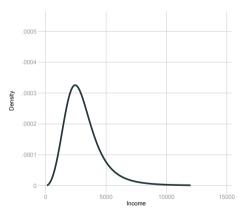
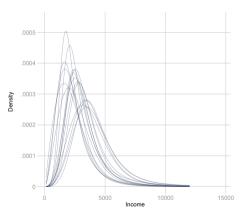
Conditional likelihood models for distributional regression analysis

Philippe Van Kerm University of Luxembourg and LISER 2020 Swiss Stata Conference — November 19, 2020

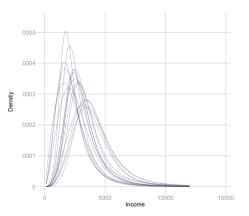
- Fit a parametric distribution function $f_\theta(\boldsymbol{y})$...
 - θ is a small vector of parameters (typically, say, 2–4 parameters)
 - e.g., a (log-)normal, a gamma, a beta distribution, etc.
- ... conditioning on vector of covariates, f_{θ(X)}(y)
- ... by specifying a parametric relationship between X and θ
 - For example, $\theta(X) = X\beta$ (or $\theta(x) = \exp(X\beta)$ if $\theta(X)$ must be > 0



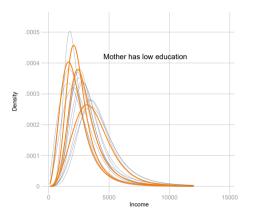
- Fit a parametric distribution function $f_\theta(\boldsymbol{y})$...
 - θ is a small vector of parameters (typically, say, 2–4 parameters)
 - e.g., a (log-)normal, a gamma, a beta distribution, etc.
- ... conditioning on vector of covariates, $f_{\theta(X)}(y)$
 - \dots by specifying a parametric relationship between X and θ
 - For example, $\theta(X) = X\beta$ (or $\theta(x) = \exp(X\beta)$ if $\theta(X)$ must be > 0



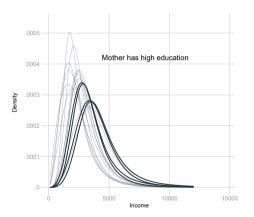
- Fit a parametric distribution function $f_\theta(\boldsymbol{y})$...
 - θ is a small vector of parameters (typically, say, 2–4 parameters)
 - e.g., a (log-)normal, a gamma, a beta distribution, etc.
- ... conditioning on vector of covariates, $f_{\theta(X)}(y)$
- ... by specifying a parametric relationship between X and $\boldsymbol{\theta}$
 - For example, $\theta(X) = X\beta$ (or $\theta(x) = \exp(X\beta)$ if $\theta(X)$ must be > 0)



- Fit a parametric distribution function $f_\theta(\boldsymbol{y})$...
 - θ is a small vector of parameters (typically, say, 2–4 parameters)
 - e.g., a (log-)normal, a gamma, a beta distribution, etc.
- ... conditioning on vector of covariates, $f_{\theta(X)}(y)$
- ... by specifying a parametric relationship between X and θ
 - For example, $\theta(X) = X\beta$ (or $\theta(x) = \exp(X\beta)$ if $\theta(X)$ must be > 0)

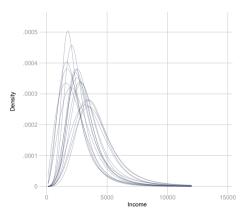


- Fit a parametric distribution function $f_\theta(\boldsymbol{y})$...
 - θ is a small vector of parameters (typically, say, 2–4 parameters)
 - e.g., a (log-)normal, a gamma, a beta distribution, etc.
- ... conditioning on vector of covariates, $f_{\theta(X)}(y)$
- ... by specifying a parametric relationship between X and θ
 - For example, $\theta(X) = X\beta$ (or $\theta(x) = \exp(X\beta)$ if $\theta(X)$ must be > 0)



Uses of conditional likelihood models

- Functional outcomes (Biewen and Jenkins, 2005)
- Quantile regression... without running quantile regression (Noufaily and Jones, 2013)
- Censored data (Jenkins et al., 2011)
- Endogenous selection (Van Kerm, 2013)
- Instrumental variables (Briseño Sanchez et al., 2020)
- Marginalisation and counterfactual distributions (Van Kerm et al., 2017)



Many models and estimators available, more or less parametrically restricted, e.g.,

- quantile regression (Koenker and Bassett, 1978)
- distribution regression (Foresi and Peracchi, 1995, Chernozhukov et al., 2013, Van Kerm, 2016)
- duration models (Donald et al., 2000, Royston, 2001)
- conditional likelihood models (Biewen and Jenkins, 2005, Van Kerm et al., 2017)

① Quantile regression

- ② Distribution regression
- Onditional likelihood models

Linear quantile regression model

Assume a particular relationship (linear) between conditional quantile and x:

 $Q_\tau(y|x) = x\beta_\tau$

(Or equivalently $y_i = x_i \beta_\tau + u_i$ where $F_{u_i \mid x_i}^{-1}(\tau) = 0)$

$$\hat{\beta}_{\tau} = \arg\min_{\beta} \sum_{i} \rho_{\tau}(y_{i} - x_{i}\beta)$$

(Koenker and Bassett, 1978)

Estimate of the conditional quantile (given linear model):

$$\hat{Q}_{\tau}(y|x) = x \hat{\beta}_{\tau}$$

 $\hat{\beta}_{\tau}$ can be interpreted as the marginal change in the τ conditional quantile for a marginal change in x

Estimation of $\hat{Q}_{\tau}(y|x)$ for a continuum of τ in (0,1) provides a model for the entire conditional quantile function of Y given X (the quantile 'process'–See Blaise Melly's presentation and qrprocess for fast implementation)

After estimation of the quantile process (0, 1), estimation of the distributional statistic conditional on X is relatively easy by simulation:

- a set of predicted conditional quantile values $\{x_i \hat{\beta}_{\theta}\}_{\theta \in (0,1)}$ is a pseudo-random draw from F_x (if grid for θ is equally-spaced) (Autor et al., 2005)
- so, a simple estimator for v from unit-record data can be used to estimate $v(F_{X_i})$

Linearity of the model $Q_\tau(y|x)=x\beta_\tau$ may possibly be problematic in some situations

- discontinuities (e.g. minimum wage)
- quantile crossing within the support of X (Simple solution is re-arrangement of quantile predictions (Chernozhukov et al., 2009))

Quantile regression

- **2** Distribution regression
- Onditional likelihood models

 $F_x(y)=\mathsf{Pr}\{y_i\leqslant y|x\}$ is a binary choice model once y is fixed (dependent variable is $1(y_i< y))$

Estimate $F_x(y)$ on a grid of values for y spanning the domain of definition of Y by running repeated standard binary choice models, e.g. a logit:

$$F_{x}(y) = \Pr\{y_{i} \leq y|x\}$$
$$= \Lambda(x\beta_{y})$$
$$= \frac{\exp(x\beta_{y})}{1 + \exp(x\beta_{y})}$$

or a probit $F_x(y) = \Phi(x\beta_y)$ or else ...

- Estimate distributional process by repeating estimation at different values of y—makes little assumptions about the overall shape of distribution
- Discontinuities are handled without difficulties
- Estimation of these models is well-known and straightforward (probit, logit)
- Faster to run than quantile regression
- Evidence that provides better fit to conditional quantile processes than quantile regression (Rothe and Wied, 2013, Van Kerm et al., 2017)

Drawback: Conditional statistic $\upsilon(F_x)$ often less easy to recover from the \hat{F}_X predictions than with quantile regression

- invert the predicted $F_{\mathbf{x}}$ to obtain predicted quantiles
- proceed as with quantiles predicted from quantile regression (see above)

Quantile regression

- ② Distribution regression
- 3 Conditional likelihood models

Assume that the conditional distribution has a particular parametric form: e.g., (log-)normal (2 parameters – quite restrictive), Gamma (2 params), Singh-Maddala (3 param.), Dagum (3 param.), GB2 (4 param.), ... or any other distribution that is likely to fit the data at hand (think domain of definition, fatness of tails, modality)

Let parameters (say vector θ) depend on x in a particular fashion, typically linearly (up to some transformation satisfyng range of variation of pthe arameters), e.g., $\theta_X^1 = \exp(x\beta_1), \ \theta_X^2 = \exp(x\beta_2) \ \text{and} \ \theta_X^3 = x\beta_3$

This gives a fully specified parametric model which can be estimated using maximum likelihood (\implies inference is straightforward).

Functionals derived from conditional likelihood models

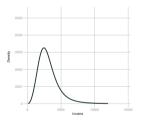
- With parameter estimates $\hat{\theta}_X$, we can recover conditional quantiles, CDF, PDF and all sort of functionals $v(F_x)$ (means, dispersion measures, etc.) often from closed-from expressions
- Typically much less computationally expensive than estimating full quantile/distributional processes
- Price to pay is stronger parametric assumptions! (Look at goodness-of-fit statistics (KS, KL, of predicted dist – contrast with non-parametric fit also useful; see (Rothe and Wied, 2013))
- User-written commands in Stata do these estimations for many models (Stephen Jenkins, Nick Cox and colleagues): smfit, dagumfit, gb2fit, lognfit, paretofit, fiskfit, gammafit, betafit, gevfit, invgammafit, weibullfit) - and relatively easy to program new distributions

- Censoring (e.g., top-coding in income data, minimum wage)
 - Involves minor modification to likelihood contribution for censored observations (1 F(y) instead of f(y))
- Endogenous selection
 - Standard selection model à la Heckman (joint normal) (relatively) easily extended to other distributional assumptions in likelihood framework using copula-based representations (Van Kerm, 2013)
- Multivariate distributions

Household income in Luxembourg, by educational achievement of father and mother (cf. *inequality of opportunity* analysis)

3-parameters Singh-Maddala distribution often provides good fit to income distributions

- Constrained version of 4-parameter GB2; similar to a Dagum distribution
- Stephen Jenkins' smfit
 - (Using here home-brewed smfit2—log-linear in covariates)
- Closed-form expressions available for PDF, CDF, percentiles, mode, Gini coefficient, etc. (see help smfit)



Fitting a model with no covariates

. smfit2 eqinc , svy stats

initial:	log pseudolikelihood =	= -4075915.3	
alternative:	log pseudolikelihood =	= -3094364.2	
rescale:	log pseudolikelihood =	= -2875478.5	
rescale eq:	log pseudolikelihood =	= -2514467.8	
Iteration 0:	log pseudolikelihood =	= -2514467.8	(not concave)
Iteration 1:	log pseudolikelihood =	= -2323390.4	
Iteration 2:	log pseudolikelihood =	= -2229316.3	
Iteration 3:	log pseudolikelihood =	= -2227868.2	
Iteration 4:	log pseudolikelihood =	= -2226987.1	
Iteration 5:	log pseudolikelihood =	= -2226983.8	
Iteration 6:	log pseudolikelihood =	= -2226983.8	

ML fit of Singh-Maddala distribution

pweight:	wfinal	Number of obs	= 7400	
Strata:	<one></one>	Number of strata	- 1	
PSU:	<observations></observations>	Number of PSUs	= 4331	
		Population size	= 256957.34	
		<u>F(0,4331)</u>		
		Prob > F		

	eqinc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
а							
u	_cons	1.165815	.0510336	22.84	0.000	1.065763	1.265867
b							
	_cons	8.07241	.0652616	123.69	0.000	7.944464	8.200356
q							
	_cons	.2963603	.1372053	2.16	0.031	.0273676	.5653531

Fitting a model with no covariates

. smfit2 eqinc , svy stats

initial:	log pseudolikelihood = -4075915.3	
alternative:	log pseudolikelihood = -3094364.2	
rescale:	log pseudolikelihood = -2875478.5	
rescale eq:	log pseudolikelihood = -2514467.8	
Iteration 0:	log pseudolikelihood = -2514467.8	(not concave)
Iteration 1:	log pseudolikelihood = -2323390.4	
Iteration 2:	log pseudolikelihood = -2229316.3	
Iteration 3:	log pseudolikelihood = -2227868.2	
Iteration 4:	<pre>log pseudolikelihood = -2226987.1</pre>	
Iteration 5:	log pseudolikelihood = -2226983.8	
Iteration 6:	log pseudolikelihood = -2226983.8	

ML fit of Singh-Maddala distribution

pweight:	wfinal	Number of obs =	7400
Strata:	<one></one>	Number of strata =	1
PSU:	<observations></observations>	Number of PSUs =	4331
		Population size =	256957.34
		<u>F(0,4331)</u> =	
		Prob > F =	

	eqinc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
а							
	_cons	1.165815	.0510336	22.84	0.000	1.065763	1.265867
b							
	_cons	8.07241	.0652616	123.69	0.000	7.944464	8.200356
q							
	_cons	.2963603	.1372053	2.16	0.031	.0273676	.5653531

	Quantiles		Cumulative shares of total eqinc (Lorenz ordinates)			
1%	697.48948	0.00168				
5%	1.16e+03	0.01396				
10%	1.47e+03	0.03494				
20%	1.88e+03	0.08824				
25%	2.05e+03	0.11933				
30%	2.21e+03	0.15304				
40%	2.52e+03	0.22787 Mode	2.44e+03			
50%	2.83e+03	0.31250 Mean	3.16e+03			
60%	3.18e+03	0.40753 Std. Dev.	1.75e+03			
70%	3.60e+03	0.51448				
75%	3.85e+03	0.57332 Variance	3.07e+06			
80%	4.16e+03	0.63659 Half CV^2	0.15358			
90%	5.14e+03	0.78172 Gini coeff.	0.27412			
95%	6.19e+03	0.87021 p90/p10	3.50079			
99%	9.22e+03	0.96184 p75/p25	1.87852			

Fitting a model with no covariates

Recover functionals with closed form expressions: nlcom

nlcom exp(_b[b:_cons])

_nl_1: exp(_b[b:_cons])

eqinc	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	3204.817	209.1515	15.32	0.000	2794.887	3614.746

. nlcom (1 - (exp(lngamma(exp(_b[q:_cons])))*exp(lngamma(2*exp(_b[q:_cons]) - 1/exp(_b[a:_cons]))) / (
> exp(lngamma(exp(_b[q:_cons])-1/exp(_b[a:_cons])))*exp(lngamma(2*exp(_b[q:_cons]))))))

_nl_1: 1 - (exp(lngamma(exp(_b[q:_cons])))*exp(lngamma(2*exp(_b[q:_cons]) - 1/exp(_b[a:_cons]))) / (ex > p(lngamma(exp(_b[q:_cons])-1/exp(_b[a:_cons])))*exp(lngamma(2*exp(_b[q:_cons])))))

eqinc	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	.2741153	.0058528	46.83	0.000	.262644	.2855866

Fitting a model with covariates

. smfit2 eqinc , svy a(`vars') b(`vars') q(`vars') iterate(100) nolog

ML fit of Singh-Maddala distribution

pweight:	wfinal	Number of obs		7400
Strata:	<one></one>	Number of strata	=	1
PSU:	<observations></observations>	Number of PSUs	=	4331
		Population size	=	256957.34
		F(6, 4325)	-	1.45
		Prob > F	=	0.1928

eqinc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
a						
F_educ_med~m	1364453	.0822718	-1.66	0.097	2977403	.0248496
F_educ_high	.0213813	.0919567	0.23	0.816	1589009	.2016635
F_educ_99	5430838	.2265472	-2.40	0.017	9872324	0989352
M_educ_med~m	183148	.0753087	-2.43	0.015	3307915	0355045
M_educ_high	0172072	.1048687	-0.16	0.870	2228034	.1883891
M_educ_99	.1134547	.2575129	0.44	0.660	3914024	.6183119
_cons	1.441756	.0559656	25.76	0.000	1.332035	1.551477
b						
F_educ_med~m	.4197169	.0874385	4.80	0.000	.2482927	.5911412
F_educ_high	.3077951	.0919526	3.35	0.001	.1275208	.4880693
F_educ_99	.3242196	.3384133	0.96	0.338	3392436	.9876829
M_educ_med~m	.3441702	.097583	3.53	0.000	.1528576	.5354827
M_educ_high	.2360692	.1090313	2.17	0.030	.022312	.4498264
M_educ_99	2715757	.1519467	-1.79	0.074	569469	.0263176
_cons	7.716722	.0501402	153.90	0.000	7.618421	7.815022
q						
F_educ_med~m	.4565336	.2063705	2.21	0.027	.0519417	.8611255
F_educ_high	0381287	.2099373	-0.18	0.856	4497134	.3734559
F_educ_99	.9756004	.6154183	1.59	0.113	2309346	2.182135
M_educ_med~m	.4495618	.2124156	2.12	0.034	.0331184	.8660052
M_educ_high	.1248801	.2415592	0.52	0.605	3486995	.5984597
M_educ_99	4907478	.4019395	-1.22	0.222	-1.278755	.2972593
cons	1584176	.1191991	-1.33	0.184	392109	.0752737

Average marginal effects — margin

Fitting a model with covariates

. smfit2 eqinc , svy a(`vars') b(`vars') q(`vars') iterate(100) nolog

ML fit of Singh-Maddala distribution

pweight: wfi Strata: <on PSU: <ob< th=""><th></th><th></th><th></th><th>Numbe Numbe</th><th>6, 4325) =</th><th>7400 1 4331 256957.34 1.45 0.1928</th></ob<></on 				Numbe Numbe	6, 4325) =	7400 1 4331 256957.34 1.45 0.1928
eqinc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
a						
F_educ_med~m	1364453	.0822718	-1.66	0.097	2977403	.0248496
F_educ_high	.0213813	.0919567	0.23	0.816	1589009	.2016635
F_educ_99	5430838	.2265472	-2.40	0.017	9872324	0989352
M_educ_med~m	183148	.0753087	-2.43	0.015	3307915	0355045
M_educ_high	0172072	.1048687	-0.16	0.870	2228034	.1883891
M_educ_99	.1134547	.2575129	0.44	0.660	3914024	.6183119
_cons	1.441756	.0559656	25.76	0.000	1.332035	1.551477
b						
F_educ_med~m	.4197169	.0874385	4.80	0.000	.2482927	.5911412
F_educ_high	.3077951	.0919526	3.35	0.001	.1275208	.4880693
F_educ_99	.3242196	.3384133	0.96	0.338	3392436	.9876829
M_educ_med~m	.3441702	.097583	3.53	0.000	.1528576	.5354827
M_educ_high	.2360692	.1090313	2.17	0.030	.022312	.4498264
M_educ_99	2715757	.1519467	-1.79	0.074	569469	.0263176
_cons	7.716722	.0501402	153.90	0.000	7.618421	7.815022
q						
F_educ_med~m	.4565336	.2063705	2.21	0.027	.0519417	.8611255
F_educ_high	0381287	.2099373	-0.18	0.856	4497134	.3734559
F_educ_99	.9756004	.6154183	1.59	0.113	2309346	2.182135
M_educ_med~m	.4495618	.2124156	2.12	0.034	.0331184	.8660052
M_educ_high	.1248801	.2415592	0.52	0.605	3486995	.5984597
M_educ_99	4907478	.4019395	-1.22	0.222	-1.278755	.2972593
_cons	1584176	.1191991	-1.33	0.184	392109	.0752737

Average marginal effects margins

• 1	11	Quan	til	le	eft	ec	ts
-----	----	------	-----	----	-----	----	----

. loc ax exp(predict(equation(a)))

- . loc bx exp(predict(equation(b)))
- . loc qx exp(predict(equation(q)))
- . foreach quant of numlist .1(.2).9 {
 2. margins , expression(`bx'*((1-`quant')^(-1/`qx') 1)^(1/`ax')) dydx(*)
 3. }

Average marginal effects

Number of strata	-	1	Number of obs	-	7,400
Number of PSUs	-	4,331	Population size	-	256,957.34
Model VCE : Li	neariz	ed	Design df	-	4,330

Expression : exp(predict(equation(b)))*((1-.1)^(-1/exp(predict(equation(q)))) -1)^(1/exp(predict(equation(a))))

dy/dx w.r.t. : F_educ_medium F_educ_high F_educ_99 M_educ_medium M_educ_high M_educ_99

		Delta-method				
	dy/dx	Std. Err.	t	P> t	[95% Conf.	Interval]
F_educ_medium	328.2016	72.46092	4.53	0.000	186.1411	470.2621
F_educ_high	534.26	91.4912	5.84	0.000	354.8904	713.6296
F_educ_99	-480.3538	144.3838	-3.33	0.001	-763.4199	-197.2877
M_educ_medium	161.4287	63.85339	2.53	0.012	36.24334	286.614
M_educ_high	305.6255	96.29058	3.17	0.002	116.8467	494.4044
M_educ_99	-98.4401	241.5729	-0.41	0.684	-572.0466	375.1664

SM fit vs quantile regression

, margins , expression(`bx'*((1-0.5)^(-1/`gx') - 1)^(1/`ax')) dvdx(*) post

Average marginal effects

Number of strata	- 1	Number of obs	-	7,400
Number of PSUs	= 4,331	Population size	- 3	256,957.34
Model VCE : Li	inearized	Design df	=	4,330

Expression : exp(predict(equation(b)))*((1-0.5)^(-1/exp(predict(equation(q)))) -1)^(1/exp(predict(equation(a))))

dy/dx w.r.t. : F educ medium F educ high F educ 99 M educ medium M educ high M educ 99

		Delta-method				
	dy/dx	Std. Err.	t	P> t	[95% Conf.	Interval]
F_educ_medium	704.2529	61.35307	11.48	0.000	583.9695	824.5363
F_educ_high	925.7618	100.7973	9.18	0.000	728.1475	1123.376
F_educ_99	-191.9853	303.2901	-0.63	0.527	-786.5892	402.6186
M_educ_medium	484.5383	65.9422	7.35	0.000	355.2579	613.8188
M_educ_high	544.5631	107.7364	5.05	0.000	333.3446	755.7816
M educ 99	-249.8355	180.6226	-1.38	0.167	-603.9483	104.2774

. estimates store smed

. greg eqinc `vars' [pw=wfinal] , vce(robust) quant(.5) nolog

Median regression	Number of obs = 7,400	
Raw sum of deviations 1.54e+08 (about 279	97.8333)	
Min sum of deviations 1.39e+08	Pseudo R2 = 0.1003	

eqinc	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
F_educ_medium	752.1333	66.21129	11.36	0.000	622.3403	881.9263
F_educ_high	1073.583	116.4441	9.22	0.000	845.3189	1301.846
F educ 99	-258.0278	129.1406	-2.00	0.046	-511.1802	-4.875464
M educ medium	493.3584	72.26787	6.83	0.000	351.6928	635.024
M educ high	682,8489	130,1273	5.25	0,000	427,7623	937,9355
M educ 99	-280.3833	161.583	-1.74	0,083	-597,132	36,36543
cons	2337,133	33,57903	69,60	0.000	2271.309	2402.958

. estimates table smed grmed , b(%5.2f) se(%5.2f)

Variable	smed	qrmed
F_educ_med~m	704.25	752.13
	61.35	66.21
F_educ_high	925.76	1073.58
	100.80	116.44
F_educ_99	-191.99	-258.03
	303.29	129.14
M_educ_med~m	484.54	493.36
	65.94	72.27
M_educ_high	544.56	682.85
	107.74	130.13
M_educ_99	-249.84	-280.38
	180.62	161.58
cons		2337.13
-		33.58

legend: b/se

Marginal effect on conditional distribution dispersion as measured by Gini coefficient (a "Gini regression"?) Marginal effect on conditional distribution dispersion as measured by Gini coefficient (a "Gini regression"?) . margins , expression(1 - (exp(lngamma(`qx'))*exp(lngamma(2*`qx' - 1/`ax')) / (exp(lngamma(`qx'-1/`ax'))*exp(
> lngamma(2*`qx'))))) dydx(*)

Average marginal effects

Number of	strata	-	1	Number of obs	-	7,400
Number of	PSUs		4,331	Population size		256,957.34
Model VCE	: Li	nearize	ed	Design df	-	4,330

Expression : 1 - (exp(lngamma(exp(predict(equation(q)))))*exp(lngamma(2*exp(predict(equation(q))) -1/exp(predict(equation(a))))) / (exp(lngamma(exp(predict(equation(q)))-1/exp(predict(equation(a)))))*exp(lngamma(2*exp(predict(> equation(q))))))

dy/dx w.r.t. : F_educ_medium F_educ_high F_educ_99 M_educ_medium M_educ_high M_educ_99

	dy/dx	Delta-method Std. Err.	t	P> t	[95% Conf.	[Interval]
F_educ_medium	0164227	.0119007	-1.38	0.168	0397543	.0069088
F_educ_high	0011366	.0169179	-0.07	0.946	0343043	.0320311
F_educ_99	.0280777	.0458904	0.61	0.541	0618909	.1180464
M_educ_medium	0039178	.0153331	-0.26	0.798	0339784	.0261429
M_educ_high	009545	.0186855	-0.51	0.610	0461783	.0270882
M_educ_99	.0259968	.0411598	0.63	0.528	0546976	.1066911

Allowing for censoring is (almost) trivial

. smfit2 eqinc2 , svy a('vars') b('vars') q('vars') censored(censored)

initial: log pseudolkelihood - 4033348.5 alternative: log pseudolkelihood - 30251319 rescale e: log pseudolkelihood - 326546.8 log pseudolkelihood - 326548.1 (not concave) literation 1: log pseudolkelihood - 2377431.1 (not concave) literation 3: log pseudolkelihood - 221615.1 literation 3: log pseudolkelihood - 221605.1 literation 5: log pseudolkelihood - 2166510.9 literation 5: log pseudolkelihood - 2166510.9 literation 5: log pseudolkelihood - 2166510.9

ML fit of Singh-Maddala distribution

pweight:	wfinal	Number of obs = 7421
Strata:	<one></one>	Number of strata = 1
PSU:	<observations></observations>	Number of PSUs = 4347
		Population size = 257330.02
		F(6, 4341) = 2.49
		Prob > F = 0.0208

eqinc2	Coef.	Std. Err.	t	P>[t]	[95% Conf.	Interval
a						
F_educ_med~m	1573756	.0824665	-1.91	0.056	319052	.0043008
F_educ_high	.0223444	.0975184	0.23	0.819	1688414	.2135302
F_educ_99	492445	.2498827	-1.97	0.049	9823426	002547
M_educ_med~m	2224373	.0705865	-3.15	0.002	3608229	0840518
M_educ_high	.0165667	.1134237	0.15	0.884	2058015	.23893
M_educ_99	.0529433	.3137487	0.17	0.866	5621641	.6680508
_cons	1.449801	.0544394	26.63	0.000	1.343072	1,5565
b						
F_educ_med~m	.4576982	.1019152	4.49	0.000	.2578924	.657504
F_educ_high	.2799387	.122373	2.29	0.022	.0400252	.5198522
F_educ_99	.1887622	.3347119	0.56	0.573	4674439	.8449682
M_educ_med∼m	.4688615	.1129831	4.15	0.000	.247357	.6903663
M_educ_high	.2011779	.1326776	1.52	0.130	0589379	.4612938
M educ 99	1775786	.2151357	-0.83	0.409	5993543	.244197
cons	7,703581	,048204	159.81	0,000	7,609076	7,79808

Comparison of P90 quantile coefficient censored/uncensored

Allowing for censoring is (almost) trivial

. smfit2 eqinc2 , svy a('vars') b('vars') q('vars') censored(censored)

initial:	log	pseudolikelihood		-4033348.5		
alternative:	log	pseudolikelihood		-3045664.8		
rescale:	log	pseudolikelihood	-	-2821319		
rescale eq:	log	pseudolikelihood		-2466588.1		
Iteration 0:	log	pseudolikelihood		-2466588.1	(not	concave)
Iteration 1:	log	pseudolikelihood	-	-2371433.1	(not	concave)
Iteration 2:	log	pseudolikelihood		-2221615.1		
Iteration 3:	log	pseudolikelihood		-2166750.9		
Iteration 4:	log	pseudolikelihood	-	-2160448.8		
Iteration 5:	log	pseudolikelihood		-2160316.9		
Iteration 6:	log	pseudolikelihood		-2160315.4		
Iteration 7:	108	pseudolikelihood		-2160315.4		

ML fit of Singh-Maddala distribution

pweight:	wfinal	Number of obs		7421
Strata:	<one></one>	Number of strata		1
PSU:	<pre><observations></observations></pre>	Number of PSUs	-	4347
		Population size		257330.02
		F(6, 4341)		2.49
		Prob > F	-	0.0208

eqinc2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
a						
F_educ_med~m	1573756	.0824665	-1.91	0.056	319052	.004300
F_educ_high	.0223444	.0975184	0.23	0.819	1688414	.213530
F_educ_99	492445	.2498827	-1.97	0.049	9823426	002547
M_educ_med~m	2224373	.0705865	-3.15	0.002	3608229	084051
M_educ_high	.0165667	.1134237	0.15	0.884	2058015	.23893
M_educ_99	.0529433	.3137487	0.17	0.866	5621641	.668050
_cons	1.449801	.0544394	26.63	0.000	1.343072	1.5565
b						
F_educ_med~m	.4576982	.1019152	4.49	0.000	.2578924	.657504
F_educ_high	.2799387	.122373	2.29	0.022	.0400252	.519852
F educ 99	.1887622	.3347119	0.56	0.573	4674439	.844968
M_educ_med∼m	.4688615	.1129831	4.15	0.000	.247357	.690366
M_educ_high	.2011779	.1326776	1.52	0.130	0589379	.461293
M educ 99	1775786	.2151357	-0.83	0.409	5993543	.244197
_cons	7.703581	.048204	159.81	0.000	7.609076	7.79808
q						

Comparison of P90 quantile coefficient censored/uncensored . estimates table nocen cen , b(%7.2f) se(%7.2f)

Variable	nocen	cen
F_educ_med~m	838.21	969.85
	146.95	177.06
F_educ_high	1271.79	1638.26
	219.65	281.58
F_educ_99	-274.93	-114.24
	512.80	568.50
M_educ_med~m	498.81	567.39
	150.80	179.11
M_educ_high	719.07	920.49
	205.68	279.96
M_educ_99	-268.21	-282.34
	418.42	509.10
	1	

A sample selection model: earnings distributions with endogenous LM participation

. selsmfit py010g [pw=wfinal] , a(`vars') b(`vars') q(`vars') m(atwork = `vars' bothparents) robust cl > uster(hid)

initial:	10	g pseudolikel	ihood =	- <inf></inf>	(could not	: be evaluated
feasible:	10	g pseudolikel	ihood =	-3264348.3		
rescale:	10	g pseudolikel	ihood =	-2961568.9		
rescale ec	: lo	g pseudolikel	ihood =	-2673775.5		
Iteration	0: lo	g pseudolikel	ihood =	-2673775.5	(not conca	ive)
Iteration	1: 10	g pseudolikel	ihood =	-2672623.7	(not conca	ive)
Iteration	2: lo	g pseudolikel	ihood =	-2550380.8	(not conca	ive)
Iteration	3: 10	g pseudolikel	ihood =	-2511135		
Iteration	4: 10	g pseudolikel	ihood =	-2508669.5	(not conca	ive)
Iteration	5: lo	g pseudolikel	ihood =	-2477948	(not conca	ive)
Iteration	6: lo	g pseudolikel	ihood =	-2449200.9	(not conca	ive)
Iteration	7: 10	g pseudolikel	ihood =	-2445995.5	(not conca	ive)
Iteration	8: 10	g pseudolikel	ihood =	-2444528.7	(not conca	ive)
Iteration	9: lo	g pseudolikel	ihood =	-2443819.7	(not conca	ive)
Iteration	10: lo	g pseudolikel	ihood =	-2443404.4		
Iteration	11: lo	g pseudolikel	ihood =	-2443388.1		
Iteration	12: lo	g pseudolikel	ihood =	-2442068.4	(not conca	ive)
Iteration	13: lo	g pseudolikel	ihood =	-2441707.1		
Iteration	14: lo	g pseudolikel	ihood =	-2441560.9		
Iteration	15: lo	g pseudolikel	ihood =	-2441322.4		
Iteration	16: lo	g pseudolikel	ihood =	-2441298.3		
Iteration	17: lo	g pseudolikel	ihood =	-2441296.5		
Iteration	18: lo	g pseudolikel	ihood =	-2441296.5		

ML fit of Singh-Maddala distribution with endogenous sample selection

	Number of obs	-	7,390
	Wald chi2(6)		10.02
Log pseudolikelihood = -2441296.5	Prob > chi2	-	0.1238

(Std. Err. adjusted for 4,339 clusters in hid)

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Intorvall
	coerr	acut erri	4	EXTR1	faga court	Incervarj
a						
F educ medium	.008689	.120015	0.07	0.942	2265361	.243914
F_educ_high	0579292	.1384985	-0.42	0.676	3293813	.213523
F_educ_99	.3224845	.317147	1.02	0.309	2991922	.9440012
M educ medium	.1241578	.0982026	1.26	0.205	0683158	.3166314
M educ high	.1270647	.1742284	0.73	0.466	214401	.4685304
M_educ_99	.1415868	.527333	0.27	0.788	8919668	1.17514
cons	.6053633	.1244153	4.87	0.000	.3615139	.8492127

b						
F_educ_medium	.7549241	.3435027	2.20	0.028	.0816711	1.428177
F_educ_high	.7792893	.4685174	1.66	0.096	1389881	1.697567
F_educ_99	6508057	.4384438	-1.48	0.138	-1.51014	.2085283
M_educ_medium	1031399	,3576386	-0.29	0.773	-,8040986	.5978188
M_educ_high	1623631	.5355654	-0.30	0.762	-1.212052	.8873257
M_educ_99	486774	.5764455	-0.84	0.398	-1.616586	.6430383
_cons	10.75241	.4715018	22.80	0.000	9.828283	11.67654
q						
F_educ_medium	.6947501	.4597264	1.51	0.131	-,206297	1.595797
F_educ_high	.5023466	.6519717	0.77	0.441	7754945	1.780188
F_educ_99	8657182	.6306449	-1.37	0.170	-2.101759	.3703231
M_educ_medium	2181679	.4958463	-0.44	0.660	-1.198809	.753673
M_educ_high	1593864	.7391883	-0.22	0.829	-1.608169	1.289396
M_educ_99	3879608	.9091663	-0.43	0.670	-2.169894	1.393973
_cons	.1033944	.6389945	0.16	0.871	-1.149012	1.355801
m						
F_educ_medium	0782107	.0574784	-1.36	0.174	1908663	.034445
F_educ_high	0971069	.0956444	-1.02	0.310	2845665	.0903528
F_educ_99	.0606312	.1636486	0.37	0.711	2601142	.3813766
M_educ_medium	1614078	.0680914	-2.37	0.018	2948646	027951
M_educ_high	2042567	.1196805	-1.71	0.088	4388262	.0303129
M_educ_99	1729523	.2001426	-0.86	0.388	5652247	.21932
bothparents	1354852	.0492244	-2.75	0.006	2319633	039007
_cons	5604291	.0560934	-9.99	0.000	6703702	450488
theta						
_cons	-13.57081	3.75177	-3.62	0.000	-20.92414	-6.217475

More complex likelihood function (with 5 equations), but same use

A sample selection model: earnings distributions with endogenous LM participation

> sster(bid)				
initial:	log pseudolikelihood -	-ciafo	(could not be evaluated)	
feasible:	log pseudolikelihood =			
rescale:	log pseudolikelihood -	-2961568.9		
rescale equ	log pseudolikelihood -	-2673775.5		
Iteration 0:	log pseudolikelihood -	-2673775.5	(not concave)	
Iteration 1:	log pseudolikelihood -	-2672623.7	(not concirve)	
Iteration 2:	log pseudolikelihood -	-2550300.0	(not concave)	
Iteration 3:	log pseudolikelihood -			
Iteration 4:	log pseudolikelihood -		(not concave)	
Iteration 5:	log pseudolikelihood -	-2477948	(not concave)	

. selsefit exhibe [newfinal] . a('vars') h('vars') a('vars') elaberk = 'vars' bothcarents) robust cl

Iteration	6:	104	pseudolikelihood	-2449208.9	(not	concave)	
Iteration	7:	log	pseudolikelihood	-2445995.5	(not	concave)	
Iteration			pseudolikelihoed			concave)	
Iteration			pseudolikelihood		(001	concave)	
Iteration	10:		pseudolikelihood				
Iteration	11:	101	pseudolikelihoed	-2443388.1			
Iteration	12:	101	pseudolikelihoed	-2442868.4	(not	concave)	
Iteration			pseudolikelihoed				
Iteration			pseudolikelihood				
Iteration	151	108	pseudolikelihood	-2441322.4			
Iteration	161	101	pseudolikelihoed	-2441298.3			
Iteration	171	101	pseudolikelihoed	-2441295.5			

ML fit of Singh-Maddala distribution with endogenous sample selection

	Number of obs	7,390
	Wald chi2(6)	10,92
Log pseudolikelihood = -2441296.5	Prob > ch12	0.1218

(Std. Frr. adjusted for 4.339 clusters is hid)

	Coaf.	Robust			(95% Conf	
	Corf.	Std. Drr.	x	P> z	[958 Conf.	Interval
a						
F_educ_medlum	.068589	.128015	0.07	0.942	2265361	,24391
F_educ_high	0579292	.1384985	.0.42	0.676	-,3293813	.21352
F_edsc_99	.3224845	.317147	1.02	0.389	2991922	.944021
M_educ_medium	.1241578	.0982826	1.26	0.206	0683158	. 3166314
Pl.educ_high	.1270547	.1742294	0.73	0.466	214401	.468530
M_educ_99	.1415868	.527333	0.27	0.788	8919668	1.1751
_COBS	.6853633	.1244153	4.87	0.000	.3615139	.849212
ь						
F_educ_medium	.7549241	.3435027	2.28	0.928	.0816711	1.42817
F educ high	.7792893	.4685174	1.65	0.096	1389881	1.69756
F. editc. 99	6588957	,4384438	-1.48	0,138	-1.51014	.298528
M. educ. medium	1031359	3576386	.0.29	0,773	- ,8840985	.597818
R educ high	1623631	.5355654	-0.30	0,762	-1.212052	.887325
M_edsc_99	486774	. 5764455	-0.84	0.398	-1.616586	.641018
_cons	10.75241	.4715018	22.99	0.000	9.828283	11.6765
9						
F_educ_medium	.6347581	.4597264	1.51	0.131	286297	1.59579
F_educ_high	.5023466	.6519717	0.77	0.441	7754945	1,78018
F_educ_99	8557182	.6396449	-1.37	0.178	-2.101759	.378323
M educ medium	2181679	.4958463	-0.44	0.668	-1.199809	.75367
H educ high	1593864	,7391883	-0.22	0.829	-1.688169	1.28939
M_edic_99	3879688	.9091663	-0.43	8.678	-2.169894	1.39397
_cons	.1033344	.6389945	0.15	0.871	-1.149812	1.35588
F educ medium	0782107	.0574784	-1.36	0,174	1988663	.03444
F educ high	0971069	.0956444	-1.02	0,318	-,2845665	.090352
F educ 22	.0100312	.1636486	0.37	0.211		381326

Comparison of median regression with/without selection correction

. estimates table nosel sel , b(%5.2f) se(%5.2f)

Variable	nosel	sel
F_educ_med~m	13731.41	15045.43
	1549.90	2095.02
F_educ_high	18464.21	22146.73
	2661.19	3294.31
F_educ_99	-4331.88	-9.68
	7317.12	8746.21
M_educ_med~m	6855.53	3621.08
	1683.84	2216.25
M_educ_high	3855.99	-1411.96
	2579.26	3458.65
M_educ_99	-1902.05	-1.0e+04
	16080.64	9637.90
bothparents		(omitted)

legend: b/se

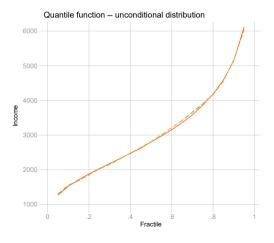
• Fit the model (possibly allowing for censoring, selection)

- ② Generate (equally-spaced), say, 99 predicted quantiles from the model
- $\label{eq:Vectorize} \ref{eq:Vectorize} \ \mbox{the N} \times 99 \ \mbox{predicted quantiles into V} \ \ \mbox{(reshape or some simple Mata operations)}$

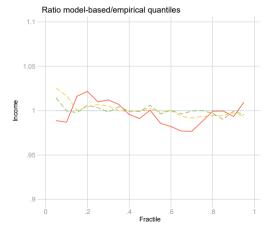
Procedure does not depend on specific conditional distribution model used.

(Can easily be used to generate counterfactual distributions. (Not shown today.))

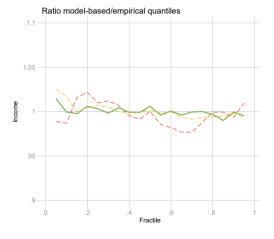
- conditional Singh-Maddala
- quantile regression
- distribution regression



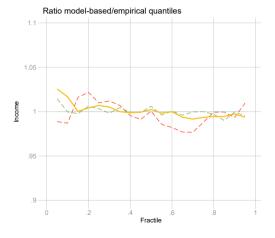
- conditional Singh-Maddala
- quantile regression
- distribution regression



- conditional Singh-Maddala
- quantile regression
- distribution regression



- conditional Singh-Maddala
- quantile regression
- distribution regression



1 Conditional likelihood models are *easy*

- ② ... and already packaged in a collection of user-written commands on SSC
- ③ margins, nlcom, predictnl are essential here
- **4** Combine advantages of quantile regression and distribution regression...
- at the cost of imposing parametric restrictions (whose credibility is often an empirical question)
- Interest in handling censoring, selection, joint distributions with simple, familiar estimators

References

- Autor, D. H., Katz, L. F. and Kearney, M. S. (2005), Rising wage inequality: The role of composition and prices, NBER Working Paper 11628, National Bureau of Economic Research, Cambridge MA, USA.
- Biewen, M. and Jenkins, S. P. (2005), 'A framework for the decomposition of poverty differences with an application to poverty differences between countries', *Empirical Economics* **30**(2), 331–358. **URL:** *http://dx.doi.org/10.1007/s00181-004-0229-1*
- Briseño Sanchez, G., Hohberg, M., Groll, A. and Kneib, T. (2020), 'Flexible instrumental variable distributional regression', *Journal of the Royal Statistical Society: Series A (Statistics in Society)* 183(4), 1553–1574.

References ii

- Chernozhukov, V., Fernández-Val, I. and Galichon, A. (2009), 'Improving point and interval estimators of monotone functions by rearrangement', *Biometrika* **96**(3), 559–575.
- Chernozhukov, V., Fernandez-Val, I. and Melly, B. (2013), 'Inference on counterfactual distributions', *Econometrica* 81(6), 2205–2268. URL: http://dx.doi.org/10.3982/ECTA10582
- Donald, S. G., Green, D. A. and Paarsch, H. J. (2000), 'Differences in wage distributions between Canada and the United States: An application of a flexible estimator of distribution functions in the presence of covariates', *Review of Economic Studies* **67**(4), 609–633.
- Foresi, S. and Peracchi, F. (1995), 'The conditional distribution of excess returns: An empirical analysis', *Journal of the American Statistical Association* **90**(430), 451–466.
- Jäntti, M., Sierminska, E. M. and Van Kerm, P. (2015), Modeling the joint distribution of income and wealth, *in* T. Garner and K. Short, eds, 'Measurement of Poverty, Deprivation, and Economic Mobility', number 23 *in* 'Research on Economic Inequality', Emerald Group Publishing Limited, pp. 301–327.

References iii

- Jenkins, S. P., Burkhauser, R. V., Feng, S. and Larrimore, J. (2011), 'Measuring inequality using censored data: a multiple imputation approach', *Journal of the Royal Statistical Society: Series A* (Statistics in Society) 174(1), 63–81.
- Koenker, R. and Bassett, G. (1978), 'Regression quantiles', *Econometrica* **46**(1), 33–50. **URL:** *http://www.jstor.org/stable/1913643*
- Noufaily, A. and Jones, M. C. (2013), 'Parametric quantile regression based on the generalized gamma distribution', Journal of the Royal Statistical Society: Series C (Applied Statistics) 62(5), 723–740. URL: http://dx.doi.org/10.1111/rssc.12014
- Rothe, C. and Wied, D. (2013), 'Misspecification testing in a class of conditional distributional models', *Journal of the American Statistical Association* **108**(501), 314–324.

Royston, P. (2001), 'Flexible alternatives to the Cox model, and more', Stata Journal (1), 1-28.

Van Kerm, P. (2013), 'Generalized measures of wage differentials', *Empirical Economics* 45(1), 465–482. (published online, DOI:10.1007/s00181-012-0608-y). Van Kerm, P. (2016), Distribution regression made easy, United Kingdom Stata Users' Group Meetings 2016 13, Stata Users Group.

URL: *https://ideas.repec.org/p/boc/usug16/13.html*

Van Kerm, P., Yu, S. and Choe, C. (2017), 'Decomposing quantile wage gaps: a conditional likelihood approach', Journal of the Royal Statistical Society: Series C (Applied Statistics) 65(4), 507–527. URL: http://onlinelibrary.wiley.com/doi/10.1111/rssc.12137/pdf Let s denote binary participation (outcome y only observed if s = 1). Assume s = 1 if $s^* > 0$ and s = 0 otherwise. s^* is latent propensity to be observed.

Assume pair (y, s^*) is jointly distributed H and express H using its copula formulation

 $H(y, s^*) = \Psi(F(y), G(s^*))$

where F is outcome distribution, G is latent participation distribution (typically Gaussian), and Ψ is a parametric copula function.

Everything is parametric (need to select a copula) and can be estimated using maximum likelihood (Van Kerm, 2013)

Derivation of conditional functionals (incl., quantiles) from \hat{F} remains trivial

The same modelling approach can be used to build conditional multivariate models Assume pair (y, z) is jointly distributed H and express H using its copula formulation

 $H(y, z) = \Psi(F(y), G(z))$

where F and G are outcome distributions (of the same or different family) and Ψ is a copula function.

Everything is parametric and can be estimated using maximum likelihood (see Jäntti et al. (2015) for a model of the joint distribution of income and wealth)