How to assess the fit of multilevel logit models with Stata? A project in progress

2020 Swiss Stata Conference at the University of Bern, **November 19th, 2020**

"Models should not be true but it is important that they are applicable." (John W. Tukey)

Dr. Wolfgang Langer Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie

Associate Assistant Professor Université du Luxembourg

Contents

- 1. What is the problem?
- Summary of the econometric Monte-Carlo studies for Pseudo R²s
- The generalization of the McKelvey & Zavoina (M & Z) Pseudo R² for the binary and ordinal multilevel logit model
- An application of the generalized M & Z Pseudoand McFadden Pseudo R² in a drug consumption study of juveniles and young adults
- 5. Conclusions

1. What is the problem ?

Current situation in applied research:

- An increasing number of people use multilevel logistic models for qualitative dependent variables with binary and ordinal outcome
- But users often complain that there are no fit measures for these models
- Neither Stata 16 nor SPSS 26 offer any fit measure for these models
- Let me demonstrate how to generalize the Pseudo R²s for binary and ordinal logit model for the multilevel analysis

Which solutions does Stata provide?

- Indeed Stata estimates multilevel logit models for binary, ordinal and multinomial outcomes (melogit, meologit, gllamm) but it does not calculate any Pseudo R². It provides only the Akaike- (AIC) and Schwarz-Bayesian-Information Criteria (BIC)
- Stata provides a Wald test for the fixed effects and a Likelihood-Ratio-χ² test for the random effects of the exogenous variables
- Even special purpose programs like HLM, MlwiN, MPLUS or SuperMix do not calculate any Pseudo R²

What can we learn from multilevel literature?

- Raudenbush & Bryk (2002), Heck & Thomas (2009) and Rabe-Hesketh & Skrondal (2013) do not mention Peudo R²s at all
- Snijder & Bosker (2012) propose a variation of McKelvey & Zavoina Pseudo R² for randomintercept and intercept-as-outcome logit models. It is not implemented in any program
- Hox (2010) discusses the McFadden, Cox & Snell, Nagelkerke and McKelvey & Zavoina Pseudo R².
 He recommends the last one to assess the model fit

2. Summary of the econometric Monte-Carlo studies for testing Pseudo R²s

- Econometricians made a lot of Monte-Carlo studies in the 1990s:
 - Hagle & Mitchell 1992
 - Veall & Zimmermann 1992, 1993, 1994
 - Windmeijer 1995
 - DeMaris 2002
- They systematically tested the most common Pseudo-R²s for binary and ordinal probit / logit models

Which Pseudo R²s were tested in these studies?

- Likelihood-based measures:
 - Maddala / Cox & Snell Pseudo R² (1983 / 1989)
 - Cragg & Uhler / Nagelkerke Pseudo R² (1970 / 1992)
- Log-Likelihood-based measures:
 - McFadden Pseudo R² (1974)
 - Aldrich & Nelson Pseudo R² (1984)
 - Aldrich & Nelson Pseudo R² with the Veall & Zimmermann correction (1992)
- Basing on the estimated probabilities:
 - Efron / Lave Pseudo R² (1970 / 1978)
- Basing on the variance decomposition of the estimated Probits / Logits:
 - McKelvey & Zavoina Pseudo R² (1975)

Results of the Monte-Carlo-Studies for binary and ordinal logits or probits

- The McKelvey & Zavoina Pseudo R² is the best estimator for the "true R²" of the OLS regression
- The Aldrich & Nelson Pseudo R² with the Veall & Zimmermann correction is the best approximation of the McKelvey & Zavoina Pseudo R²
- Lave / Efron, Aldrich & Nelson, McFadden and Cragg & Uhler Pseudo R² severely underestimate the "true R²" of the OLS regression
- My personal advice:
 - Use the McKelvey & Zavoina Pseudo R² to assess the fit of binary and ordinal logit models

3. The generalization of the McKelvey & Zavoina Pseudo R² for the binary and ordinal multilevel logit model

- The multilevel logit model is a systematic extension of the classical binary and ordinal logit model for clustered subsamples (contextual units j)
 - The variance of the estimated logits is decomposed into
 Fixed effects, ► Random effects and ► Level-1 Error variance σ²(r_{ij})
 - The variance of level 1 residua σ²(r_{ij}) can not be estimated because of its own heteroscedasticity. It is replaced by the variance of the logistic density function (π² / 3) multiplied with the sample size

Let's have a short look at the lucky winner

McKelvey & Zavoina Pseudo R² (M & Z Pseudo R²)

$$M \& Z Pseudo R^{2} = \frac{\sum_{i=1}^{n} \left(\hat{y}_{i}^{*} - \overline{\hat{y}^{*}}\right)^{2}}{\sum_{i=1}^{n} \left(\hat{y}_{i}^{*} - \overline{\hat{y}^{*}}\right)^{2} + n \times \frac{\pi^{2}}{3}}$$

Range: 0 \leq M & Z-Pseudo R² \leq 1

Legend:

 $\sum_{i=1}^{n} \left(\hat{y}_{i}^{*} - \overline{\hat{y}^{*}} \right)^{2}$: Sum of squares of the estimated logits (latent variable Y^{*})

n : Sample size

 $\frac{\pi^2}{3}$: Variance of the logistic density function

Generalization to the 2-level logit model 2

- Prediction of the latent variable Y* (estimated binary or cumulative logit) in two ways
 - 1.Population-Average Prediction with the fixed effects of the exogenous variables (all random effects hold at zero)
 - Stata-command: predict newvar1 if e(sample), xb
 - 2. Unit-Specific Prediction of the fixed and random effects of the exogenous variable
 - Stata-command: predict newvar2 if e(sample), eta
- Therefore, the variation of the estimated logits (Y*) can be calculated in two different ways
 - 1. Only for the fixed effects of the exogenous variables
 - 2. For the fixed and random effects of the exogenous variables

Generalization to the 2-level logit model 3

- Therefore we get two different McKelvey & Zavoina Pseudo R²s
 - 1. "Population-Average" M & Z Pseudo R² (fixed effects)
 - 2. "Unit-Specific" M & Z Pseudo R² (fixed & random effects)
- The "Unit-Specific" M & Z Pseudo R² uses all estimated fixed and random effects for prediction. Therefore it assesses the fit more realistically as its "Population-Average" counterpart

Let's have a short look at the lucky loser

McFadden Pseudo R² (1974)

$$McFadden \,Pseudo\,R^{2}\left(\rho^{2}\right) = 1 - \left[\frac{\ln L_{A}}{\ln L_{0}}\right]$$

Range: $0 \leq$ McFadden Pseudo R² < 1

but ρ^2 does not reach the maximum of 1.0

Rule of thumb: $0.20 \le McFadden Pseudo R^2 \le 0.40$ marks an excellent fit (McFadden 1979: 307)

Generalization to the 2-level logit model 4

Conditions of application

- Maximum-Likelihood estimation of the fixed and random effects of the exogenous variables
- Actual and zero model have to use the same sample
- Choice of the "appropriate zero model" (M₀) depends on our knowlege to which contextual unit the respondent belongs
 - Membership known: Random-Intercept-Only Logit model estimates the proportion of Y* which can be maximally explained by the contextual units (= ANOVA model)
 - Membership unkown: Fixed-Intercept-Only Logit model estimates only the marginal distribution of Y* (= true zero model)

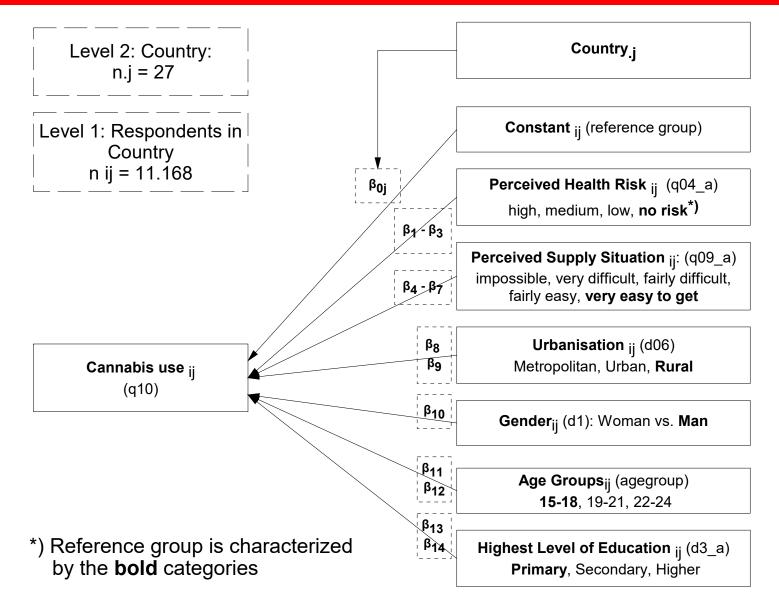
Generalization to the 2-level logit model 5

- Calculation of McFadden Pseudo R² is possible in two different ways using the following ones as zero model
 - 1. Random-Intercept-Only Logit-Model (RIOM)
 - It measures the proportional reduction of the log likelihood of the actual model in comparison with the RIOM caused by the fixed effects of the exogenous variables
 - Its Likelihood-Ratio χ^2 test refers to all fixed effects of the exogenous level 1 and level 2 variables
 - 2. Fixed-Intercept-Only Logit-Model (FIOM)
 - It measures the proportional reduction of the log likelihood of the actual model in comparison with the FIOM caused by fixed and random effects of all exogenous variables
 - Its Likelihood-Ratio χ^2 test refers to all fixed and random effects of the exogenous level 1 and level 2 variables

4. Example of application

- Flash Eurobarometer No 330 about youth attitudes on drugs (2011)
 - WebCATI-Survey of n_{ij} = 12.313 respondents (aged 15 -24) in n_{ij} = 27 EU member states (contextual units j)
 - My focus:
 - prevalence of cannabis use by juveniles and young adults (q10): Have you used cannabis by yourself?
 - 1) never
 - 2) more than 12 months ago
 - 3) less than 12 months ago
 - 4) in the last 30 days
 - Let us have a look at the exogenous variables in the following diagram

Theoretical 2-level-model: RIM



Stata-Output Version16	Mixed-effects ologit regre Group variable: co	ession Duntry	N	Number of Number of Nos per gr	groups =	211 413.6	
	Integration method: mvaghermite		Integration pts. =			7	
	Log pseudolikelihood = -74	Wald chi2(14) = 3363.39 Prob > chi2 = 0.0000 (Std. Err. adjusted for 27 clusters				in country)	
	q10ord	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	. Interval]
 Fixed effects 	q4_a high risk medium risk low risk q9_a impossible very difficult fairly difficult fairly easy d6 metropolitan zone other town/urban centre	-2.656545 -1.668222 7527713 -2.976197 -2.132899 -1.527717 6241175 .3950294 .2082467	.1498799 .1015971 .0463199 .1910924 .1642871 .1004747 .0843823 .1038006 .0751678	-17.72 -16.42 -16.25 -15.57 -12.98 -15.21 -7.40 3.81 2.77	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-2.950304 -1.867348 8435567 -3.350731 -2.454896 -1.724644 7895038 .191584 .0609206	-2.362785 -1.469095 6619859 -2.601663 -1.810903 -1.330791 4587312 .5984749 .3555729
	di female agegroup 19 - 21	4777186 .4967552	.0525238	-9.10 8.18	0.000	5806634 .3776801	3747738 .6158303
	22 - 24	.6850326	.0788467	8.69	0.000	.5304958	.8395694
	d3_a secondary education higher education	0122673 0268133	.0702398 .1227001	-0.17 -0.22	0.861 0.827	1499348 2673011	.1254003 .2136745
Thresholds	/cut1 /cut2 /cut3	3882657 .7153171 1.902703	.1392505 .1438259 .1602572			6611918 .4334236 1.588605	1153396 .9972106 2.216802
Random effect	country var(_cons)	.2617043	.0850279			.1384379	.4947284

What does Stata offer to assess the fit?

- Akaike (AIC) and Schwarz Bayesian Information Criterion (BIC)
 - Decision rule: Choose the model with the lowest AIC or BIC

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
fiom_w4 riom_w4 rim_w4	11,168 11,168 11,168 11,168	• •	-9343.799 -9036.540 -7424.275	3 4 18	18693.60 18081.08 14884.55	18715.56 18110.36 15016.32

Note: BIC uses N = number of observations. See [R] BIC note.

- Looking at AIC and BIC, the RIM fits best of all bad models
- But we do not know how well the RIM really fits !

Output of my fit_meologit_2lev.ado

 Assessing the fit by the McKelvey & Zavoina-, McFadden-Pseudo R²s for the fixed & random effects

. fit_meologit_2lev Fit-measures for the MELOGIT/MEOLOGIT Model:

McKelvey&Zavoina-Pseudo R2 (fixed & random effects) = 0.5097

McKelvey&Zavoina-Pseudo R2 (fixed effects only) = 0.4728

Just estimating the Fixed-/ Random-Intercept-Only-Logit Model

```
McFadden Pseudo R2 (fixed effects only) = 0.1784
McFadden Pseudo R2 (fixed & random effects) = 0.2054
```

Output of my fit_meologit_2lev.ado

2

 Intra-Class Correlation and corresponding Likelihood-Ratio-χ² tests for fixed & random effects

ICC of Random-Intercept-Only-Logit Model (Sample M(A))
Intra-Class-Correlation (Level 2) = 0.1431

H0: ICC of Level 2 is zero in the population LR-chi2 test statistic (1) = 614.52 Prob > chi2 = 0.0000

LR-chi2 test: H0: all fixed effects are zero in the population

LR-chi2 test statistic (14) = 3224.53 Prob > chi2 = 0.0000

LR-chi2 test: H0: all fixed & random effects are zero in the population LR-chi2 test statistic (15) = 3839.05 Prob > chi2 = 0.0000

What you get afterwards

r-containers of fit_meologit_2lev.ado

. return list

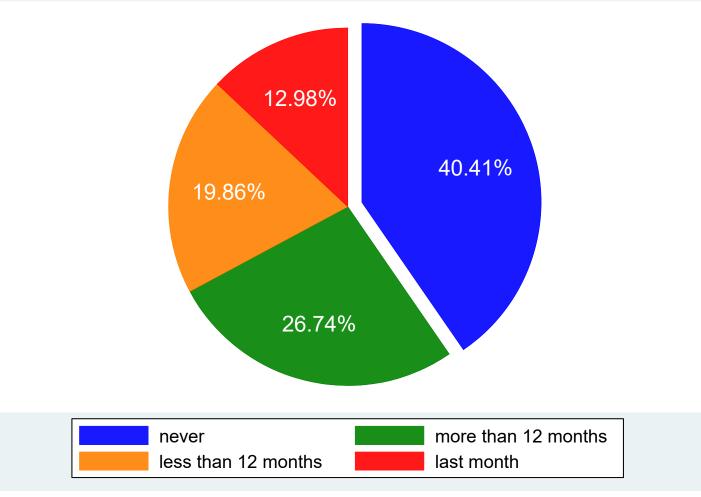
```
scalars:
```

```
r(p chi2 fr) =
               0
    r(df fr) = 15
  r(chi2 fr) = 3839.047042018567
r(p chi2 f) =
               0
     r(df f) = 14
   r(chi2 f) = 3224.530363760103
    r(p icc) =
               0
   r(df icc) =
               1
r(chi2 icc) = 614.5166782584638
r(icc riom) = .1431007329841504
r(mcr2 fiom) = .2054328872219874
r(mcr2 riom) = .1784162011068596
    r(mzr2f) = .4728218379947466
   r(mzr2fr) =
                .5097289342586476
```

How do the effects look like?

The baseline

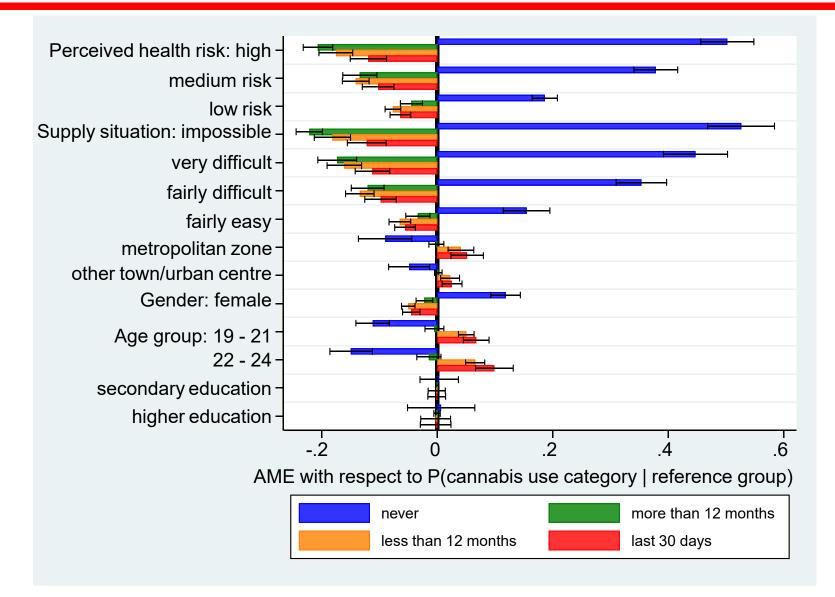
Estimated probabilities of cannbis use for the reference group



Reference
 Group

- Men
- Age 15-18
- Location: rural
- Education:
 primary
- Perceived health risk: no risk
- Perceived supply situation: very easy to get

Ben Jann's Coefplot for the 4 categories



5. Conclusions

What's known

The Monte-Carlo-simulation studies show that the McKelvey & Zavoina Pseudo R² is the best fit measure for binary and ordinal logit models

What's new

- Generalization of the M & Z-Pseudo R² to binary and ordinal multilevel logit models. The prediction of estimated logits bases upon the fixed effects only or upon fixed and random effects of exogenous variables
- The McFadden-Pseudo R² bases upon the fixed effects only or upon fixed and random effects of the exogenous variables using a context-independent zero model

5. Conclusions

- What's new
 - Simultaneous Likelihood-Ratio-x² test for the estimated fixed effects using the Random-Intercept-Only Model (RIOM) as the zero model
 - Simultaneous Likelihood-Ratio-x² test for the estimated fixed and random effects using the Fixed-Intercept-Only Model (FIOM) as the zero model
 - Use of probability weights for each level j
 - You get all Pseudo-R2s and tests in r-containers

That's why

I suggest to use my fit_meologit_2lev.ado and fit_meologit_3lev.ado to assess the fit of 2- and 3level logit models with binary and ordinal outcome

Thank you for your attention

Do you have some questions?

Contact

Affiliation

 Dr.Wolfgang Langer University of Halle Institute of Sociology D-06099 Halle (Saale)

Email: wolfgang.langer@soziologie.uni-halle.de

Multilevel ordered logit model

1

Equations of the 2-level-ordered logit model

Level 2: Between-Context Regression

2a) Logistic Intercept-as-Outcome Model:

 $\beta_{0j} = 0 + \gamma_{01} \times Z_{.j} + u_{0j}$

2b) Logistic Slope-as-Outcome Model:

 $\beta_{1j} = \gamma_{10} + \gamma_{11} \times Z_{.j} + u_{1j}$

Level 1: Within-Context Regression

1)
$$\ln\left[\frac{\mathbf{P}(\mathbf{Y} > k)}{\mathbf{P}(\mathbf{Y} \le k)}\right] = \beta_{0j} + \beta_{1j} \times X_{ij} - \sum_{K=1}^{k-1} \delta_k \{+r_{ij}\}$$

Single equation notation: 2a) and 2b) in 1)

Notation of Raudenbush & Bryk (2002):

- γ: fixed-effect estimator
- Ż: exogenous level 2 variable
- β: random-effect estimator
- X: exogenous level 1 variable
- u_{0j}: residuum random-intercept
- u_{1j}: residuum random-slope
- r_{ij}: residuum of within-contextlogistic regression
- δ_k : threshold for category k of Y

$$\ln\left[\frac{P(Y > k)}{P(Y \le k)}\right] = \left(0 + \gamma_{01} \times Z_{.j} + u_{0j}\right) + \left(\gamma_{10} \times X_{ij} + \gamma_{11} \times X_{ij} \times Z_{.j} + u_{1j} \times X_{ij}\right) - \sum_{k=1}^{K-1} \delta_k \{+r_{ij}\}$$

Multilevel ordered logit model

- 2
- Interpretation of the residua of the Between-Context Regression

3a)
$$u_{0j} = \beta_{0j} - [\gamma_{00} + \gamma_{01} \times Z_{.j}] = \beta_{0j} - \widehat{\beta_{0j}}$$

3b) $u_{1j} = \beta_{1j} - [\gamma_{10} + \gamma_{11} \times Z_{.j}] = \beta_{1j} - \widehat{\beta_{1j}}$

 Assumptions for the residua of the logistic 2-level logit model

Level 1:

1.1) r_{ij} is binomial distributed with an expected value of zero and a variance $\sigma_{r_{ij}}^2 = \widehat{P_{ij}} \left(Y = 1 \right) \times \left(1 - \widehat{P_{ij}} \left(Y = 1 \right) \right)$ 1.2) Heteroscedasticity of r_{ij} in all contextual units j

Multilevel ordered logit model

- Implication for the level 1 residuum r_{ii}
 - The variance $\sigma^2(r_{ij})$ can not be estimated because of its own heteroscedasticity. It is replaced by the variance of the logistic density function ($\pi^2 / 3$)

Residua of level 2

2.1) u_{kj} is normal distributed with an expected value of zero and a covariance matrix T of the residua

$$E\begin{bmatrix}u_{0j}\\u_{1j}\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \quad \mathbf{T} = \begin{bmatrix}\tau_{00} & \tau_{01}\\\tau_{10} & \tau_{11}\end{bmatrix} \qquad \sigma_{u_{0j}}^2 = \tau_{00} \qquad \sigma_{u_{1j}}^2 = \tau_{11}$$
$$\sigma_{u_{0j},u_{1j}} = \tau_{10} = \tau_{01}$$

2.2) The residua of level 1 and level 2 are not correlated:

$$\sigma_{u_{0j},r_{ij}}=\sigma_{u_{1j},r_{ij}}=0$$

Alternative in Stata: Information criteria

 Calculation of Akaike- (AIC) and Schwarz Bayesian-Information-Criteria (BIC)

> $AIC = -2 \times \ln L_{M_A} + 2 \times k$ $BIC = -2 \times \ln L_{M_A} + \ln N \times k$ deviance complexity of the model Range: $0 < AIC \le +\infty$ $0 < BIC \le +\infty$

Legend:

 $\ln L_{M_A}$: Log Likelihood of actual model k: Number of estimated parameters

N: Sample size

References

- Aldrich, J.H. & Nelson, F.D. (1984): Linear probability, logit, and probit models. Newbury Park: SAGE (Quantitative Applications in the Social Sciences, 45) - Amemiya, T. (1981): Qualitative response models: a survey. *Journal of Economic Literature*, 21, pp.1483-1536 - Begg, C.B. & Gray, R. (1984): Calculation of polychotomous logistic regression parameters using individualized regression. Biometrika, 71, pp.11-18 - Ben-Akiva, M. & S.R.Lerman 1991⁴ (1985): Discrete choice analysis. Theory and application to travel demand. Cambridge, Mass: MIT-Press - Cox, D.R. & Snell, E.J. (1989): The analysis of binary data. London: Chapman & Hill - Cragg, S.G. & Uhler, R. (1970): The demand for automobiles. Canadian Journal of Economics, 3, pp. 386-406 - DeMaris, A. (2002): Explained variances in logistic regression. A Monte Carlo study of proposed measures. Sociological Methods & Research, 11, 1, pp. 27-74 – Efron, B. (1978): Regression and Anova with zero-one data. Measures of residual variation. Journal of American Statistical Association, 73, pp. 113-121 - Hagle, T.M. & Mitchell II, G.E. (1992): Goodness of fit measures for probit and Logit. American Journal of Political Science, 36, 3, pp. 762-784
- Heck, R.H. & Thomas, S.L. (2009): An Introduction to Multilevel Modeling Techniques. New York, N.Y.: Routlege

References 2

- Hensher, D.A. & Johnson, L.W. (1981): Applied discrete choice modelling. London: Croom Helm
- Hensher, D.A., Rose, J.M. & Greene, W.H. (2005):
 Applied choice analysis. A primer. Cambridge: Cambridge University Press
- Hox, J.J. (2010²): Multilevel Analysis. Techniques and Applications. New York, NY: Routledge
- Huq, N.M. & Cleland, J. (1990): Bangladesh Fertility Surey 1989 (Main Report). Dhaka: National Institute of Population Research and Training
- Long, J.S. (1997):

Regression models for categorical and limited dependent variables. Thousand Oaks, Ca : Sage

- Long, J.S. & Freese, J. (2000):
 Scalar measures of fit for regression models. Bloomington: Indiana University
- Long, J.S. & Freese, J. (2003²): Regression models for categorical dependent variables using Stata. College Station, Tx: Stata Press
- Maddala, G.S. (1983):

Limited-dependent and qualitative variables in econometrics. Cambridge: Cambridge University Press

– McFadden, D. (1979):

Quantitative methods for analysing travel behaviour of individuals: some recent developments. In: Hensher, D.A. & Stopher, P.R.: (eds): Behavioural travel modelling. London: Croom Helm, pp. 279-318

– McKelvey, R. & Zavoina, W. (1975):

A statistical model for the analysis of ordinal level dependent variables. *Journal of Mathematical Sociology*, 4, pp. 103-20

- Nagelkerke, N.J.D. (1991):

A note on a general definition of the coefficient of determination. *Biometrika*, 78, 3, pp. 691-693

References 3

- Ronning, G. (1991): Mikro-Ökonometrie. Berlin: Springer
- Rabe-Hesketh, S. & Skrondal, A. (2012³): Multilevel and Longitudinal Modeling Using Stata. Volume II: Categorical Responses, Counts, and Survival. Collage Station, Tx: Stata Press
- Raudenbush, S.W. & Bryk, A.S. (2002²): Hierarchical Linear Models. Applications and Data Analysis Methods. Thousand Oaks, CA: Sage
- Snijders, T.A.B. & Bosker, R.J. (2012²): Multilevel Analysis. An Introduction to Basic and Advanced Multilevel Modeling. Thousand Oaks, CA: Sage
- Veall, M.R. & Zimmermann, K.F. (1992):
 Pseudo-R2 in the ordinal probit model. *Journal of Mathematical Sociology*, 16, 4, pp. 333-342
- Veall, M.R. & Zimmermann, K.F. (1994):
 Evaluating Pseudo-R2's for binary probit models. *Quality & Quantity*, 28, pp. 151-164
- Windmeijer, F.A.G. (1995):
 Goodness-of-fit measures in binary choice models. *Econometric Reviews*, 14, 1, pp. 101-116

– Zimmermann, K.F. (1993):

Goodness of fit in qualitative choice models: review and evaluation. In: Schneeweiß, H. & Zimmermann, K. (eds): Studies in applied econometrics. Heidelberg: Physika, pp. 25-74