A new implementation of relative distribution methods in Stata

Ben Jann

University of Bern

2020 Swiss Stata Conference University of Bern, November 19, 2020

Ben Jann (ben.jann@soz.unibe.ch)

Outline

- 3 The reldist command
- Spinoff: a general command for the analysis of distributions

What is the "relative distribution"?

- The relative distribution is the distribution of the relative ranks that the outcomes from one distribution take on in another distribution.
- How do wages of females rank in the wage distribution of males? How are these ranks distributed?
- The method can be used to analyze differences in distributions between groups or changes in a distribution over time.
- Of interest are aspects such as the distribution function or the density function of the relative ranks, or summary statistic such as polarization or distributional divergence.
- Of interest are also counterfactual decompositions that adjust the relative distribution for differences in covariate compositions.

Example: Polarization of earnings over time (Morris et al. 1994)

• Change in earnings of full-time, full-year workers: relative distribution of a given year compared to 1967

White Men

Example: Polarization of earnings over time (Morris et al. 1994)

• Relative earnings polarization with respect to 1967

Spinoff: a general command for the analysis of distributions

Ben Jann (ben.jann@soz.unibe.ch)

Some definitions

- *F_Y*: reference distribution (wages of males)
- *F_X*: comparison distribution (wages of females)
- Relative distribution

$$G(r) = F_X(F_Y^{-1}(r)), \quad r \in [0, 1]$$

• Relative density

$$g(r) = \frac{\mathrm{d}G(r)}{\mathrm{d}r} = \frac{f_X(F_Y^{-1}(r))}{f_Y(F_Y^{-1}(r))}, \quad r \in [0, 1]$$

• Relative ranks

$$r_i = F_Y(X_i), \quad i \in \mathcal{X}$$

Estimation

- Estimation of the relative CDF and summary measures of the relative ranks is pretty much straightforward.
- Estimation of the PDF is more involved:
 - Standard density estimators are (severely) biased at the boundaries because relative ranks can only take on values between 0 and 1.
 - Data-driven bandwidth selection requires adjustment to take account of the two-sample nature of relative data.
 - Function mm_density() from moremata can handle both issues.
- Estimation of standard errors is *not* straightforward due to the two-sample nature of the estimation problem.
 - ► I use influence functions based on an analogy to GMM (also see Jann 2020a).
 - The influence functions also cover uncertainty induced by covariate balancing.
 - Advantage of influence functions: Full support for complex survey estimation.

Boundary effects

The reldist command

- reldist provides a full-blown implementation of relative distribution methods.
 - ▶ Relative CDF and PDF for continuous and discrete data.
 - Relative polarization and divergence measures.
 - Summary statistics of relative ranks such as mean and quantiles.
 - Shape and location decomposition.
 - Covariate balancing by inverse probability weighting (IPW) or entropy balancing.
 - Utility to create graphs.
 - VCE for everything, including support for svy (although not as prefix command; must specify option vce(svy))
 - Prediction of influence functions after estimation.
- For formulas and detailed information on the command see Jann (2020b).

Estimation

Two-sample relative distribution (syntax 1)

reldist subcmd varname [if] [in] [weight], by(groupvar) [options]

Paired relative distribution (syntax 2)

reldist subcmd varname refvar [if] [in] [weight] [, options]

where subcmd is

pdf	relative density
<u>hist</u> ogram	relative histogram
cdf	relative cumulative distribution
<u>div</u> ergence	divergence measures
mrp	median relative polarization
summarize	summary statistics of relative ranks

Replay results

reldist [, noheader notable display_options]

Draw graph after estimation

reldist graph [, graph_options]

Obtain influence functions after estimation

predict {stub* | newvar1 newvar2 ...} [if] [in] [, scores density_options]

Example: Gender wage gap in Switzerland

. use sess16, clear (Sample from Swiss Earnings Structure Survey 2016)

. describe

Contains data from sess16.dta

obs: vars:	100,000			Sample from Swiss Earnings Structure Survey 2016 18 Nov 2020 19:02
variable n	storage name type	display format	value label	variable label
earnings	long	%10.0g		monthly earnings in CHF (full-time equivalent)
female	byte	%8.0g		1 = female, 0 = male
educyrs	byte	%10.0g		years of education
tenure	byte	%8.0g		tenure (in years)
wgt	double	%10.0g		sampling weight

Sorted by:

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
earnings	100,000	7858.498	4249.54	2312	103998
female	100,000	.44628	.4971083	0	1
educyrs	100,000	12.67786	2.728897	7	17
tenure	100,000	8.57528	8.905727	0	61
wgt	100,000	33.13712	59.26461	8.435029	2991.433

Ben Jann (ben.jann@soz.unibe.ch)

Relative CDF


```
. reldist cdf earnings [pw=wgt], by(female) notable
Cumulative relative distribution Number of obs = 100,000
F1: female = 1 Comparison obs = 44,628
F0: female = 0 Reference obs = 55,372
. reldist graph, olab(3000(1000)20000, format(%7.0g) grid) ///
> yolab(3000(1000)20000, format(%7.0g) grid angle(0)) ///
> ciopts(fc(%50) lc(%0))
```

Relative density


```
. reldist pdf earnings [pw=wgt], by(female) histogram notable
```

Relative density	Number of obs	=	100,000
F1: female = 1	Comparison obs	=	44,628
F0: female = 0	Reference obs	=	55,372
	Bandwidth	=	.02515569

```
. reldist graph, olab(3000(1000)20000, format(%7.0g) grid) ///
```

```
> ciopts(fc(%50) lc(%0))
```

Relative polarization

```
. reldist mrp earnings [pw=wgt], by(female) multiplicative
```

Median relative polarization	Number of obs	=	100,000
F1: female = 1	Comparison obs	=	44,628
F0: female = 0	Reference obs	=	55,372
Adjustment: location (mult)			

 earnings	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
MRP	0465722	.0079613	-5.85	0.000	0621763	0309682
LRP	0033018	.0148662	-0.22	0.824	0324393	.0258358
URP	0898427	.0110417	-8.14	0.000	1114843	0682012

Difference in covariates: education

Difference in covariates: education

. reldist histogram educyrs [pw=wgt], by(female) categorical

Relative histogram

- F1: female = 1
- F0: female = 0

Number of obs	=	100,000
Comparison obs	=	44,628
Reference obs	=	55,372

educyrs	Coef.	Std. Err.	[95% Conf. Interval]
educyrs			
7	1.316267	.0447324	1.228592 1.403942
11	.8500557	.0489017	.754209 .9459024
12	1.020779	.0137853	.9937596 1.047798
13	1.181543	.0741483	1.036213 1.326873
14	.8305811	.0265873	.7784703 .8826918
15	.9453244	.0345518	.8776033 1.013045
17	.8723796	.0274635	.8185515 .9262076

(evaluation grid stored in e(at))

. reldist graph

Difference in covariates: tenure

Difference in covariates: tenure

. reldist histogram tenure [pw=wgt], by(female)

Relative histogram

- F1: female = 1
- F0: female = 0

Number of obs	=	100,000
Comparison obs	=	44,628
Reference obs	=	55,372

tenure	Coef.	Std. Err.	[95% Conf.	Interval]
h1	1.084155	.053922	.9784687	1.189842
h2	1.107638	.0462447	1.016999	1.198277
h3	1.175377	.0450791	1.087022	1.263731
h4	1.160171	.053622	1.055073	1.26527
h5	1.04392	.0311894	.9827894	1.105051
h6	1.113525	.043905	1.027472	1.199578
h7	.9726401	.0337204	.9065484	1.038732
h8	.9141628	.0385788	.8385488	.9897768
h9	.8535668	.0268357	.8009691	.9061645
h10	.5748437	.0272384	.5214568	.6282306

(evaluation grid stored in e(at))

. reldist graph

Covariate balancing

Covariate balancing


```
. reldist histogram earnings [pw=wgt], by(female)
 (output omitted)
. estimates store unbalanced
. reldist histogram earnings [pw=wgt], by(female) ///
     balance(eb:i.educyrs c.tenure##c.tenure)
>
                                              Number of obs
Relative histogram
                                                                =
                                                                   100.000
 F1: female = 1
                                              Comparison obs
                                                                   44,628
                                                                =
 FO: female = 0
                                              Reference obs
                                                                  55,372
                                                                =
 Balancing of F1
     method = eb
```

i.educyrs tenure c.tenure#c.tenure

earnings	Coef.	Std. Err.	[95% Conf.	Interval]
h1 h2 h3 h4 h5 h6 h7 h8	1.947315 1.26018 1.025128 .9059489 .9619829 .9794557 1.051987 8276325	.0537421 .047665 .0424014 .0401832 .0375585 .0389595 .0360187 .0320039	1.841982 1.166757 .942022 .8271904 .8883687 .9030956 .9813911 7647388	2.052649 1.353602 1.108235 .9847074 1.035597 1.055816 1.122584 8905361
h9 h10	.6469504 .3934189	.0236423 .019337	.6006119 .3555186	.693289

(evaluation grid stored in e(at))

- . estimates store balanced
- . coefplot unbalanced balanced, at nooffset citop cirecast(rcap) ///
- > recast(bar) barwidth(0.1) color(%50) ylabel(0(.5)2.5) yline(1)

Covariate balancing

. reldist summarize earnings [pw=wgt], by(female) stat(mean med)

Relative ranks	Number of obs	=	100,000
F1: female = 1	Comparison obs	=	44,628
F0: female = 0	Reference obs	=	55,372

earnings	Coef.	Std. Err.	[95% Conf.	Interval]
mean	.3756438	.0034384	.3689046	.382383
median	.3348484	.0066729	.3217696	.3479273

. reldist summarize earnings [pw=wgt], by(female) stat(mean med) ///
> balance(eb:i.educyrs c.tenure##c.tenure)

Relative ranks	Number of obs	=	100,000
F1: female = 1	Comparison obs	=	44,628
F0: female = 0	Reference obs	=	55,372
Balancing of F1			

method = eb

i.educyrs tenure c.tenure#c.tenure

earnings	Coef.	Std. Err.	[95% Conf.	Interval]
mean	.4040611	.0027288	.3987127	.4094096
median	.3854737	.0057611	.3741821	.3967654

Spinoff: a general command for the analysis of distributions

Analysis of univariate distributions

- After deriving the equations and implementing reldist, I realized that I had all the building blocks in front of me for putting together a general command for the analysis of (univariate) distributions (summary statistics, density, quantile function, inequality measures, etc.).
- This may not seem very exciting.
- After all, many official (mean, proportion, ci, summarize, tabstat, pctile, cumul, kdensity, histogram, etc.) and user-written commands (catplot, cdfplot, distplot, fre, kdens, lorenz, pshare, glcurve, svylorenz, robstat, etc.) are available.

Analysis of univariate distributions

- But it is!
- All these statistics can be combined in a general framework based on influence functions. This means that you get svy-compatible standard errors for everything (as well as covariances between any kind of statistic).
- Covariate balancing/standardization can easily be integrated in a general way.
- RIFs (recentered influence functions) are available for everything and can be used in further analysis, e.g. in RIF regressions or RIF decompositions.

Estimation

Scalar summary statistics

dstat [summarize] [(stats)] varlist [(stats) varlist ...] [if] [in] [weight] [, options]

Distribution functions

dstat subcmd varlist [if] [in] [weight] [, options]

where subcmd is

<u>d</u> ensity	density function
<u>h</u> istogram	histogram
proportion	proportions or totals
<u>c</u> df	cumulative distribution
guantile	quantile function
lorenz	lorenz curve
share	percentile shares

varlist may contain factor variables; see fvvarlist. fweights, pweights, and iweights are allowed; see weight.

```
Postestimation
```

Replay results

dstat [, reporting_options]

Draw graph

dstat graph [, graph_options]

Obtain (recentered) influence functions

predict {stub* | newvar1 newvar2 ...} [if] [in] [, predict_options]

stats	Description
Points in the distribu	rtion
<pre>quantile(p)</pre>	p/100-quantile; p in [0,100]
p(p)	alias for quantile()
density(x)	kernel density at value x
hist(x1,x2)	histogram density of data within (x1,x2]
cdf(x)	cumulative distribution (CDF) at value x
cdfm(x)	mid-adjusted CDF at value x
prop(x)	proportion of data equal to value x
prop(x1,x2)	proportion of data within [x1,x2]
pct(x)	percent of data equal to value x
pct(x1,x2)	percent of data within [x1,x2]
freq(x)	frequency of data equal to value x
freq(x1,x2)	frequency of data within [x1,x2]
Location measures	
mean	arithmetic mean
gmean	geometric mean (data must be positive)
hmean	harmonic mean (data must be positive)
trim[(alpha)]	alpha trimmed mean; alpha in [0,50]; default is alpha=25
wincer[(aloba)]	alaba wincorrigad manny alaba in [A FA], default is alaba-25

<pre>trim[(alpha)]</pre>	alpha trimmed mean; alpha in [0,50]; default is alpha=25
<pre>winsor[(alpha)]</pre>	alpha winsorized mean; alpha in [0,50]; default is alpha=25
median	median; equal to q50
huber[(p)]	Huber M estimate with gaussian efficiency p in [63.7,99.9]; default is $p=95$
<pre>biweight[(p)]</pre>	biweight M estimate with gaussian efficiency p in [.01,99.9]; default is $p=95$
hl	Hodges-Lehmann location measure (Hodges and Lehmann 1963)

Scale measures sd[(df)]standard deviation: default is df=1 variance[(df)] variance: default is df=1 mse[(t[,df])] mean squared error from target t; default is t=0 and df=0 smse[(t[.df])] square-root of mean squared error: default is t=0 and df=0 igr[(p1.p2)] interquantile range: default is igr(25.75) (interquartile range) igrn rescaled interquartile range mad[(l[.t])] median (or mean if l = 0) absolute deviation from the median (or mean if t = 0) madn[(1[,t])]normalized MAD; equal to 1/invnormal(0.75) * mad or sqrt(pi/2) * mad mae[(l[,t])] median (or mean if l!=0) absolute error from target t: default is t=0 maen[(l[,t])] normalized MAE: equal to 1/invnormal(0.75) * mae or sqrt(pi/2) * mae md mean absolute pairwise difference; equal to 2 * mean * gini ndn normalized mean absolute pairwise difference; equal to sort(pi)/2 * md mscale[(bp)] M estimate of scale with breakdown point bp in [1,50]; default is bp=50 On scale coefficient (Rousseeuw and Croux 1993) an

 Skewness
 skewness

 qskew[[a]pha]]
 quantile skewness measure (Hinkley 1975); alpha in [0,50]; default is alpha=25

 mc
 medcouple (Brys et al. 2004)

Kurtosis measures	
kurtosis	kurtosis
qw[(alpha)]	quantile tail weight measure; alpha in [0,50]; default is alpha=25
lgw[(alpha)]	left quantile tail weight measure; alpha in [0,50]; default is alpha=25
rgw[(alpha)]	right quantile tail weight measure; alpha in [0,50]; default is alpha=25
lmc	left medcouple tail weight measure (Brys et al. 2006)
rmc	right medcouple tail weight measure (Brys et al. 2006)
Inequality measures	
gini[(df)]	Gini coefficient; df applies small-sample adjustment; default is df=0
agini[(df)]	absolute Gini coefficient
mld	<pre>mean log deviation; equal to ge(0)</pre>
theil	Theil index; equal to ge(1)
cv[(df)]	coefficient of variation; default is df=1; cv(0)=sqrt(2*ge(1))
ge[(alpha)]	generalized entropy (Shorrocks 1980) with parameter alpha
atkinson[(epsilon)]	Atkinson index with parameter epsilon>=0; default is epsilon=1
<pre>lvar[(df)]</pre>	logarithmic variance; df applies small-sample adjustment; default is df=1
vlog[(df)]	variance of logarithm; df applies small-sample adjustment; default is df=1
top[(p)]	outcome share of top p percent; default is $p=10$
bottom[(p)]	outcome share of bottom p percent; default is $p=40$
mid[(p1,p2)]	outcome share of mid p1 to p2 percent; default is p1=40 and p2=90
palma	palma ratio; equal to top/bottom or sratio(40,90)
gratio[(p1,p2)]	quantile ratio $q(p2)/q(p1)$; default is p1=10 and p2=90
<pre>sratio[(u1, l2)]</pre>	percentile share ratio; default is u1=10 and l2=90
<pre>sratio[(l1,u1,l2,u2)]</pre>	percentile share ratio; default is l1=0, u1=10, l2=90, u2=100
<pre>*lorenz(p)</pre>	Lorenz ordinate, p in [0,100]; prefix * is empty for default, g for generalized, t for total, a for absolute, e for equality gap
*share(<i>p1</i> , <i>p2</i>)	percentile share, p1 and p2 in [0,100]; prefix * is empty for default, d for density, g for generalized, t for total, a for average
Concentration measures	
gci(zvar[,df])	Gini concentration index; zvar specifies the sort variable; df applies
aci [(df)]	small-sample adjustment, default is 07-0
aci(twar[dfl)	absolute Gini concentration index: year and df are as for asi
aci[(df)]	aciusing sort variable from option aver()
*ccurve(p[,zvar])	concentration curve ordinate, p in [0,100]; prefix * is empty for default, g for generalized, t for total, a for absolute, e for equality gap
<pre>*cshare(p1,p2[,zvar])</pre>	concentration share, $p1$ and $p2$ in [0,100]; prefix $*$ is empty for default, d for density, g for generalized, t for total, a for average
Poverty measures	
watts[(pline)]	<pre>Watts index (see, e.g., Saisana 2014); pline specifies the poverty line(s) > 0; pline can be varname or #; the default is as set by option pline()</pre>
<pre>fgt[(a[,pline])]</pre>	Foster-Greer-Thorbecke index with a>=0 (Foster et al. 1984, 2010); default is a=0 (headcount ratio); pline specifies the poverty line(s) > 0; pline can be varname or #; the default is as set by option pline()

Example

. dstat (mean gmean med sd Gini MLD Theil Palma) earnings [pw=wgt], over(female) Summary statistics Number of obs = 100,000

1: female = 1

earnings	Coef.	Std. Err.	[95% Conf.	Interval]
mean	7964.767	32.99754	7900.093	8029.442
gmean	7231.028	23.98644	7184.015	7278.041
med	6803	27.13438	6749.817	6856.183
sd	4539.07	102.4153	4338.337	4739.803
Gini	.2433624	.0019915	.239459	.2472657
MLD	.0966465	.001718	.0932792	.1000138
Theil	.1137077	.0027248	.1083671	.1190484
Palma	.8660138	.00943	.8475311	.8844965
mean	6515.329	24.85582	6466.611	6564.046
gmean	6082.104	18.92963	6045.003	6119.206
med	5893	26.14387	5841.758	5944.242
sd	2897.98	78.86047	2743.415	3052.546
Gini	.2061163	.001989	.2022179	.2100147
MLD	.0688069	.0015461	.0657765	.0718373
Theil	. 076873	.0023677	.0722324	.0815136
Palma	.7110416	.0084675	.6944454	.7276379
	earnings mean gmean med sd Gini Palma mean gmean med sd Gini MLD Theil Palma	earnings Coef. mean 7964.767 gmean 7231.028 med 6803 sd 4539.07 Gini .2433624 MLD .0966465 Theil .1137077 Palma .66515.329 gmean 6082.104 med .5893 sd .2897.98 Gini .0668069 Theil .076873 Palma .7110416	earnings Coef. Std. Err. mean 7964.767 32.99754 gmean 7231.028 23.98644 med 6803 27.13438 sd 4539.07 102.4153 Gini .2433624 .0019915 MLD .0966465 .001718 Palma .8660138 .00943 mean 6515.329 24.85582 gmean 6082.104 18.92963 med 5893 26.14387 sd 2897.98 78.86047 Gini .00688069 .0015461 Theil .076873 .0023677 Palma .7110416 .0084675	earnings Coef. Std. Err. [95% Conf. mean 7964.767 32.99754 7900.093 gmean 7231.028 23.98644 7184.015 med 6803 27.13438 6749.817 sd 4539.07 102.4153 4338.337 Gini .2433624 .0019915 .239459 MLD .0966465 .001718 .0932792 Theil .1137077 .0027248 .1083671 Palma .8660138 .00943 .8475311 mean 6515.329 24.85582 6466.611 gmean 6082.104 18.92963 6045.003 med 5893 26.14387 5841.758 sd 2897.98 78.86047 2743.415 Gini .2061163 .001989 .2022179 MLD .0688069 .0015461 .0657765 Theil .076873 .0023677 .0722324 Palma .7110416 .0084675 .6944454

Ben Jann (ben.jann@soz.unibe.ch)

^{0:} female = 0

Installation

- reldist requires the latest version of moremata. To install both packages, type
 - . ssc install reldist, replace
 - . ssc install moremata, replace
 - Or install from GitHub: http://github.com/benjann/reldist
- dstat should become available on GitHub and SSC soon; check http://github.com/benjann/dstat in some weeks.

References

- Handcock, M.S., M. Morris (1998). Relative Distribution Methods. Sociological Methodology 28: 53-97.
- Handcock, M.S., M. Morris (1999). Relative Distribution Methods in the Social Sciences. New York: Springer.
- Jann, B. (2020a). Influence functions continued. A framework for estimating standard errors in reweighting, matching, and regression adjustment. University of Bern Social Sciences Working Papers 35. Available from https://ideas.repec.org/p/bss/wpaper/35.html.
- Jann, B. (2020b). Relative distribution analysis in Stata. University of Bern Social Sciences Working Papers 37. Available from http://ideas.repec.org/p/bss/wpaper/37.html.
- Morris, M., A.D. Bernhardt, M.S. Handcock (1994). Economic Inequality: New Methods for New Trends. American Sociological Review 59: 205–219.