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1.  What is the problem ?
Current situation in applied research:

 An increasing number of people use multilevel
logistic models for qualitative dependent variables
with binary and ordinal outcome

 But users often complain that there are no fit
measures for these models

 Neither Stata 16 nor SPSS 26 offer any fit
measure for these models

 Let me demonstrate how to generalize the Pseudo
R2s for binary and ordinal logit model for the
multilevel analysis
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Which solutions does Stata provide? 

 Indeed Stata estimates multilevel logit models for
binary, ordinal and multinomial outcomes (melogit,
meologit, gllamm) but it does not calculate any
Pseudo R2. It provides only the Akaike- (AIC) and
Schwarz-Bayesian-Information Criteria (BIC)

 Stata provides a Wald test for the fixed effects and
a Likelihood-Ratio-χ2 test for the random effects of
the exogenous variables

 Even special purpose programs like HLM, MlwiN,
MPLUS or SuperMix do not calculate any Pseudo
R2
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 Raudenbush & Bryk (2002), Heck & Thomas
(2009) and  Rabe-Hesketh & Skrondal (2013) do
not mention Peudo R2s at all

 Snijder & Bosker (2012) propose a variation of
McKelvey & Zavoina Pseudo R2 for random-
intercept and intercept-as-outcome logit models. It
is not implemented in any program

 Hox (2010) discusses the McFadden, Cox & Snell,
Nagelkerke and McKelvey & Zavoina Pseudo R2. 
He recommends the last one to assess the model
fit 

What can we learn from multilevel
literature?
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2. Summary of the econometric Monte-
Carlo studies for testing Pseudo R2s

 Econometricians made a lot of Monte-Carlo
studies in the 1990s:

< Hagle & Mitchell 1992
< Veall & Zimmermann 1992, 1993, 1994
< Windmeijer 1995
< DeMaris 2002

 They systematically tested the most common
Pseudo-R²s for binary and ordinal probit / logit
models 
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Which Pseudo R²s were tested in these studies?
 Likelihood-based measures:
< Maddala / Cox & Snell Pseudo R² (1983 / 1989)
< Cragg & Uhler / Nagelkerke Pseudo R² (1970 / 1992)

 Log-Likelihood-based measures:
< McFadden Pseudo R² (1974)
< Aldrich & Nelson Pseudo R² (1984)
< Aldrich & Nelson Pseudo R² with the Veall & Zimmer-

mann correction (1992)
 Basing on the estimated probabilities:
< Efron / Lave Pseudo R² (1970 / 1978)

 Basing on the variance decomposition of the
estimated Probits / Logits:

< McKelvey & Zavoina Pseudo R² (1975)



8

Results of the Monte-Carlo-Studies for
binary and ordinal logits or probits
 The McKelvey & Zavoina Pseudo R² is the best

estimator for the ?true R²” of the OLS regression
 The Aldrich & Nelson Pseudo R² with the Veall &

Zimmermann correction is the best approximation of
the McKelvey & Zavoina Pseudo R²

 Lave / Efron, Aldrich & Nelson, McFadden and 
Cragg & Uhler Pseudo R² severely underestimate
the ?true R²” of the OLS regression

 My personal advice: 
< Use the McKelvey & Zavoina Pseudo R² to assess the fit

of binary and ordinal logit models
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3. The generalization of the McKelvey & 
Zavoina Pseudo R2 for the binary and
ordinal multilevel logit model

 The multilevel logit model is a systematic extension
of the classical binary and ordinal logit model for 
clustered subsamples (contextual units j)

< The variance of the estimated logits is decomposed into
< Fixed effects, < Random effects and < Level-1 Error
variance σ2(r ij ) 

< The variance of level 1 residua  σ2(r ij ) can not be
estimated because of its own heteroscedasticity. It is
replaced by the variance of the logistic density function 
(π2 / 3) multiplied with the sample size
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 McKelvey & Zavoina Pseudo R2 (M & Z Pseudo R2)

Let’s have a short look at the lucky winner

Range: 0 # M & Z-Pseudo R² #1
Legend:

:             Variance of the logistic density function     

 Sum of squares of the estimated logits (latent variable Y*) 

n :                  Sample size
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Generalization to the 2-level logit model 2
 Prediction of the latent variable Y* (estimated binary

or cumulative logit) in two ways
< 1.Population-Average Prediction with the fixed effects of

the exogenous variables (all random effects hold at zero)
– Stata-command: predict newvar1 if e(sample), xb

< 2. Unit-Specific Prediction of the fixed and random effects
of the exogenous variable
– Stata-command: predict newvar2 if e(sample), eta

 Therefore, the variation of the estimated logits (Y*)
can be calculated in two different ways

< 1. Only for the fixed effects of the exogenous variables
< 2. For the fixed and random effects of the exogenous

variables
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Generalization to the 2-level logit model 3

 Therefore we get two different McKelvey &
Zavoina Pseudo R2s

< 1. ?Population-Average” M & Z Pseudo R2 (fixed
effects)

< 2. ?Unit-Specific” M & Z Pseudo R2 (fixed & random
effects)

 The ?Unit-Specific” M & Z Pseudo R2 uses all
estimated fixed and random effects for prediction.
Therefore it assesses the fit more realistically as
its ?Population-Average” counterpart
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 McFadden Pseudo R2 (1974) 

Let’s have a short look at the lucky loser

Range:   0 # McFadden Pseudo R² < 1

but ρ² does not reach the maximum of 1.0

Legend: ln LA: Log-Likelihood of the actual model 
ln L0: Log-Likelihood of the zero model

Rule of thumb: 0.20 # McFadden Pseudo R² # 0.40 marks
an excellent fit (McFadden 1979: 307)
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Generalization to the 2-level logit model 4
 Conditions of application
< Maximum-Likelihood estimation of the fixed and

random effects of the exogenous variables
< Actual and zero model have to use the same sample 
< Choice of the ?appropriate zero model” (M0) depends

on our knowlege to which contextual unit the
respondent belongs
– Membership known: Random-Intercept-Only Logit model

estimates the proportion of Y* which can be maximally
explained by the contextual units ( = ANOVA model)

– Membership unkown: Fixed-Intercept-Only Logit model
estimates only the marginal distribution of Y*                    
(= true zero model)
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Generalization to the 2-level logit model 5
 Calculation of McFadden Pseudo R2 is possible in two

different ways using the following ones as zero model
< 1. Random-Intercept-Only Logit-Model (RIOM)

– It measures the proportional reduction of the log likelihood of
the actual model in comparison with the RIOM caused by the
fixed effects of the exogenous variables

– Its Likelihood-Ratio χ2 test refers to all fixed effects of the
exogenous level 1 and level 2 variables

< 2. Fixed-Intercept-Only Logit-Model (FIOM)
– It measures the proportional reduction of the log likelihood of

the actual model in comparison with the FIOM caused by
fixed and random effects of all exogenous variables

– Its Likelihood-Ratio χ2 test refers to all fixed and random
effects of the exogenous level 1 and level 2 variables
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4.  Example of application
 Flash Eurobarometer No 330 about youth

attitudes on drugs (2011)
< WebCATI-Survey of nij = 12.313 respondents

(aged 15 -24) in n.j = 27 EU member states
(contextual units j) 

< My focus: 
– prevalence of cannabis use by juveniles and young

adults (q10): Have you used cannabis by yourself?
– 1) never  
– 2) more than 12 months ago
– 3) less than 12 months ago
– 4) in the last 30 days

< Let us have a look at the exogenous variables in
the following diagram



Cannabis use ij
(q10)

Perceived Health Risk ij  (q04_a)

high, medium, low, no risk*)

Perceived Supply Situation ij: (q09_a)
impossible, very difficult, fairly difficult, 

fairly easy, very easy to get

Genderij (d1): Woman vs. Man

Age Groupsij (agegroup)
15-18, 19-21, 22-24

Highest Level of Education ij (d3_a)
 Primary, Secondary, Higher

Urbanisation ij (d06)
Metropolitan, Urban, Rural

Constant ij (reference group)

Country.j 

β1 - β3

β4 - β7

β8  
β9

β10 

β11  
β12

β0j

Level 2: Country:
 n.j = 27

Level 1: Respondents in 
Country 

n ij = 11.168 

β13  
β14

17

Theoretical 2-level-model: RIM

*) Reference group is characterized    
    by the bold categories
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Stata-Output
Version16

< Fixed effects

< Thresholds
< Random effect

Mixed-effects ologit regression                 Number of obs     =     11,168
Group variable:         country                 Number of groups  =         27

                                                Obs per group:
                                                              min =        211
                                                              avg =      413.6
                                                              max =        490

Integration method: mvaghermite                 Integration pts.  =          7

                                                Wald chi2(14)     =    3363.39
Log pseudolikelihood = -7424.2751               Prob > chi2       =     0.0000
                                           (Std. Err. adjusted for 27 clusters in country)
------------------------------------------------------------------------------------------
                         |               Robust
                  q10ord |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------------------+----------------------------------------------------------------
                    q4_a |
              high risk  |  -2.656545   .1498799   -17.72   0.000    -2.950304   -2.362785
            medium risk  |  -1.668222   .1015971   -16.42   0.000    -1.867348   -1.469095
               low risk  |  -.7527713   .0463199   -16.25   0.000    -.8435567   -.6619859
                         |
                    q9_a |
             impossible  |  -2.976197   .1910924   -15.57   0.000    -3.350731   -2.601663
         very difficult  |  -2.132899   .1642871   -12.98   0.000    -2.454896   -1.810903
       fairly difficult  |  -1.527717   .1004747   -15.21   0.000    -1.724644   -1.330791
            fairly easy  |  -.6241175   .0843823    -7.40   0.000    -.7895038   -.4587312
                         |
                      d6 |
      metropolitan zone  |   .3950294   .1038006     3.81   0.000      .191584    .5984749
other town/urban centre  |   .2082467   .0751678     2.77   0.006     .0609206    .3555729
                         |
                      d1 |
                 female  |  -.4777186   .0525238    -9.10   0.000    -.5806634   -.3747738
                         |
                agegroup |
                19 - 21  |   .4967552   .0607537     8.18   0.000     .3776801    .6158303
                22 - 24  |   .6850326   .0788467     8.69   0.000     .5304958    .8395694
                         |
                    d3_a |
    secondary education  |  -.0122673   .0702398    -0.17   0.861    -.1499348    .1254003
       higher education  |  -.0268133   .1227001    -0.22   0.827    -.2673011    .2136745
-------------------------+----------------------------------------------------------------
                   /cut1 |  -.3882657   .1392505                     -.6611918   -.1153396
                   /cut2 |   .7153171   .1438259                      .4334236    .9972106
                   /cut3 |   1.902703   .1602572                      1.588605    2.216802
-------------------------+----------------------------------------------------------------
country                  |
               var(_cons)|   .2617043   .0850279                      .1384379    .4947284
------------------------------------------------------------------------------------------
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What does Stata offer to assess the fit?
 Akaike (AIC) and Schwarz Bayesian Information

Criterion (BIC)
< Decision rule:Choose the model with the lowest AIC or

BIC

< Looking at AIC and BIC, the RIM fits best of all bad
models

< But we do not know how well the RIM really fits !

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |          N   ll(null)  ll(model)      df        AIC        BIC
-------------+---------------------------------------------------------------
     fiom_w4 |     11,168          .  -9343.799       3   18693.60   18715.56
     riom_w4 |     11,168          .  -9036.540       4   18081.08   18110.36
      rim_w4 |     11,168          .  -7424.275      18   14884.55   15016.32
-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] BIC note.
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 Assessing the fit by the McKelvey & Zavoina-,
McFadden-Pseudo R2s for the fixed & random effects

Output of my fit_meologit_2lev.ado 1

. fit_meologit_2lev
Fit-measures for the MELOGIT/MEOLOGIT Model:
                                                     
McKelvey&Zavoina-Pseudo R2 (fixed & random effects)=   0.5097
                                                     
McKelvey&Zavoina-Pseudo R2 (fixed effects only)=   0.4728
                                                     
                                                     
Just estimating the Fixed-/ Random-Intercept-Only-Logit Model
                                                     
                                                     
McFadden Pseudo R2 (fixed effects only) = 0.1784
                                                     
McFadden Pseudo R2 (fixed & random effects)  = 0.2054
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 Intra-Class Correlation and corresponding Likelihood-
Ratio-χ2 tests for fixed & random effects

Output of my fit_meologit_2lev.ado 2

ICC of Random-Intercept-Only-Logit Model (Sample M(A))
Intra-Class-Correlation (Level 2) =    0.1431
                                                              
H0: ICC of Level 2 is zero in the population
LR-chi2 test statistic (  1) =   614.52    Prob > chi2 = 0.0000
                                                              
LR-chi2 test: H0: all fixed effects are zero in the population
                                                              
LR-chi2 test statistic ( 14) =  3224.53    Prob > chi2 = 0.0000
                                                              
LR-chi2 test: H0: all fixed & random effects are zero in the population
LR-chi2 test statistic ( 15) =  3839.05    Prob > chi2 = 0.0000
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 r-containers of fit_meologit_2lev.ado

What you get afterwards

. return list

scalars:
          r(p_chi2_fr) =  0
              r(df_fr) =  15
            r(chi2_fr) =  3839.047042018567
           r(p_chi2_f) =  0
               r(df_f) =  14
             r(chi2_f) =  3224.530363760103
              r(p_icc) =  0
             r(df_icc) =  1
           r(chi2_icc) =  614.5166782584638
           r(icc_riom) =  .1431007329841504
          r(mcr2_fiom) =  .2054328872219874
          r(mcr2_riom) =  .1784162011068596
              r(mzr2f) =  .4728218379947466
             r(mzr2fr) =  .5097289342586476
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 The baseline
How do the effects look like?

40.41%

26.74%

19.86%

12.98%

never more than 12 months
less than 12 months last month

Estimated probabilities of cannbis use for the reference group
< Reference

Group 
– Men
– Age 15-18
– Location: rural
– Education:

primary
– Perceived

health risk: no
risk

– Perceived
supply
situation: very
easy to get 
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Ben Jann’s Coefplot for the 4 categories
Perceived health risk: high

medium risk
low risk

Supply situation: impossible
very difficult
fairly difficult

fairly easy
metropolitan zone

other town/urban centre
Gender: female

Age group: 19 - 21
22 - 24

secondary education
higher education

-.2 0 .2 .4 .6
AME with respect to P(cannabis use category | reference group)

never more than 12 months

less than 12 months last 30 days
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5.  Conclusions 1

 What’s known
< The Monte-Carlo-simulation studies show that the

McKelvey & Zavoina Pseudo R² is the best fit measure
for binary and ordinal logit models

 What’s new
< Generalization of the M & Z-Pseudo R2 to binary and

ordinal multilevel logit models. The prediction of
estimated logits bases upon the fixed effects only or
upon fixed and random effects of exogenous variables

< The McFadden-Pseudo R2 bases upon the fixed effects
only or upon fixed and random effects of the exogenous
variables using a context-independent zero model
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5. Conclusions                       2
 What’s new
< Simultaneous Likelihood-Ratio-χ2 test for the

estimated fixed effects using the Random-Intercept-
Only Model (RIOM) as the zero model

< Simultaneous Likelihood-Ratio-χ2 test for the
estimated fixed and random effects using the Fixed-
Intercept-Only Model (FIOM) as the zero model

< Use of probability weights for each level j
< You get all Pseudo-R2s and tests in r-containers

 That’s why
< I suggest to use my fit_meologit_2lev.ado and

fit_meologit_3lev.ado to assess the fit of 2- and 3-
level logit models with binary and ordinal outcome
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Closing words

 Thank you for your attention

 Do you have some questions?
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Contact

 Affiliation

< Dr.Wolfgang Langer
University of Halle
Institute of Sociology
D-06099 Halle (Saale)

< Email: wolfgang.langer@soziologie.uni-halle.de



29
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Multilevel ordered logit model 1
 Equations of the 2-level-ordered logit model

Notation of Raudenbush & Bryk
(2002):

γ:    fixed-effect estimator
Z: exogenous level 2 variable
β:    random-effect estimator
X: exogenous level 1 variable
u0j:  residuum random-intercept
u1j:  residuum random-slope
rij: residuum of within-context-

logistic regression
δk: threshold for category k of Y
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Multilevel ordered logit model 2
 Interpretation of the residua of the Between-Context

Regression

 Assumptions for the residua of the logistic 2-level 
logit model
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Multilevel ordered logit model 3 

 Residua of level 2

 Implication for the level 1 residuum rij
< The variance σ2(rij) can not be estimated because of its

own heteroscedasticity.  It is replaced by the variance of
the logistic density function (π2 / 3) 
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 Calculation of Akaike- (AIC) and Schwarz Bayesian-
Information-Criteria (BIC)

Alternative in Stata: Information criteria 
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