution
• Stephen Jenkins’ smfit

• (Using here home-brewed smfit2—log-linear in covariates)
• Closed-form expressions available for PDF, CDF, percentiles,
mode, Gini coefficient, etc. (see help smfit)
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Fitting a model with no covariates



Fitting a model with no covariates



Fitting a model with no covariates

Recover functionals with closed form expressions: nlcom



Fitting a model with covariates

Average marginal effects margins



Fitting a model with covariates

Average marginal effects margins



SM fit vs quantile regression



Marginal effects on other outcome functionals

Marginal effect on conditional
distribution dispersion as
measured by Gini coefficient
(a “Gini regression”?)
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Allowing for censoring is (almost) trivial

Comparison of P90 quantile coefficient
censored/uncensored
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A sample selection model: earnings distributions with endogenous LM partici-
pation

More complex likelihood function (with 5
equations), but same use



A sample selection model: earnings distributions with endogenous LM partici-
pation

Comparison of median regression
with/without selection correction



Marginalisation: deriving unconditional distributions

1 Fit the model (possibly allowing for censoring, selection)

2 Generate (equally-spaced), say, 99 predicted quantiles from the model

3 Vectorize the N× 99 predicted quantiles into V (reshape or some simple Mata
operations)

4 Calculate quantiles of V (or CDF or whatever functional)

Procedure does not depend on specific conditional distribution model used.

(Can easily be used to generate counterfactual distributions. (Not shown today.) )



Marginalisation: comparison with different conditional quantile prediction mod-
els

• conditional Singh-Maddala

• quantile regression

• distribution regression
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Envoi

1 Conditional likelihood models are easy

2 ... and already packaged in a collection of user-written commands on SSC

3 margins, nlcom, predictnl are essential here

4 Combine advantages of quantile regression and distribution regression...

5 ... at the cost of imposing parametric restrictions (whose credibility is often an
empirical question)

6 Interest in handling censoring, selection, joint distributions with simple, familiar
estimators
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Conditional likelihood models with endogenous selection

Let s denote binary participation (outcome y only observed if s = 1). Assume s = 1 if
s∗ > 0 and s = 0 otherwise. s∗ is latent propensity to be observed.

Assume pair (y, s∗) is jointly distributed H and express H using its copula formulation

H(y, s∗) = Ψ(F(y),G(s∗))

where F is outcome distribution, G is latent participation distribution (typically
Gaussian), and Ψ is a parametric copula function.

Everything is parametric (need to select a copula) and can be estimated using
maximum likelihood (Van Kerm, 2013)

Derivation of conditional functionals (incl., quantiles) from F̂ remains trivial



Conditional multivariate likelihood models

The same modelling approach can be used to build conditional multivariate models

Assume pair (y, z) is jointly distributed H and express H using its copula formulation

H(y, z) = Ψ(F(y),G(z))

where F and G are outcome distributions (of the same or different family) and Ψ is a
copula function.

Everything is parametric and can be estimated using maximum likelihood (see Jäntti
et al. (2015) for a model of the joint distribution of income and wealth)
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