l,lmver fLausanne Swﬂzerland
Taf}e@chuv ch

IUMSP

Institut universitaire de médecine sociale et préventive, Lausanne




Outline

« Bland & Altman’s limits of agreement method (1986)
« Extension to proportional bias and heteroscedasticity (1999)
* A new methodology to quantify bias and precision

 |llustration with a simulated example
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How to measure agreement between two measurement
methods ?

Ex: blood pressure

STATISTICAL METHODS FOR ASSESSING AGREEMENT
BETWEEN TWO METHODS OF CLINICAL MEASUREMENT

J. Martin Bland, Douglas G. Altman

Department of Clinical Epidemiology and Social Medicine, St. George's Hospital Medical
School, London SW17 ORE; and Division of Medical Statistics, MRC Clinical Research
Centre, Northwick Park Hospital, Harrow, Middlesex

(Lancet, 1986; iz 307-310)

Statistical methods for assessing agreement

between two ...
www.ncbi.nlm.nih.gov/pubmed/2868172

by JM Bland - 1986 - Cited by 35451 - Related articles
Lancet. 1986 Feb 8;1(8476):307-10. Statistical methods for

assessing agreement between two methods of clinical
measurement. Bland JM, Altman DG. IU M SP
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Bland & Altman (1986) : They wanted a measure of agreement which
was easy to estimate and to interpret for a measurement on an
individual patient.

An obvious starting point was a plot of the differences versus the mean
of the measurements by the two methods :
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Figure 2 Systolic blood pressure: difference (J—S) versus average of values measured by observer J and

machine S
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The bias (differential bias) between the two measurement methods is
estimated by the mean difference :
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Figure 2 Systolic blood pressure: difference (J—S) versus average of values measured by observer J and
machine S
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If the differences are normally distributed, we would expect about 95%
of the differences to lie between the mean +- 1.96*SD, the so called
limits of agreement (LoA) (Bland & Altman, 1986):
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Figure 3 Systolic blood pressure: difference (J—S) versus average of values measured by observer J and
machine S with 95% limits of agreement
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The decision about what is acceptable agreement is a clinical one:
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Figure 3 Systolic blood pressure: difference (J—S) versus average of values measured by observer J and
machine S with 95% limits of agreement

We can see that the blood pressure machine (S) may give values between
55mmHg above the sphygmomanometer (J) reading to 22mmHg below it,

=> such differences would be unacceptable for clinical purposes
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However, these estimates are meaningful only if we can assume bias
and variability are uniform throughout the range of measurement,
assumptions which can be checked graphically:
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Figure 3 Systolic blood pressure: difference (J—S) versus average of values measured by observer J and
machine S with 95% limits of agreement

=> assumptions approximatively met
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In some cases the variability of the measurements increases with the
magnitude of the latent trait (heteroscedasticity), as well as with the
mean difference (proportional bias):

Plasma volume data (Bland & Altman, 1999)
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In this case, a linear regression of the differences on the averages can
be estimated along with the LoA (Bland & Altman, 1999):

Plasma volume data (Bland & Altman, 1999)
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In that case, the LoA are more difficult to interpret 2y Premavime e Bnd . Aman, 669
(width not constant),

o
T T T T
. 60 80 100 120
I average: (Nadler+Hurley)/2
a n l I lo re I l I l po a n y, L difference ———— linear prediction
—=—=- upper95% LoA ———~—- lower 95% LoA

there are settings where Bland & Altman’s plots are misleading !

Indeed, we will show that

when variances of the measurement errors of
the two methods are different,

Bland and Altman’s plots may be misleading...
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Simulated examples where the regression line shows an upward or a
downward trend but there is no bias...
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or a zero slope and there is a bias...
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Therefore, the goal of my presentation is to introduce a new
methodology for the evaluation of the agreement between two methods
of measurement, where the first is the reference standard and the other
the new method to be evaluated:

Effective plots to assess bias and precision
in method comparison studies

Patrick Taffé
Institute for Social and Preventive Medicine, University of Lausanne, Switzerland
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More specifically, the objectives of this new methodology are to

 identify and quantify the amounts of differential and proportional
biases,

« develop a method of recalibration in order to correct the bias of the
new measurement method,

« and compare its precision with that of the reference standard.

The methodology requires several measurements by the reference
standard and possibly only one by the new method for each individual.

It is applicable in all circumstances with or without differential and/or
proportional biases and when the measurement errors are either
homoscedastic or heteroscedastic.
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Get ready !
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2 The measurement error model
2.1 Formulation of the model

Consider the measurement error model:

2/ .

ylij :0[1 +ﬂ1'xz'j +51ij9 glij NN(Oaagl (-xl'jael))
2 (o .

Vi =, +,6’2xl.j &5 &y NN(O,O'E2 (xl.j,ﬂz))

where }}; be the jth replicate measurement by method 1 on individual ,
Jj=1,...,n, and i=1,..,N , whereas }5; is obtained by method 2, X; is a
latent variable with density [ representing the true unknown trait, and &,

and &, represent measurement errors by method 1 and 2.
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2 .
Vi =G +181xij T&, &y~ N(O, O, (x,-jael))

Wi = O +:62xij T&ys &y ~ N(0, 0_822 (xij;GZ))
xi ~ fx(ll’lxﬂo-)?)

It is assumed that the variances of these errors, 1.e. Gé (xl.j;ﬂl) and

2 (-
o, (x,

i 0,), are heteroscedastic and depend on the level of the true unknown

variable X, as well as on the vectors 0 | and 0, of unknown parameters.
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For the reference method, for instance method 2, ¢, = 0 and S, =1,

whereas for method 1 the differential ¢, and proportional £, biases have to

be estimated from the data.

The mean value of the latent variable X; 1s x and its variance o,

It 1s assumed that the latent variable 1s constant for individual 7, 1.e. X; =X,

(this assumption may be relaxed).

When method 2 is the reference standard and method 1 the new method to be
evaluated, the model reduces to:

2 .
iy = & +fx + Ejs Gy N(0, O, (x:,0,))
2 .
Voy =X, T &5 &y ™~ N(O,O'g2 (xiaﬂz))

‘xi ~ f;c(ll’lxﬁo-)f)
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2 .
Vi =& + B, T&, &y~ N(0, O, (x,0)))
2 .
Yoij =X +g2ij9 Erij N(O,ng (Xiaez))

xi = ﬂc(ﬂx’aj)

We have considered a simple linear relationship between y,; and x; to identify

the differential and proportional biases.

It is possible, however, in our framework to consider instead a non-linear
function of x, but in that case the bias no longer decomposes nto two

components with clear interpretations.
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2 .
i =& + B, T&y, &y~ N(0, O, (x,0)))
2 .
Yoij =X +g2ij9 Erij N(O,ng (Xiaez))

xi = ﬂc(ﬂx’aj)

Nawarathna and Choudhary (Stat in Med, 2015) estimate the parameters of this
model by bivariate maximum likelihood.

Their approach is complicated by the evaluation of the integrals in the marginal
likelihood function and requires special numerical methods such as Laplace
approximation or Gauss-Hermite quadrature.

We have developed another more simple way to estimate this model by a two-
stage procedure, which performs effectively as demonstrated by the simulation
study.
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2 .
i =& + B, T&y, &y~ N(0, O, (x,0)))
2 .
Yoij =X +g2ij9 Erij N(O,ng (Xiaez))

xi = ﬂc(ﬂx’aj)

2.2 Estimation of the model

In the first stage, we estimate the regression model for y,., by marginal

maximum  likelthood  accounting  non-parametrically  for  the
heteroscedasticity.
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Yig =0+ BiX &y,

ar NN(OaO'gzl(xi;OJ)
Voy =X, T &5 &y ™~ N(O,ngz (x:,0,))

xl' ~ ]Fx(ﬂxﬁai)

Then, we adopt an empirical Bayes approach to predict x; by the mean of

its posterior distribution, which 1s the best linear unbiased prediction
(BLUP) for x;:

)Aci :E(xi |y2i)
:jx_ I, (Yo [ X)) 1 (x,)
| jfyz (yzi |x,-)fx(xl.)dxi

dx.

l
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2 .
i =& + B, T&y, &y~ N(0, O, (x,0)))
2 .
Yoij =X +g2ij9 Erij N(O,ng (xiDOZ))

xi = ﬂc(ﬂx’aj)

In the second stage, we proceed to the estimation of the regression
equation for );; and of the differential &, and proportional f, biases

simply by OLS after having substituted the BLUP x. for the true

unmeasured trait x, .
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2 .
i =& + B, T&y, &y~ N(0, O, (x,0)))
2 .
Yoij =X +g2ij9 Erij N(O,ng (Xiaez))

xi = ﬂc(ﬂx’aj)

Based on the estimates &, and ,5’1* of the differential and proportional
biases one can compute an estimate of the bias of the new method:

bias. =4 +x.(f —1)
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A very useful figure to visualize the bias of the new method

(1.e. method 1) 1s the “bias plot™.
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2.3 Recalibration of the new method

To remove the differential and proportional biases of the new method
we proceed to its recalibration by computing:

y;kij = (ylij _0}:)/:31*

Now that y,, and yly are on the same scale we can compare the

variances of the measurement errors to determine which method 1s more
precise.
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We proceed to the comparison of the variances by making a scatter plot of the
estimated standard deviations &, (x;;0,) and &, (x,;0,) versus x; , which we

call “precision plot” :

Precision plot after recalibration
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2.4 Why Bland and Altman’s plot may be misleading

Bland and Altman have suggested to plot the differences D, =y, — y,, versus
the averages A4, =(y,; +,,)/2, and add to the plot the regression line of the
relationship between D, and 4, in addition to the LoA.

The problem is that the regression line may show a positive or negative
slope when there is no bias or have a zero slope in the presence of a bias.

The reason is related to the fact that in the regression of D, on 4, :

D, =a+p4;+¢,

y

A, cannot be considered as being exogenous it is, rather, endogenous.

Plasma volume data (Bland & Altman, 1999)
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2 .
i =& + B, T&y, &y~ N(0, O, (x,0)))
2 .
Yoij =X +g2ij9 Erij N(O,ng (xi902))

xi = ﬂc(ﬂx’aj)

OLS estimation provides unbiased estimates only when:

(7521 (x;;0,) B

cov(4.,&.)=0 =
o 0-522 (x,-;ez) ﬂZ

1.e. there 1s no bias whenever the variances of the measurement errors are
strictly equal to the proportional bias,

a special condition that has little chance to truly hold 1n practice...
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3 A simulation study

Extensive simulations demonstrated that our methodology to assess
biases, recalibrate the new method, and compare the precision of the two
measurement methods performed very well

e for sample sizes of 100 individuals

e and between 10 to [5 measurements per individual by the
reference standard

e and as few as only 1 by the new method.
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For our simulations we considered the following data generating process:

y,=—4+12x +¢&,, &,~N(0,1+0.1x,)*)
i € ~ N(0,(2+0.2 x.)°)
x, ~ Uniform[10—40]

Yoy =X, T &

where i =,1,...,100 and the number of repeated measurements of individual i
from the reference standard was n, ~ Uniform[10—-15].

The new method has differential bias of -4 and a proportional bias of 1.2 .

The variance of the measurement errors from method 1 1s smaller than that
of the reference method 2.
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The Bland and Altman’ LoA plot extended to the setting where there is
heteroscedasticity of the measurement errors does not seem to indicate any
bias:

LoA
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whereas the bias plot illustrates that the new method underestimates the
trait up to 22 and then overestimates it, thereby clearly illustrating the
occurrence of differential and proportional biases:

Bias plot
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2 .
Vi =& + B, TE, &y~ N(0, O, (x,0)))
2 .
Yoij =X +82ij9 Erij N(O,ng (Xiaez))

xi = ﬂc(ﬂx’aj)

Actually, estimation of the measurement error model allowed us to 1dentify
a differential bias of -3.85 95%CI= [-6.81; -0.88] (true value is -4)

and a proportional bias of 1.19 95%CI =[1.08; 1.29] (true value 1s 1.2).
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The variances of the measurement errors can already be well estimated with
10~15 measurements by the reference standard and only 1 by the new method:

true value

Precision plot after recalibration /
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Finally, the comparison plot allows us to visualize the performance of our
recalibration procedure:

Comparison of the methods
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We computed Bland and Altman’ LoA plot for the recalibrated method to
illustrate that in the absence of bias the figure may mislead the reader into
believing that there 1s a bias:

LoA for the recalibrated method
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In summary,

We have developed a new methodology to assess the bias and
precision of a new measurement method relative to the reference
standard,

which does not have the shortcomings of Bland and Altman’s LoA
methodology.

It is, however, in spirit of the original paper in the sense that new
graphical representations of the bias and of the performance of the
method to be evaluated are proposed.

In addition, we have shown a very simple way to recalibrate the new
method to be able to use it in place of the more complex and costly
reference standard.
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biasplot: A Stata package to effective plots to assess bias
and precision in method comparison studies
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Will appear soon in the Stata Journal ©
IUMSP

Institut universitaire de médecine sociale et préventive, Lausanne



Institut universitaire de médecine sociale et préventive, Lausanne




