Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression bayesstats e bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Introduction to Bayesian Analysis using Stata

Gustavo Sánchez

StataCorp LLC

Virtual|November 19, 2020 Swiss Stata Conference

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

- bayesstats es
- bayesgraph
- Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

1 Bayesian analysis: Basic concepts

- The general idea
- The method

2 The Stata tools

Outline

- The general command bayesmh
- The bayes prefix
- Postestimation commands
- New in Stata 16
 - Multiple chains
 - Bayes predictions

3 A few examples

- · Linear regression
- Random-effects probit model
- Population mean

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains

Radom-effects

Random effects Convervence

Bayesian predictions

Summary

References

The general idea

Frequentist

イロン 不得 とくほ とくほ とうほ

General idea

MCMC

bayesstats ess bavesgraph

Multiple chains

Bandom effects

The general idea

I don't know.

Bayesian

In_wage	webon	hours.	when work	Earling Fig.	Va. Get	Q7.8.2M	112_04
1.453214		20	27	. 5 6 3 3 3 3 3	NACK	12	1.083333
1.773002		10	24	.1666647	blank.	12	2.775643
1,778681		32	52		DOA-OR	12	
2.43 4132		- 62	97	1.116647	black	12	7.160350
		45	15		Dis-OR	12	

ヘロト 人間 とくほとくほとう ж

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression bayesstats ess bayesgraph Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Frequentist Analysis

- Estimates unknown fixed parameters.
- The data come from a random sample (hypothetically repeatable).
- Uses data to estimate unknown fixed parameters.
- *p*-values are conditional probability statements that assume Ho to be true.

"Conclusions are based on the distribution of statistics derived from random samples, assuming unknown but fixed parameters."

Bayesian Analysis

Bayesian Analysis vs. Frequentist Analysis

- Probability distributions for unknown random parameters.
- The data are fixed.
- Combines data with prior beliefs to get updated probability distributions for the parameters.
- It allows formulating probabilistic statements for the hypothesis of interest.

"Bayesian analysis answers questions based on the distribution of parameters conditional on the observed sample."

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesmh

Linear regression bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Stata's convenient syntax: bayes: regress y x1 x2 x3 bayes: regress y x1 x2 x3 logit y x1 x2 x3 bayes: logit y x1 x2 x3 mixed y x1 x2 x3 || region: bayes: mixed y x1 x2 x3 || region:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear regress

bayesstats ess bayesgraph

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The method

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The method (Fundamental Equation)

• Inverse law of probability (Bayes' Theorem):

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{f(y;\theta)\pi(\theta)}{f(y)}$$

Where:

 $f(y; \theta)$: probability density function for y given θ . $\pi(\theta)$: prior distribution for θ

 The marginal distribution of y, f(y), does not depend on θ; so we can write the fundamental equation for Bayesian analysis:

 $p(\theta|\mathbf{y}) \propto L(\theta; \mathbf{y}) \pi(\theta)$

Where:

 $L(\theta; y)$: likelihood function of the parameters given the data.

・ロット (雪) (日) (日) (日)

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The method (Fundamental Equation)

• Inverse law of probability (Bayes' Theorem):

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{f(y;\theta)\pi(\theta)}{f(y)}$$

Where:

 $f(y; \theta)$: probability density function for y given θ . $\pi(\theta)$: prior distribution for θ

 The marginal distribution of y, f(y), does not depend on θ; so we can write the fundamental equation for Bayesian analysis:

 $p(\theta|y) \propto L(\theta; y) \pi(\theta)$

Where:

 $L(\theta; y)$: likelihood function of the parameters given the data.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear regress

bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The method (Fundamental Equation)

• Inverse law of probability (Bayes' Theorem):

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{f(y;\theta)\pi(\theta)}{f(y)}$$

Where:

 $f(y; \theta)$: probability density function for y given θ . $\pi(\theta)$: prior distribution for θ

 The marginal distribution of y, f(y), does not depend on θ; so we can write the fundamental equation for Bayesian analysis:

 $p(\theta|\mathbf{y}) \propto L(\theta; \mathbf{y}) \pi(\theta)$

Where:

 $L(\theta; y)$: likelihood function of the parameters given the data.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

Multiple chain

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The method

- Let's assume that both the data and the prior beliefs are normally distributed:
 - The data: $y \sim N(\theta, \sigma_d^2)$
 - The prior: $\theta \sim N\left(\mu_p, \sigma_p^2\right)$
- Homework...: Doing the algebra with the fundamental equation, we find that the posterior distribution would be normal with (see, for example, Cameron & Trivedi 2005):
 - The posterior: $\theta | \mathbf{y} \sim \mathbf{N} \left(\mu, \sigma^2 \right)$

Where:

$$\mu = \sigma^2 \left(N \bar{y} / \sigma_d^2 + \mu_p / \sigma_p^2 \right)$$

$$\sigma^2 = \left(N / \sigma_d^2 + 1 / \sigma_p^2 \right)^{-1}$$

(日) (日) (日) (日) (日) (日) (日)

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats es

bayesgraph

Multiple chain

Radom-effects probit

Random effects Convervence

Bayesian prediction:

Summary

References

Example (Prior distributions)

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

bayesgraph

Multiple chain

Radom-effects probit

Random effects Convervence

Bayesian prediction

Summary

References

Example (Posterior distributions)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats es

bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The method (MCMC)

- The previous example has a closed-form solution.
- What about the cases with non-closed solutions or more complex distributions?
 - Integration is performed via simulation.
 - We need to use intensive computational simulation tools to find the posterior distribution in most cases.
 - Markov chain Monte Carlo (MCMC) methods are the current standard in most software. Stata implements two alternatives:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Metropolis–Hastings (MH) algorithm
- Gibbs sampling

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesmh

Linear

regression

- bayesstats e
- bayesgraph
- Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The method

- Links for Bayesian analysis and MCMC on our YouTube channel:
 - Introduction to Bayesian statistics, part 1: The basic concepts.

https://www.youtube.com/watch?v=0F0QoMCSKJ4&feature=youtu.be

• Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm.

https://www.youtube.com/watch?v=OTO1DygELpY&feature=youtu.be

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesml

Linear

regression

bayesstats ess

Multiple chair

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian prediction:

Summary

References

The method

• Monte Carlo simulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian prediction:

Summary

References

The method

- Metropolis–Hastings simulation
 - The trace plot illustrates the sequence of accepted proposal states for a simulation with not enough burnin iterations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian prediction:

Summary

References

The method

- Metropolis–Hastings simulation
 - The trace plot illustrates the sequence of accepted proposal states for a simulation with enough burnin iterations.

Sac

The method

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

• We expect to obtain a stationary sequence when convergence is achieved.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The method

- An efficient MCMC should have small autocorrelation.
- We expect autocorrelation to become negligible after a few lags.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess bayesgraph

Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

The Stata tools for Bayesian regression

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear regression bayesstats of bayesgraph

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Stata's Bayesian suite consists of the following commands

Command	Description
Estimation	
bayes:	Bayesian regression models using the bayes prefix
bayesmh	General Bayesian models using MH
bayesmh <i>evaluators</i>	User-defined Bayesian models using MH
Postestimation	
bayesgraph	Graphical convergence diagnostics
bayesstats ess	Effective sample sizes and more
bayesstats grubin	Gelman-Rubin convergence diagnostics
bayesstats ic	Information criteria and Bayes factors
bayestest model	Model posterior probabilities
bayestest interval	Interval hypothesis testing
bayesstats summary	Summary statistics
bayespredict	Bayesian predictions (available only after bayesmh)
bayesreps	Bayesian replications (available only after bayesmh)
	Bayesian predictive p-values (available only after bayesmh)

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Built-in models and methods available in Stata

- Over 50 built-in likelihoods: normal, logit, ologit, Poisson, ...
- Many built-in priors: normal, gamma, Wishart, Zellner's g, ...
- Continuous, binary, ordinal, categorical, count, censored, truncated, zero-inflated, and survival outcomes.
- Univariate, multivariate, and multiple-equation models.
- Linear, nonlinear, generalized linear and nonlinear, sample-selection, panel-data, and multilevel models.
- Continuous univariate, multivariate, and discrete priors.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• User-defined models: likelihoods and priors.

MCMC methods:

- Adaptive MH.
- Adaptive MH with Gibbs updates—hybrid.
- Full Gibbs sampling for some models.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

- regression
- bayesstats es
- bayesgraph
- Multiple chains

Radom-effects probit

Random effects Convervence

- Bayesian predictions
- Summary
- References

The Stata tools: bayes: bayesmh

- bayes: Convenient syntax for Bayesian regressions
 - Estimation command defines the likelihood for the model.
 - Default priors are assumed to be "weakly informative".
 - Other model specifications are set by default, depending on the model defined by the estimation command.
 - Alternative specifications may need to be evaluated.
- bayesmh General purpose command for Bayesian analysis
 - You need to specify all the components for the Bayesian regression: likelihood, priors, hyperpriors, blocks, etc.

Outline

General idea

The method

Fundament equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats es

bayesgraph

Multiple chain

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 1: Life expectancy in the U.S.

 Let's work with a simple linear regression for the life expectancy in the U.S. We are going to be considering the following model specifications:

 $\begin{aligned} \text{life}_exp &= \alpha_1 + \beta_{\text{health}_cons} * \text{health}_cons + \beta_{\text{school}} * \text{school} \\ &+ \beta_{\text{pop}_growth} * \text{pop}_growth + \epsilon_1 \end{aligned}$

 $\begin{aligned} \text{life}_exp &= \alpha_1 + \beta_{health_educ} * health_educ + \beta_{school} * school \\ &+ \beta_{pop_growth} * pop_growth + \epsilon_2 \end{aligned}$

$$\begin{aligned} \mathsf{life}_exp &= \alpha_1 + \beta_{gdp_capita} * gdp_capita + \beta_{school} * school \\ &+ \beta_{pop_growth} * pop_growth + \epsilon_3 \end{aligned}$$

Where:

	: Life expectancy at birth. Total for U.S.
	: Real health consumption expenditure. Total for U.S.
	: Real health and education expenditure. Total for U.S.
	: Real GDP per capita for U.S.
	: School enrollment ratio female/male for U.S.
pop_growth	: Population growth for U.S.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats es

bayesgraph

Multiple chain

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 1: Life expectancy in the U.S.

 Let's work with a simple linear regression for the life expectancy in the U.S. We are going to be considering the following model specifications:

Where:

life_exp	: Life expectancy at birth. Total for U.S.
health_cons	: Real health consumption expenditure. Total for U.S.
health_educ	: Real health and education expenditure. Total for U.S.
gdp_capita	: Real GDP per capita for U.S.
school	: School enrollment ratio female/male for U.S.
pop_growth	: Population growth for U.S.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats es bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian prediction:

Summary

References

Data

• We used import fred to get data from the Federal Reserve Economic Data (FRED).

import fred SPDYNLE00INUSA DEDURX1A020NBEA /// DHLTRX1A020NBEA NYGDPPCAPKDUSA SEENRSECOFMZSUSA /// SPPOPGROWUSA, daterange(2002-01-01 2016-01-01) /// aggregate(annual,avg) clear

generate year=year(daten)
tsset year
rename SPDYNLE00INUSA life_exp
rename DEDURX1A02ONEEA educ_cons
rename DHLTRX1A02ONBEA health_cons
rename NYGDPPCAPKDUSA gdp_capita
rename SEENRSECOFMZSUSA school
rename SPPOPGROWUSA pop_growth
generate health_educ = health_cons+educ_cons
replace health_cons = health_cons/1000
replace health_educ = health_educ/1000

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats ess bayesgraph

Multiple chains

Radom-effects

Random effects Convervence

Bayesian prediction:

Summary

References

Data

• We used import fred to get data from the Federal Reserve Economic Data (FRED).

import fred SPDYNLE00INUSA DEDURX1A020NBEA 111 DHLTRX1A020NBEA NYGDPPCAPKDUSA SEENRSECOFMZSUSA /// SPPOPGROWUSA, daterange(2002-01-01 2016-01-01) 111 aggregate (annual, avg) clear generate year=year(daten) tsset year rename SPDYNLE00INUSA life exp rename DEDURX1A020NBEA educ cons rename DHLTRX1A020NBEA health cons rename NYGDPPCAPKDUSA ddp capita SEENRSECOFMZSUSA school rename rename SPPOPGROWUSA pop_growth generate health educ = health cons+educ cons health cons = health cons/1000 replace health educ/1000 replace health educ = replace qdp capita = qdp capita/1000

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats ess

bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

import fred: Dialog box

2 - Stata/MP 16.0

CAU

File Edit Data Graphics Statistics User Window Help

earch FRED						Serie	s to import:	
						#	Title	ID
Keywords:						1	Life Expectancy at Birth, Total for the United Stat	es SPDYNLE00INUSA
life expectancy United States					Search			
Full text O Series ID								
Tags:			Sort by	Popularity ~	Descend ~			
Sources		ID	Title	Ere	quency			
world bank			Life Expectancy at Birth, Total for the United State		quency			
Releases	2	SPOYNLEOOINZAE	Life Expectancy at Birth, Total for the United State	Annual	^			
 Seasonal Adjustment 	3		Life Expectancy at Birth, Total for Japan	Annual				
- DSA	4		Life Expectancy at Birth, Total for Nigeria	Annual				
- Frequencies	S.		Life Expectancy at Birth, Total for China	Annual				
annual	6		Life Expectancy at Birth, Total for Germany	Annual				
- Geography Types	7		Life Expectancy at Birth, Total for the Philippines	Annual				
nation	8	SPDYNLE00INZWE	Life Expectancy at Birth, Total for Zimbabwe	Annual				
transnational	9	SPDYNLE00INIDN	Life Expectancy at Birth, Total for Indonesia	Annual				
 Concepts 	10	SPDYNLE00INYEM	Life Expectancy at Birth, Total for the Republic of	Yemen Annual				
	11	SPDYNLE00INHTI	Life Expectancy at Birth, Total for Haiti	Annual				
	12		Life Expectancy at Birth, Total for Iraq	Annual				
Add to filters	13		Life Expectancy at Birth, Total for Puerto Rico	Annual				
1350 10 131013	14		Life Expectancy at Birth, Total for the Russian Fed					
	15		Life Expectancy at Birth, Total for Mexico	Annual				
Filters:	16		Life Expectancy at Birth, Total for Somalia	Annual				
	17		Life Expectancy at Birth, Total for the Democratic					
	18		Life Expectancy at Birth, Total for Cambodia	Annual				
	19		Life Expectancy at Birth, Total for the World	Annual				
	20		Life Expectancy at Birth, Total for Egypt	Annual				
	21	SPDYNLE00INMKD	Life Expectancy at Birth, Total for the former Yug		~			
Remove	22	<	The Dunastance at Dist. Total for Invalia	Annual	>			
	1000						<	>
	I< 4	< > > 1-208 of 2	08	Describe	Add		emove	mport Cancel

- 8 X

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats ess bayesgraph

Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Graphs

Source: Federal Reserve Economic Data (FRED) Downloaded using -import fred- in Stata

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○ ○

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

Linear

regression

bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

• Linear regression with the bayes: prefix

bayes ,rseed(1) blocksummary: regress life_exp health_cons pop_growth school

• Equivalent model with bayesmh

bayesmh life_exp health_cons pop_growth school,	
likelihood(normal({sigma2}))	
prior({life_exp:health_cons}, normal(0,10000))	
prior({life_exp:pop_growth}, normal(0,10000))	
<pre>prior({life_exp:school}, normal(0,10000))</pre>	
prior({life_exp:_cons}, normal(0,10000))	
prior({sigma2}, igamma(.01,.01))	
<pre>block({sigma2}) rseed(1)</pre>	
<pre>block({life_exp:health_cons pop_growth school</pre>	_cons})

111

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

• Linear regression with the bayes: prefix

bayes ,rseed(1) blocksummary: regress life_exp health_cons pop_growth school

• Equivalent model with bayesmh

bayesmh life_exp health_cons pop_growth school,	///
likelihood(normal({sigma2}))	///
<pre>prior({life_exp:health_cons}, normal(0,10000))</pre>	///
<pre>prior({life_exp:pop_growth}, normal(0,10000))</pre>	///
<pre>prior({life_exp:school}, normal(0,10000))</pre>	///
<pre>prior({life_exp:_cons}, normal(0,10000))</pre>	///
prior({sigma2}, igamma(.01,.01))	///
<pre>block({sigma2}) rseed(1)</pre>	///
<pre>block({life_exp:health_cons pop_growth school _</pre>	_cons})

111

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian prediction:

Summary

References

Menu for Bayesian regression

	Statistics User Window Help	_			
ビ 🗄 🖶 📱 🌒 × 🖬 ×	-				
History	Spatial autoregressive models				
and a second sec	Longitudinal/panel data	•			
	Multilevel mixed-effects models	•			
	Survival analysis	•			
	Epidemiology and related	•			
	Endogenous covariates	•			
	Sample-selection models	•			
	Treatment effects	•			
	SEM (structural equation modeling)	•			
	LCA (latent class analysis)	•			
	FMM (finite mixture models)	•			
	IRT (item response theory)			Continuous outcomes	
	Multivariate analysis	•		Binary outcomes	
	Survey data analysis	•	Regression models	Ordinal outcomes	
	Lasso	•	General estimation and regression	Categorical outcomes	
	Meta-analysis		Graphical summaries	Count outcomes	
	Multiple imputation		Gelman–Rubin convergence diagnostics	Fractional outcomes	
	Nonparametric analysis	•	Effective sample sizes	Generalized linear model (GLM)	
	Exact statistics	•	Summary statistics	Survival models	
	Resampling	•	Information criteria	Selection models	
	Power, precision, and sample size		Hypothesis testing using model posterior probabilities	Censored and truncated models	
	Bayesian analysis	•	Interval hypothesis testing	Zero-inflation count models	
Command					

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Menu for Bayesian regression

Ccc H H T T T T H M M M M M M M M M M M M M	esian regression models: ontrinuos outcomes Terre regression Heteroskedsatic linear regression Tablet egression Tablet egression Heterosh extension Heterosh extension Multilevel final regression Multilevel final regression Multilevel final regression	•	Jaunch	Model it/in Weigh Dependent variable: ife_exp <	hts Priors Simulation Blocking Initialization Adaptation Independent variables: health_cons.school daten life_exp	× •
Ccc H H T T T T H M M M M M M M M M M M M M	ontinuos outcomes Lower ng 45000 Heterockedastic linear regression Interval regression Tourcated regression Tuurcated regression Multilevel Inter regression Multilevel Multilevel Inter regression		aunch		health_cons school daten life_exp	 × .
BGe BSu BSe BCe BZe	Audionce interval regression analy automose trafical autocomes supportationes cational automes cational ductomes eneralized linear models (GLM) unital models disciton models descrime models ensored and transited models ensored and transited models				reduc;cons health;cons goly:copia pege;geneth year health;educ	
Comma			Cancel			

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats es bayesgraph Multiple chain

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Menu sequence for Bayesian regression

Make the following sequence of selection from the main menu:

Statistics > Bayesian analysis > Regression models

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 Select 'Continuous outcomes'.
- **3** Select 'Linear regression'.
- 4 Click on 'Launch'.
- Specify the dependent variable (life_exp) and the explanatory variables (health_cons school pop_growth).

6 Click on 'OK'.

Outline

General idea

- The method
- Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Prefix command bayes:

. bayes,rseed(1) blocksummary: ///
> regress life_exp health_cons pop_growth school

Burn-in ... Simulation ... Model summarv

Likelihood:

```
life_exp _ regress(xb_life_exp, {sigma2})
```

Priors:

(1) Parameters are elements of the linear form xb_life_exp.

Block summary

1: {life_exp:health_cons pop_growth school _cons}
2: {sigma2}

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @
Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats ess bayesgraph Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

. bayes,rseed(1) blocksummary: /// > regress life_exp health_cons pop_growth school

Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	15
	Acceptance rate =	.3118
	Efficiency: min =	.05276
	avg =	.06011
Log marginal-likelihood = -24.244226	max =	.07019

					Equal-tailed	
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
life_exp						
health_cons	2.072218	.5749819	.022738	2.100761	.8911282	3.19791
pop_growth	-1.298569	1.301589	.04913	-1.228649	-4.00535	1.254212
school	12.77527	9.605456	.410609	13.04013	-6.617371	32.14734
_cons	61.9527	9.83164	.428044	62.02925	42.3255	81.8623
sigma2	.1043956	.0519073	.002138	.0911482	.0443204	.2389263

Note: Default priors are used for model parameters.

We expect to have an acceptance rate that is neither too small nor too large.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regressio

bayesstats ess

bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

bayesstats ess

• Let's evaluate the effective sample size.

. bayesstats ess Efficiency summario

ciency	summaries	MCMC sample	size =	10,000
		Efficiency:	min =	.05276
			avg =	.06011
			max =	.07019

	ESS	Corr. time	Efficiency
life_exp			
health_cons	639.46	15.64	0.0639
pop_growth	701.85	14.25	0.0702
school	547.24	18.27	0.0547
_cons	527.56	18.96	0.0528
sigma2	589.34	16.97	0.0589

- We expect to have low autocorrelation. Correlation time provides an estimate for the lag after which autocorrelation in an MCMC sample is small.
- Efficiencies over 10% are considered good for MH. Efficiencies under 1% would be a source of concern.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

bayesgraph

• We can use <code>bayesgraph</code> to look at the trace, the correlation, and the density. For example:

. bayesgraph diagnostic {health_cons}

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

- The trace indicates that convergence was achieved.
- Correlation becomes negligible after 20 periods.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

bayesgraph

• We can use bayesgraph to look at the trace, the correlation, and the density. For example:

. bayesgraph diagnostic {sigma2}

・ロット (雪) (日) (日)

ъ

- The trace indicates that convergence was achieved.
- Correlation becomes negligible after 20 periods.

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear regression

bayesstats es bayesgraph

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Multiple Markov chains

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

bayesstats ess

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Multiple Markov chains

- Convergence requires the chains to be stationary and well mixed.
- Performing the estimation on multiple chains allows checking for convergence (stationarity).
- In general, three to four chains should be enough to check for convergence.
- The Gelman–Rubin convergence diagnostic statistic (R_c) helps in deciding whether convergence was reached.
 - Compares variances for the weighted average of between-chains and within-chains variances.
 - R_c greater than 1.1 indicates convergence problems.

Trace for multiple chains

We expect to see similar trace plots for all the chains:

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess bayesgraph

Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools bayes: - bayesmh

Linear regression bayesstats ess bayesgraph

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 2: Multiple chains with bayes: prefix

bayes, rseed(1) nchains(3): /// regress life_exp health_cons pop_growth school

Chain 1

>

Burn-in ... Simulation ...

Chain 2

Burn-in ... Simulation ...

Chain 3

Burn-in ... Simulation ...

Model summary

```
Likelihood:
```

```
life_exp _ regress(xb_life_exp,{sigma2})
```

Priors:

(1) Parameters are elements of the linear form xb_life_exp.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression bayesstats ess

bayesgraph

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

. bayes, rseed(1) nchains(3): /// > regress life_exp health_cons pop_growth school

Bayesian linear regression Random-walk Metropolis-Hastings sampling	Number of chains = Per MCMC chain:	3
	Iterations =	12,500
	Burn-in =	2,500
	Sample size =	10,000
	Number of obs =	15
	Avg acceptance rate =	.3361
	Avg efficiency: min =	.05592
	avg =	.05928
	max =	.06243
Avg log marginal-likelihood = -24.228225	Max Gelman-Rubin Rc =	1.012

					Equal-tailed	
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
life_exp						
health_cons	2.061216	.5616096	.013198	2.067605	. 933505	3.18182
pop_growth	-1.285638	1.293889	.029899	-1.258758	-3.969357	1.244759
school	13.04088	9.76268	.231469	13.01902	-6.213398	32.40011
_cons	61.69646	9.936567	.242602	61.67632	42.07788	81.67689
sigma2	.1054626	.0537058	.001283	.0921645	.044239	.2470984

Note: Default priors are used for model parameters.

Note: Default initial values are used for multiple chains.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats es

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

${\tt bayesgraph}$ with multiple chains

- We expect to see similar diagnostic plots for all the chains:
 - . bayesgraph diagnostic {health_cons}

- The trace indicates that convergence was achieved.
- Correlation decays for all the chains and the histograms and densities seem to indicate convergence.

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

Dayes. - Dayesini

Linear regress

bayesstats ess

bayesgraph

Multiple chains Postestimation

Radom-effects

Random effects Convervence

Bayesian predictions

Summary

References

Postestimation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear regression bayesstats es bayesgraph

Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

bayestest model

- bayestest model is a postestimation command to compare different models.
- bayestest model computes the posterior probabilities for each model.
- The result indicates which model is more likely.
- It requires that the models use the same data and that they have proper posteriors.
- It can be used to compare models with
 - different priors, different posterior distributions, or both;
 - · different regression functions, and
 - different covariates.
- MCMC convergence should be verified before comparing the models.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

egression

bayesgraph

Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 3: bayestest model

- Let's fit two other models and compare them with the one we already fit.
- Store the results for the three models and use the postestimation command bayestest model to select one. quietly {

bayes , rseed(1) saving(health): ///
regress life_exp health_cons pop_growth school
estimates store health

bayes , rseed(1) saving(health_educ): /// regress life_exp health_educ pop_growth school estimates store health_educ

```
bayes, rseed(1) saving(gdp_capita): ///
regress life_exp gdp_capita pop_growth school
estimates store gdp_capita
```

bayestest model health health_educ gdp_capita

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Here is the output for bayestest model:

. quietly {

. bayestest model health health_educ gdp_capita Bayesian model tests

	log(ML)	P (M)	P (M y)
health	-24.2442	0.3333	0.4384
health_educ	-24.0065	0.3333	0.5561
gdp_capita	-28.6256	0.3333	0.0055

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

We could also assign different priors for the models:

```
bayestest model health health_educ gdp_capita, ///
prior(.3 .2 .5)
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bayesian model tests

log(ML)	P (M)	P(M y)
-24.2442		0.5358
-24.0065 -28.6256		0.4530 0.0112

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Here is the output for bayestest model:

. quietly {

. bayestest model health health_educ gdp_capita Bayesian model tests

	log(ML)	P (M)	P (M y)
health	-24.2442	0.3333	0.4384
health_educ	-24.0065	0.3333	0.5561
gdp_capita	-28.6256	0.3333	0.0055

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

We could also assign different priors for the models:

. bayestest model health health_educ gdp_capita, ///
prior(.3 .2 .5)

Bayesian model tests

	log(ML)	P (M)	P(M y)
health	-24.2442	0.3000	0.5358
health_educ	-24.0065	0.2000	0.4530
gdp_capita	-28.6256	0.5000	0.0112

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear regression bayesstats ess bayesgraph

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

bayestest interval

- We can perform interval testing with the postestimation command bayestest interval.
- It estimates the probability that a model parameter lies in a particular interval.
- For continuous parameters, the hypothesis is formulated in terms of intervals.
- We can perform point hypothesis testing only for parameters with discrete posterior distributions.
- bayestest interval estimates the posterior distribution for a null hypothesis about intervals for one or more parameters.
- bayestest interval reports the estimated posterior mean probability for Ho.

bayestest interval ({y:x1},lower(#) upper(#)) /// ({y:x2},lower(#) upper(#))

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains Postestimation

FUSIESUITIAUUT

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 4: bayestest interval

• Separate tests for different parameters:

```
. estimates restore health
(results health are active now)
. bayestest interval ///
> ({life_exp:health_cons}, lower(1.5) upper(2.25)) ///
> ({sigma2},lower(.075))
Interval tests MCMC sample size = 10,000
prob1 : 1.5 < {life_exp:health_cons} < 2.25
prob2 : {sigma2} > .075
```

	Mean	Std. Dev.	MCSE
probl	.5038	0.50001	.0185749
prob2	.6836	0.46509	.0145983

- If we draw θ₁ from the specified prior and we use the data to update the knowledge about θ₁, then there is a 50% chance that θ₁ belongs to the interval (1.5,2.25).
- We can also perform a joint test by specifying the "joint"'option.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains Postestimation

.

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 4: bayestest interval

• Separate tests for different parameters:

```
. estimates restore health
(results health are active now)
. bayestest interval ///
> ({life_exp:health_cons}, lower(1.5) upper(2.25)) ///
> ({sigma2},lower(.075))
Interval tests MCMC sample size = 10,000
prob1 : 1.5 < {life_exp:health_cons} < 2.25
prob2 : {sigma2} > .075
```

	Mean	Std. Dev.	MCSE
probl	.5038	0.50001	.0185749
prob2	.6836	0.46509	.0145983

- If we draw θ₁ from the specified prior and we use the data to update the knowledge about θ₁, then there is a 50% chance that θ₁ belongs to the interval (1.5,2.25).
- We can also perform a joint test by specifying the "joint" option.

Outline

General idea

The method

Fundament equation MCMC

Stata tools

bayes: - bayesmh

Linear

hoursestate and

bavesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 5: Random-effects probit

• Consider a random-effects probit model for a binary variable, whose values depend on a linear latent variable.

$$y_{it}^* = \beta_0 + \beta_1 x_{1it} + \beta_2 x_{2it} + \dots + \beta_k x_{kit} + \alpha_i + \epsilon_{it}$$

where

$$y_{it} = \begin{cases} 1 & \text{if } y_{it}^* > 0 \\ 0 & \text{otherwise} \end{cases}$$

 $\alpha_i \sim N(0, \sigma_{\alpha}^2)$ is the individual random panel effect and $\epsilon_{it} \sim N(0, \sigma_e^2)$ is the idiosyncratic error term.

(日) (日) (日) (日) (日) (日) (日)

- The above model is also referred to as a two-level random-intercept probit model.
- We can fit this model using meprobit or xtprobit, re.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression bayesstats ess bayesgraph Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

- This time, we are going to work with simulated data.
- Here is the code to simulate the panel dataset:

```
clear
   set obs 250
   set seed 1
* Panel level *
   generate id = n
   generate alpha=rnormal()
   expand 5
* Observation level *
   bysort id:generate year = n
   xtset id year
   generate x1 = rnormal() *2
   generate x^2 = runiform() * 4
   generate x3 = runiform() * 6
   generate u = rnormal()
* Generate dependent variable *
   generate y = .25 + .05*x1 + (-.05)*x2 + .05*x3+alpha+u>0
```

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

 Let's first fit a classical random-effects probit model to these data using meprobit:

Mixed-effects probit regression Group variable: id					of obs = of groups =	1,250 250
					group:	
				020 PC2	min =	5
					avg =	5.0
					max =	5
Integration met	thod: mvaghe	rmite		Integra	tion pts. =	7
				Wald ch	i2(3) =	15.82
Log likelihood	= -765.5880	7		Prob >	chi2 =	0.0012
У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
x1	.0554992	.0218748	2.54	0.011	.0126254	. 098373
	0816423	.0388118	-2.10	0.035	1577121	0055726
x2	.0495629	.0253132	1.96	0.050	0000501	.0991758
x2 x3		1207700	2.26	0.024	.0388397	.5514517
	.2951457	.1307708				
x 3	.2951457	.1307708				

LR test vs. probit model: chibar2(01) = 150.87

Prob >= chibar2 = 0.0000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regression bayesstats

bayesgraph Multiple obein

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

 To fit a Bayesian random-effects probit model, we can simply prefix our previous meprobit specification with bayes:. We additionally specify a random-number seed in rseed() for reproducibility and suppress the display of dots by specifying nodots.

```
. bayes, nodots rseed(50): meprobit y x1 x2 x3 || id:
```

Burn-in ... Simulation ...

Multilevel structure

id

{U0}: random intercepts

Model summary

```
Likelihood:

y ~ meprobit(xb_y)

Priors:

{y:x1 x2 x3 _cons} ~ normal(0,10000)

{U0} ~ normal(0,{U0:sigma2})

Hyperprior:
```

```
{U0:sigma2} ~ igamma(.01,.01)
```

(1) Parameters are elements of the linear form xb_y.

(1)

(1)

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regressi

bayesstats ess

bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

. bayes, nodots rseed(50): meprobit y x1 x2 x3 || id:

Bayesian multilevel probit regression Random-walk Metropolis-Hastings sampling Group variable: id	MCMC iterations = 12,500 Burn-in = 2,500 MCMC sample size = 10,000 Number of groups = 250
	Obs per group: min = 5 avg = 5.0 max = 5
Family : Bernoulli Link : probit Log marginal-likelihood	Number of obs = 1,250 Acceptance rate = .3212 Efficiency: min = .03291 avg = .04084 max = .04719

						Equal-	tailed
		Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
у							
-	x 1	.0545741	.0220519	.00104	.0542829	.0107792	.0971753
	x 2	0814938	.0389815	.001794	0814345	1577731	0044158
	x 3	.0489053	.0258258	.001218	.0495041	0033026	.0988736
	_cons	.3057306	.1292624	.007125	. 3049666	.0434966	.5513856
id							
U0:	sigma2	.869336	.1475275	.007987	.8565905	.6122842	1.194495

Note: Default priors are used for model parameters.

 Our Bayesian results are similar to the classical results because the default priors used for parameters were noninformative.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regress

bayesstats ess bayesgraph

Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Random effects

- During Bayesian estimation, random effects are estimated together with other model parameters instead of being predicted after estimation.
- Because there may be many random effects, bayes does not report them by default. But we can use option showreffects() to display them.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains

Radom-effects

Random effects

Convervence

Bayesian prediction:

Summary

References

Show random effects

• For instance, let's display the first 9 random effects.

. bayes, showreffects(U0[1/9]) noheader

					Equal-	tailed
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
·i						
x1	.0545741	.0220519	.00104	.0542829	.0107792	.0971753
x2	0814938	.0389815	.001794	0814345	1577731	0044158
x3	.0489053	.0258258	.001218	.0495041	0033026	.0988736
_cons	.3057306	.1292624	.007125	.3049666	.0434966	.5513856
0[id]						
1	.9816318	. 6483689	.018095	.9451563	1966993	2.35105
2	.3298048	.5280284	.014699	.3250389	6906729	1.386742
3	.3808169	.5135901	.015094	.377268	5926917	1.464861
4	781506	. 5283996	.016195	7492063	-1.842893	.1953963
5	-1.307104	.6082005	.017053	-1.280264	-2.570318	1867906
6	.5024583	.5118613	.014101	.4808428	4400955	1.577791
7	1.03784	.647897	.016973	. 9924323	1562301	2.437312
8	.0393935	.4893852	.014986	.0250356	8939384	.9904983
9	. 4053234	.5520343	.015952	.3918537	6268649	1.578649
.d						
U0:sigma2	.869336	.1475275	.007987	.8565905	.6122842	1.194495

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

bayesgraph

Multiple chain

Radom-effects probit

Random effects Convervence

Bayesian prediction:

Summary

References

Histograms for random effects

• Just like other parameters of Bayesian models, we have an entire distribution for each random effect. Let's plot them using, for instance, bayesgraph histogram.

bayesgraph histogram {U0[1/9]}, byparm

- 99C

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regressio

bayesstats ess

Multiple chains

Radom-effects probit

Random effects

Bayesian predictions

Summary

References

Efective sample size, autocorrelation, and efficiency

bayesstats ess

Efficiency	summaries	MCMC	sample	size	=	10,000
		Effic	iency:	min	=	.03291
				avg	=	.04084
				mav	=	04719

	ESS	Corr. time	Efficiency
у			
x1	449.84	22.23	0.0450
x 2	471.94	21.19	0.0472
x 3	449.69	22.24	0.0450
_cons	329.11	30.39	0.0329
id			
U0:sigma2	341.21	29.31	0.0341

- The efficiency is around 3% to 4% for all the main parameters
- Autorrelation seems to be a little high, so we may want to check the diagnostic plots for more detailed analysis, and we may also want to check convergence using multiple chains.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmi

Linear

regression

```
bayesstats ess
```

bayesgraph

```
Multiple chains
```

Radom-effects probit

Random effects

Ravesian

predictions

Summary

References

bayesstats grubin

• Let's check convergence by fitting the model with 3 chains and evaluating the Gelman–Rubin statistic:

. quietly ba	me	•	50) nchains(3) x1 x2 x3 io	
Gelman-Rubin d	convergence	diagnostic		
Number of chai MCMC size, per Max Gelman-Rub	r chain =	3 10,000 1.008693		
	Rc			
У				
x1	1.008693			
x2	1.001802			
ж3	1.001238			
_cons	1.002039			
id				
U0:sigma2	1.004256			
	l			

Convergence rule: Rc < 1.1

• The Gelman–Rubin statistic supports convergence for each of the main parameters.

bayesgraph diagnostics

• Let's look at the diagnostic graphs for y:x1.

 All the plots support convergence for y:x1. You should also check y:x2 and y:x3.

(日)

Outline

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

Multiple chains

Postestimation

Radom-effects probit

Random effects

Bayesian predictions

Summary

References

bayesgraph diagnostics

Let's also look at the diagnostic graphs for U0:sigma2:

 All the plots support convergence for U0:sigma2, although the autocorrelation is dying off slower for this parameter.

・ロット (雪) (日) (日)

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesoraph

Multiple chains

Postestimation

Radom-effects probit

Random effects

Bayesian predictions

Summary

References

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Bayesian predictions and replications

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesmh

Linear regression bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Use of Bayesian predictions

- In model diagnostic
- Optimal predictors in forecasting (Out of sample predictions)
- Optimal classifiers in classification problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Missing-data imputation

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear regressi

bayesstats ess bayesgraph Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Computing Bayesian predictions

- Simulate outcome predictions (out of sample)
 - Obtained from posterior predictive distribution of the unobserved (future) data, based on:
 - Posterior distribution for model parameters
 - Likelihood for the outcome given model parameters and data
- Compute and save posterior summaries of simulated outcome.
- Simulate replicates (in sample) and save them in the current dataset.
- Use internal or user-defined Mata functions.
- Use user-defined Stata programs.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats es

bayesgraph

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 6: MCMC sample of replicated outcome

- We can use bayesreps to generate a subset of MCMC replicates in the current dataset.
- Replicated data are data we would have observed if we were to repeat the same experiment that produced the observed data.
- The replicates can be used to make comparisons with the observed outcome.
- Let's see how the comparison looks with the estimate for the mean population growth for Switzerland.

Outline

General idea

The method

Fundament equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats ess

bayesgraph

Multiple chains

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

. describe

Contains data obs: vars:	from pope 59 4	jr_swiss.dt	a	18 Nov 2020 12:08
variable name	storage type	display format	value label	variable label
datestr daten popgr_swiss year	str10 int float float	%-10s %td %9.0g %9.0g		observation date numeric (daily) date Population Growth for Switzerland

Sorted by: year

. summarize popgr_swiss if year<=1970

Variable	Obs	Mean	Std. Dev.	Min	Max
popgr_swiss	10	1.485167	.5701435	.7224038	2.535012

. summarize popgr_swiss if year>1970

Variable	Obs	Mean	Std. Dev.	Min	Max
popgr_swiss	49	.6681046	.3961815	5715957	1.270618

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

```
bayesstats ess
```

bayesgraph

Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Code for bayesian replications

```
bayesmh popgr_swiss if year>1970, likelihood(normal({.25})) ///
prior({popgr_swiss:_cons},normal(1.485,.325)) ///
saving(popgr_mcmc,replace) rseed(1)
```

```
// Use -bayesreps- to get two replicates for popgr_swiss
// plot the data along with the replicates.
bayesreps yrep*, rseed(123) nreps(2)
```

```
// Plot the data along with the replicates.
twoway histogram popgr swiss, name(data, replace)
                                                         111
       legend(off) ytitle("Data")
                                                         111
twoway histogram popgr swiss || histogram yrep1,
       color(navy%25) name(rep1, replace) legend(off)
                                                         111
       vtitle("Replication 1")
twoway histogram popgr swiss || histogram yrep2,
                                                         111
       color(maroon%25) name(rep2,replace) legend(off)
                                                         111
       ytitle("Replication 2")
twoway histogram popgr swiss ||
                                                         111
       histogram vrep1, color(navv%25) ||
                                                         111
       histogram yrep2, color(maroon%25) ||,
                                                         111
       name(rep all, replace) legend(off)
                                                         111
       vtitle("All Replications")
```

graph combine data rep1 rep2 rep_all

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats e

bayesgraph

Multiple chain

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

00 00 Replication 1 .4 .6 Data 01 0 0 -1 0 1 2 Population Growth for Switzerland -1 00 00 All Replications Replication 2 9 9 01 -1 0 -1

We expect to see similar histograms for the data and the replicates:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

```
General idea
```

The method

Fundament equation MCMC

Stata tools

bayes: - bayesmh

Linear

bayesstats ess

Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

```
Summary
```

References

Example 7.1: Predicted outcome and residuals

• We can use <code>bayespredict</code> to get predictions for simulated outcomes and residuals.

```
. quietly bayesmh popgr_swiss if year>1970, ///
> likelihood(normal({.25})) ///
> prior({popgr_swiss:cons},normal(1.48,.32)) ///
> saving(popgr_mcmc,replace) rseed(1)
. bayespredict {_ysim} if year>1970,saving(my_ysim,replace) rseed(123)
Computing predictions ...
```

file my_ysim.dta saved file my_ysim.ster saved

• We can then use <code>bayesstats summary</code> to get summaries for the mean of the simulated outcome and residuals.

```
. bayesstats summary @mean({_ysim}) ///
> @mean({_resid1}) using my_ysim
Posterior summary statistics MCMC sample size = 10,000
```

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
_ysim1_mean resid1 mean						

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

end of do-file

do "C:\Users\gas\AppData\Local\Temp\STD25fc_00000.tmp"

Outline

```
General idea
```

The method

Fundament equation MCMC

Stata tools

bayes: - bayesmh

Linear regressi

bayesstats ess bayesgraph Multiple chains

Radom-effects probit

Random effects Convervence

Bayesian predictions

```
Summary
```

References

Example 7.1: Predicted outcome and residuals

• We can use <code>bayespredict</code> to get predictions for simulated outcomes and residuals.

```
. quietly bayesmh popgr_swiss if year>1970, ///
> likelihood(normal({.25})) ///
> prior({popgr_swiss:_cons},normal(1.48,.32)) ///
> saving(popgr_mcmc,replace) rseed(1)
. bayespredict {_ysim} if year>1970, saving(my_ysim,replace) rseed(123)
Computing predictions ...
file my_ysim.dta saved
file my_ysim.tar saved
```

• We can then use <code>bayesstats summary</code> to get summaries for the mean of the simulated outcome and residuals.

```
. bayesstats summary @mean({_ysim}) ///
> @mean({_resid1}) using my_ysim
Posterior summary statistics MCMC sample size = 10,000
```

					Equal-	tailed
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
_ysim1_mean _resid1_mean	.681428 .0002904	.1022601 .0715301	.001693 .000715	.6798943 .0005509	.4828026 1407139	.8834371 .1407014

end of do-file

. do "C:\Users\gas\AppData\Local\Temp\STD25fc_000000.tmp"

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh

Linear

regression

bayesstats es

bayesgraph

Restactionation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

We can also get a histogram for the mean of the simulated residuals

. bayesgraph histogram @mean({_resid1}) using my_ysim

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools bayes: - bayesmh

Linear regression bayesstats ess bayesgraph Multiple chains Postestimation

Radom-effects probit

Random effects Convervence

Bayesian predictions

Summary

References

Example 7.2: Posterior predictive p-values (PPPs)

- We can complete the analysis by using <code>bayesstats</code> <code>ppvalues</code> to measure discrepancies between the model and the data.
- In general, we should evaluate test quantities that correspond to relevant assumptions for the model.
- PPPs are expected to be close to .5 for a well-fitted model, but in practice PPPs between .05 and .95 are accepted as values that support the goodness of fit for the model.

- Outline
- General idea
- The method
- Fundamenta equation MCMC
- Stata tools
- bayes: bayesmh
- Linear regression bayesstats es
- bayesgraph
- Multiple chains
- Radom-effects probit
- Random effects Convervence
- Bayesian predictions
- Summary
- References

• Let's use the mean and variance for the residuals as a test quantity:

т	Mean	Std. Dev.	E(T_obs)	P(T>=T_obs)
mean	.0002904	.0715301	013033	. 5458
var	.2496989	.0509342	.1569598	. 9796

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

• For the mean the PPPs supports the model, but the variance it does not support the model.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

- Fundamenta equation MCMC
- Stata tools
- bayes: bayesmh
- Linear
- bayesstats ess bayesgraph
- Multiple chains Postestimation

Radom-effects probit

- Random effects Convervence
- Bayesian predictions
- Summary
- References

Summing up

- Bayesian analysis: A statistical approach that can be used to answer questions about unknown parameters in terms of probability statements.
- It can be used when we have prior information on the distribution of the parameters involved in the model.
- Alternative approach or complementary approach to classic/frequentist approach?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesmh

Linear regression bayesstats ess bayesgraph Multiple chains

Radom-effects

Random effects Convervence

Bayesian predictions

Summary

References

Reference

Cameron, A. and Trivedi, P. 2005. *Microeconometric Methods and Applications*. Cambridge University Press, Section 13.2.2, 422–423.

Links

https://www.stata.com/meeting/uk17/slides/uk17_Marchenko.pdf https://www.stata.com/meeting/brazil16/slides/rising-brazil16.pdf https://www.stata.com/meeting/spain18/slides/spain18_Sanchez.pdf

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●