Distribution regression made easy

Philippe Van Kerm

Luxembourg Institute of Socio-Economic Research philippe.vankerm@liser.lu

2016 Swiss Stata Users Group meeting November 17 2016, University of Bern

The method

A worked example (eight implementation tips)

Outline

- "Distribution regression methods": Relate some distributional statistics v(F) to multiple 'explanatory' variableS X
 - ► F is a (univariate) income distribution function
 - ▶ v(F) is a generic functional: quantile, inequality measure (quantile share ratios, Gini coefficient, etc.), poverty index
- Two related questions:
 - ► How does F and/or v(F) vary with X? That is, calculate and compare v(F_x) (remember dim(X) > 1), 'partial effects')
 - EOp, Educ choices, policy intervention, etc.
 - How much do differences in X account for differences in v(F) over time, country, gender, etc.?

Two main approaches

Two main approaches in recent literature

- 1. Recentered influence function regression (Firpo et al., 2009, Van Kerm, 2015):
- 2. Distribution function modelling (e.g., Chernozhukov et al., 2013):
 - model F(y) = ∫ F_x(y)h(x)dx: essentially involves modelling the conditional distribution F_x(y)
 - plug model predictions for F (or F_x) in v(F)
 - examine counterfactuals ('manipulate' conditional distribution or covariate distribution)

Array of models for conditional distributions F_x

Many models and estimators available, more or less parametrically restricted, e.g.,:

- quantile regression (Koenker and Bassett, 1978)
- parametric income distribution models, 'conditional likelihood' models (Biewen and Jenkins, 2005, Van Kerm et al., 2016)
- duration models (Donald et al., 2000, Royston, 2001, Royston and Lambert, 2011)
- 'distribution regression' (Foresi and Peracchi, 1995)

'Distribution regression' is really simple

(Foresi and Peracchi, 1995)

 $F_x(y) = \Pr \{y_i \le y | x\}$ is a binary choice model once y is fixed (dependent variable is $1(y_i < y)$)

Estimate $F_x(y)$ on a (fine) grid of values for y spanning the domain of definition of Y by running repeated standard binary choice models, e.g. a logit model:

$$F_x(y) = \Pr\{y_i \le y | x\}$$

= $\Lambda(x\beta_y)$
= $\frac{\exp(x\beta_y)}{1 + \exp(x\beta_y)}$

And then since $F(y) = E_x(F_x(y))$

$$\hat{F}(y) = \frac{1}{N} \sum_{i=1}^{N} \hat{F}_{x_i}(y) = \frac{1}{N} \sum_{i=1}^{N} \Lambda(x_i \hat{\beta}_y)$$

Why 'Distribution regression'?

- Flexible: Repeating estimation at different values of y makes little assumptions about the overall shape of conditional distributions
- Evidence that provides better fit to income data than quantile regression (Rothe and Wied, 2013, Van Kerm et al., 2016) although theoretically equivalent (Koenker et al., 2013)
- Faster to run than quantile regression in my experience (though slower than more parameterised models)
- Estimation is straightforward!

Simulation

From F_x to $v(F_x)$

- ▶ Uniform (equally-spaced) sequence of conditional quantile predictions for each observations gives a pseudo-random sample from \$\hat{F}_{x_i}\$, e.g., \$\hat{F}_x^{-1}(.01)\$, \$\hat{F}_x^{-1}(.02)\$, ..., \$\hat{F}_x^{-1}(.99)\$
 X: v(F_x) calculated as with direct unit-record data
- ▶ predictions after logits give series of F̂s (not of F̂⁻¹s), so inversion (e.g., by interpolation) required (but easy)

From F_x to v(F)

- Stacking predictions for all observations into one long vector V: pseudo-random sample from the unconditional distribution F
 - GOTO X

Counterfactual distributions

"Generalized Oaxaca-Blinder" decomposition

- 1. Estimate and predict conditional distribution functions for, say, men \hat{F}^m_x and women \hat{F}^w_x
- 2. Simulate counterfactual distributions \tilde{F} by averaging predictions of one group over covariate distribution of other group, e.g.,

$$\tilde{F}(y) = rac{1}{N^w} \sum_{i=1}^{N^w} \hat{F}_{x_i}^m$$

 Decompose differences in the two unconditional CDFs as differences attributed to F_x ('structural' part) and to differences in covariates ('compositional' part):

$$(\hat{F}^w(y) - \hat{F}^m(y)) = (\hat{F}^w(y) - \tilde{F}(y)) + (\tilde{F}(y) - \hat{F}^m(y))$$

(See Chernozhukov et al. (2013) for inferential theory.)

The method

A worked example (eight implementation tips)

A simple worked example: household incomes in Spain

- Survey data on household disposable income in Spain in 2006 and 2012 (from European Union Statistics on Income and Living Conditions)
- Covariates: gender and age of household head, share of adults at work, number of adults and of children of different ages Are female-headed households disadvantaged? How did distribution change before/after Great Recession?

Tip #1: setting the grid

Tip #1: use quantiles as evaluation grid

```
* 1: evaluation points
loc plist 0.5 2(2)98 99.5
loc imed 25
_pctile inc [aw=rw] , percentiles(`plist')
loc j 0
foreach p of numlist `plist' {
    loc ++j
    loc v`j' = r(r`j')
    loc p`j' `p'
    qui gen byte z`j' = (inc<=`v`j'') if !mi(inc)
    * not frugal on memory but wait...
}
loc P `j'</pre>
```


Tip #2: start around the median

Tip #2: start around the median (where F_x is about .50)

. * 2: logits . * Tip: start in middle and move from() there! . svy: logit 2`imed' `vlist' (running logit on estimation sample)							
Survey: Logistic regression							
Number of strata = 1 Number of PSUs = 12,365		Number of obs Population size Design df F(9, 12356) Prob > F		= 45,065,241 = 12,364			
	 I	Linearized					
z25	Coef.	Std. Err.	t	P>[t]	[95% Conf.	Interval]	
1.femmain	.0306439	.0596061	0.51	0.607	0861933	.1474811	
agemain	0598019	.0141086	-4.24	0.000	0874569	0321468	
c.agemain#c.agemain	.0003402	.0001244	2.73	0.006	.0000963	.000584	
shatwork	-2.8492	.0948404	-30.04	0.000	-3.035102	-2.663298	
nadu2	0302988	.0364321	-0.83	0.406	1017115	.0411139	
nkid06	.3440553	.0613516	5.61	0.000	.2237966	.4643141	
nkid712	.5616167	.0621392	9.04	0.000	.4398142	.6834192	
nkid1318		.0669607	12.96	0.000	.7366252	.9991322	
nkid19plus	.5545465	.0927833	5.98	0.000	.3726769		
_cons	3.025542	.3916611	7.72	0.000	2.257825	3.793259	

- estimates store z`imed'
- . mat def b`imed' = e(b)
- . predict double F`imed' , pr rules // !rules

Tips #3: predict , rules to predict 0's and 1's when 'completely determined outcomes'

```
* 2: logits
* Tip: start in middle and move from(...) there!
svy: logit z`imed' `vlist'
    estimates store z`imed'
    mat def b`imed' = e(b)
    predict double F`imed' , pr rules // !rules
```


Tip #4: from

Tip #4: Move upwards (and downwards) from the middle (to speed up convergence).

(Consider one-step Newton-Raphson only (Cai et al., 2000)?)

```
* upwards...
mat def previousb = b`imed'
forv i=`=`imed'+1'(1)`P' {
    matrix coleq previousb = z`i'
    qui svy : logit z`i' `vlist' , from(previousb) // iterate(1) als
        estimates store z`i'
        mat def previousb = e(b)
        qui predict double F`i' , pr rules
}
```


Tip #5: combine equations

Tip #5: use suest to combine separate estimates into multiple-equations 'object' (e(b) and e(V)) so you can test cross-equation hypotheses

. suest z* , svy

Simultaneous survey results for 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, > 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 224, 223, 222, 221, 220, 219, 218, 217, 216, 215, 214, 213, > 211, 210, 29, 28, 27, 26, 25, 24, 23, 22, 21

Number of strata = Number of PSUs =	1 12,365		Number of obs Population size Design df		= 32,704 = 45,065,241 = 12,364	
	 Coef.	Linearized Std. Err.	t	P>[t]		. Interval]
	L COEF.	stu. Err.	ــــــ	F7[1]	[95% CONT.	. Incervarj
z25 z25						
1.femmain	.0306439	.0596061	0.51	0.607	0861933	.1474811
agemain	0598019	.0141086	-4.24	0.000	- 0874569	0321468
2	i					
c.aqemain#c.aqemain	.0003402	.0001244	2.73	0.006	.0000963	.000584
	ĺ					
shatwork	-2.8492	.0948404	-30.04	0.000	-3.035102	-2.663298
nadu2	0302988	.0364321	-0.83	0.406	1017115	.0411139
nkid06	.3440553	.0613516	5.61	0.000	.2237966	.4643141
nkid712	.5616167	.0621392	9.04	0.000	.4398142	.6834192
nkid1318	.8678787	.0669607	12.96	0.000	.7366252	.9991322
nkid19plus	.5545465	.0927833	5.98	0.000	.3726769	.7364162
_cons	3.025542	.3916611	7.72	0.000	2.257825	3.793259
	•					
z26_z26	1					
1.femmain	.0713429	.0595535	1.20	0.231	0453912	.1880769
agemain	0646379	.0141458	-4.57	0.000	0923658	0369099
c.agemain#c.agemain	.000385	.0001252	3.07	0.002	.0001395	.0006305

Tip #5: combine equations

Tip #5: use suest to combine separate estimates into multiple-equations 'object' (e(b) and e(V)) so you can test cross-equation hypotheses

```
suest z* , svy
estimates store zfull

test [z6_z6]
test [z1_z1]1.femmain = [z`P'_z`P']1.femmain

test [z1_z1]1.femmain , notest
forv i=2/`=`P'-1' {
    test [z`i'_z`i']1.femmain , accum notest
}
test [z`P'_z`P']1.femmain , accum

test [z1_z1 = z2_z2 = z6_z6 = z10_z10 = z11_z11] ,
test [z1_z1 = z2_z2 = z6_z6 = z10_z10 = z11_z11] , cons
```

Test examples

e.g., income distribution for female-headed households any different?

```
. test [z`P' z`P']1.femmain . accum
Adjusted Wald test
   1) [z1_z1]1.femmain = 0
  2) [z2_z2]1.femmain = 0
3) [z3_z3]1.femmain = 0
  4) [z4 z4]1.femmain = 0
 (5) [z5 z5]1.femmain = 0
  (48) [z48 z48]1.femmain = 0
  (49) [z49 z49]1.femmain = 0
  (50) [z50_z50]1.femmain = 0
  (51) [z51 z51]1.femmain = 0
        F(51, 12314) = 1.25
              Prob > F = 0.1094
```

Tip #6: Inversion and simulation

Example of simple inversion by linear interpolation

```
First, initialize F(0) and F(1)
```

```
* 4: Calculating distribution stats by 'simulation'
* 4.1: draw realisations from predictions
* naive, simple approach: draw from uniform and interpolate
loc v0 = 75
gen F0 = 0
loc v`=`P'+1' = 11000
gen F`=`P'+1' = 1
```


Tip #6: Inversion and simulation

Example of simple inversion by linear interpolation

Then invert

```
* inversion for uniform draws
gen below = .
qen above = .
gen double Fabove = .
gen double Fbelow = .
gen switchabove = .
qen aboveweight = .
10C k 0
qen u = .
quietly {
forv p=1(1)99 {
    replace u = b'/100
    replace above = .
    forvalues i=0/`=`P'+1' {
        replace switchabove = cond(u <= F`i' & mi(above) & !mi(F`i') , 1, 0)
        replace above = `v`i'' if switchabove==1
        replace below = `v`i'' if u > F`i' & !mi(F`i')
        replace Fabove = F`i' if switchabove==1
        replace Fbelow = F`i' if u > F`i' & !mi(F`i')
    3
    replace aboveweight = (u - Fbelow)/(Fabove-Fbelow)
    gen draw`++k' = above * aboveweight + below * (1 - aboveweight)
}
3
```

Tip #6: Inversion and simulation

Example of simple inversion by linear interpolation

Then stack predicted quantiles and evaluate summary statistics of interest

* 4.2 evaluate conditional distributive statistics keep pid inc rw draw1-draw99 reshape long draw , i(pid) j(p) egen ctheil = theil(draw) , by(pid) su ctheil if p==1 ineqdeco draw [aw=rw]

Tip #7: run one model with full interactions

(if you are tempted to run two parallel models!)

... so testing is easy

```
* 2: Fully interacted model
loc vlist i.femmain c.agemain c.agemain#c.agemain c.shatwork ///
c.nadu2 c.nkid06 c.nkid712 c.nkid1318 c.nkid19plus
loc vlist2 `vlist' i.year
foreach var in `vlist' {
loc vlist2 `vlist2' `var'#i.year
}
gen at2006 = 2006
gen at2012 = 2012
```


Tip #7: run one model with full interactions

(if you are tempted to run two parallel models!)

... so testing is easy

Tip #8: margins give you \hat{F} from \hat{F}_x

... along with confidence intervals!

```
* Tip: start in middle and move from(...) there!
svy: logit z`imed' `vlist2'
estimates store z`imed'
mat def b`imed' = e(b)
margins , over(year) at(year=(2006 2012))
margins , over(year) dydx(year)
rename (at2006 year) (year temp)
predict double F`imed'_2006 , pr rules // !rules
rename (at2012 year) (year at2006)
predict double F`imed'_2012 , pr rules // !rules
rename (temp year) (year at2012)
su F`imed'_2006 F`imed'_2012 [aw=rw] if year==2006
su F`imed'_2006 F`imed'_2012 [aw=rw] if year==2012
```


Tip #8: margins give you \hat{F} from \hat{F}_x

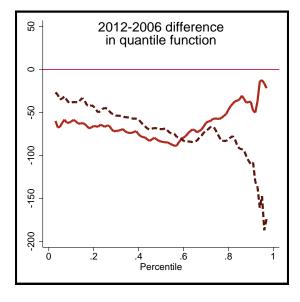
. margins , over(year) at(year=(2006 2012))						
Predictive ma Model VCE	rgins : Linearized			Number o	fobs =	66,802
	: Pr(z25), pred : year	lict()				
1at	: 2006.year year 2012.year	=	200	96		
	year	=	200	96		
2at	: 2006.year year 2012.year year	=	201 201			
		elta-method Std. Err.	 z	P> z	[95% Conf	. Interval]
at#year 1 2006 1 2012 2 2006 2 2012	.4527713		91.49	0.000 0.000	.4903087	.5117762

Tip #8: margins give you \hat{F} from \hat{F}_x

(check for yourself)

su F`imed' 2006 F`imed' 2012 [aw=rw] if year==2006 -Variable I Obs Weight Std. Dev. Min Mean Max F25 2006 | 34,098 42883962.3 .4527713 .2299681 . 0226829 .9941755 F25 2012 | 34,098 42883962.3 .020995 .4621012 .2048463 .9896899 su F`imed' 2006 F`imed' 2012 [aw=rw] if year==2012 -Variable | Obs Weiqht Mean Std. Dev. Min Max F25 2006 | 32,704 45065241.1 .5010425 .2396453 .0730445 .9935855 F25 2012 | 32,704 45065241.1 .5061872 .2181891 .0757136 .9902083

2006-2016: Actual and simulated quantiles functions



Ո

Conclusion

DR is

- easy and intuitive
- flexible and accurate
- (some speed vs. accuracy trade off's not discussed here)
- Stata's suest, margins, test are there to make life easier (though one may still want to bootstrap the process)

- Biewen, M. and Jenkins, S. P. (2005), 'Accounting for differences in poverty between the USA, Britain and Germany', *Empirical Economics* 30(2), 331–358.
- Cai, Z., Fan, J. and Li, R. (2000), 'Efficient estimation and inferences for varying coefficient models', *Journal of the American Statistical Association* **95**, 888–902.
- Chernozhukov, V., Fernández-Val, I. and Melly, B. (2013), 'Inference on counterfactual distributions', *Econometrica* **81**(6), 2205–2268.
- Donald, S. G., Green, D. A. and Paarsch, H. J. (2000),
 'Differences in wage distributions between Canada and the United States: An application of a flexible estimator of distribution functions in the presence of covariates', *Review of Economic Studies* 67(4), 609–633.
- Firpo, S., Fortin, N. M. and Lemieux, T. (2009), 'Unconditional quantile regressions', *Econometrica* **77**(3), 953–973.

Foresi, S. and Peracchi, F. (1995), 'The conditional distribution of excess returns: An empirical analysis', *Journal of the American Statistical Association* **90**(430), 451–466.

- Koenker, R. and Bassett, G. (1978), 'Regression quantiles', *Econometrica* **46**(1), 33–50.
- Koenker, R., Leorato, S. and Peracchi, F. (2013), Distributional vs. quantile regression, Research Paper 11-15-300, CEIS Tor Vergata, University of Rome Tor Vergata.
- Rothe, C. and Wied, D. (2013), 'Misspecification testing in a class of conditional distributional models', *Journal of the American Statistical Association* **108**(501), 314–324.
- Royston, P. (2001), 'Flexible alternatives to the Cox model, and more', *Stata Journal* (1), 1–28.
- Royston, P. and Lambert, P. C. (2011), *Flexible parametric survival analysis using Stata: Beyond the Cox model*, StataPress, College Station, TX.

Van Kerm, P. (2015), Influence functions at work, United Kingdom Stata Users' Group Meetings 2015 11, Stata Users Group. URL: https://ideas.repec.org/p/boc/usug15/11.html

Van Kerm, P., Choe, C. and Yu, S. (2016), 'Decomposing quantile wage gaps: a conditional likelihood approach', Journal of the Royal Statistical Society (Series C) 65(4), 507–27. http://onlinelibrary.wiley.com/doi/10.1111/rssc.12137/pdf. This work is part of the project 'Tax-benefit systems, employment structures and cross-country differences in income inequality in Europe: a micro-simulation approach–SIMDECO' supported by the Luxembourg National Research Fund (contract C13/SC/5937475).