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The method

A worked example
(eight implementation tips)



Outline

I “Distribution regression methods”: Relate some distributional
statistics υ(F ) to multiple ‘explanatory’ variableS X

I F is a (univariate) income distribution function
I υ(F ) is a generic functional: quantile, inequality measure

(quantile share ratios, Gini coefficient, etc.), poverty index

I Two related questions:
I How does F and/or υ(F ) vary with X?

That is, calculate and compare υ(Fx ) (remember
dim(X ) > 1), ‘partial effects’)

I EOp, Educ choices, policy intervention, etc.
I How much do differences in X account for differences in υ(F )

over time, country, gender, etc.?



Two main approaches

Two main approaches in recent literature
1. Recentered influence function regression (Firpo et al., 2009,

Van Kerm, 2015):

2. Distribution function modelling (e.g., Chernozhukov et al.,
2013):

I model F (y) =
∫

Fx (y)h(x)dx :
essentially involves modelling the conditional distribution Fx (y)

I plug model predictions for F (or Fx ) in υ(F )
I examine counterfactuals (‘manipulate’ conditional distribution

or covariate distribution)



Array of models for conditional distributions Fx

Many models and estimators available, more or less parametrically
restricted, e.g.,:

I quantile regression (Koenker and Bassett, 1978)
I parametric income distribution models, ‘conditional likelihood’

models (Biewen and Jenkins, 2005, Van Kerm et al., 2016)
I duration models (Donald et al., 2000, Royston, 2001, Royston

and Lambert, 2011)
I ‘distribution regression’ (Foresi and Peracchi, 1995)



‘Distribution regression’ is really simple
(Foresi and Peracchi, 1995)

Fx (y) = Pr {yi ≤ y |x} is a binary choice model once y is fixed
(dependent variable is 1(yi < y))

Estimate Fx (y) on a (fine) grid of values for y spanning the
domain of definition of Y by running repeated standard binary
choice models, e.g. a logit model:

Fx (y) = Pr{yi ≤ y |x}
= Λ(xβy )

= exp(xβy )
1 + exp(xβy )

And then since F (y) = Ex (Fx (y))

F̂ (y) = 1
N

N∑
i=1

F̂xi (y) = 1
N

N∑
i=1

Λ(xi β̂y )



Why ‘Distribution regression’?

I Flexible: Repeating estimation at different values of y makes
little assumptions about the overall shape of conditional
distributions

I Evidence that provides better fit to income data than quantile
regression (Rothe and Wied, 2013, Van Kerm et al., 2016)
although theoretically equivalent (Koenker et al., 2013)

I Faster to run than quantile regression in my experience
(though slower than more parameterised models)

I Estimation is straightforward!



Simulation

From Fx to υ(Fx )
I Uniform (equally-spaced) sequence of conditional quantile

predictions for each observations gives a pseudo-random
sample from F̂xi , e.g., F̂ −1

x (.01), F̂ −1
x (.02), ..., F̂ −1

x (.99)
X: υ(Fx ) calculated as with direct unit-record data

I predictions after logits give series of F̂ s (not of F̂ −1s), so
inversion (e.g., by interpolation) required (but easy)

From Fx to υ(F )
I Stacking predictions for all observations into one long vector

V : pseudo-random sample from the unconditional distribution
F

I GOTO X



Counterfactual distributions
“Generalized Oaxaca-Blinder” decomposition

1. Estimate and predict conditional distribution functions for,
say, men F̂ m

x and women F̂ w
x

2. Simulate counterfactual distributions F̃ by averaging
predictions of one group over covariate distribution of other
group, e.g.,

F̃ (y) = 1
Nw

Nw∑
i=1

F̂ m
xi

3. Decompose differences in the two unconditional CDFs as
differences attributed to Fx (‘structural’ part) and to
differences in covariates (‘compositional’ part):

(F̂ w (y)− F̂ m(y)) = (F̂ w (y)− F̃ (y)) + (F̃ (y)− F̂ m(y))

(See Chernozhukov et al. (2013) for inferential theory.)



The method

A worked example
(eight implementation tips)



A simple worked example: household incomes in Spain

I Survey data on household disposable income in Spain in 2006
and 2012 (from European Union Statistics on Income and
Living Conditions)

I Covariates: gender and age of household head, share of adults
at work, number of adults and of children of different ages
Are female-headed households disadvantaged? How did
distribution change before/after Great Recession?



Tip #1: setting the grid

Tip #1: use quantiles as evaluation grid



Tip #2: start around the median
Tip #2: start around the median (where Fx is about .50)



Tip #3: predict , rules

Tips #3: predict , rules to predict 0’s and 1’s when
‘completely determined outcomes’



Tip #4: from

Tip #4: Move upwards (and downwards) from the middle (to
speed up convergence).
(Consider one-step Newton-Raphson only (Cai et al., 2000)?)



Tip #5: combine equations
Tip #5: use suest to combine separate estimates into
multiple-equations ‘object’ (e(b) and e(V)) so you can test
cross-equation hypotheses



Tip #5: combine equations

Tip #5: use suest to combine separate estimates into
multiple-equations ‘object’ (e(b) and e(V)) so you can test
cross-equation hypotheses



Test examples

e.g., income distribution for female-headed households any
different?



Tip #6: Inversion and simulation
Example of simple inversion by linear interpolation

First, initialize F (0) and F (1)



Tip #6: Inversion and simulation
Example of simple inversion by linear interpolation

Then invert



Tip #6: Inversion and simulation
Example of simple inversion by linear interpolation

Then stack predicted quantiles and evaluate summary statistics of
interest



Tip #7: run one model with full interactions
(if you are tempted to run two parallel models!)

... so testing is easy



Tip #7: run one model with full interactions
(if you are tempted to run two parallel models!)

... so testing is easy



Tip #8: margins give you F̂ from F̂x

... along with confidence intervals!



Tip #8: margins give you F̂ from F̂x



Tip #8: margins give you F̂ from F̂x

(check for yourself)



2006-2016: Actual and simulated quantiles functions
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Conclusion

I DR is
I easy and intuitive
I flexible and accurate
I (some speed vs. accuracy trade off’s not discussed here)

I Stata’s suest, margins, test are there to make life easier
(though one may still want to bootstrap the process)
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