Handling missing data in Stata: Imputation and likelihood-based approaches

Rose Medeiros

StataCorp LP

2016 Swiss Stata Users Group meeting
Missing Values

- Missing values are ubiquitous in many disciplines
 - Respondents fail to fully complete questionnaires
 - Follow-up points are missing
 - Equipment malfunctions

- A number of methods of handling missing values have been developed
Traditional Methods

- Complete case analysis—analyze only those cases with complete data on some set of variables
 - Potentially biased unless the complete cases are a random sample of the full sample
- Hot deck—picking a fixed value from another observation with the same covariates
 - Not necessarily deterministic if there were many observations with the same covariate pattern
- Mean imputation—replacing with a mean
- Regression imputation—replacing with a single fitted value
- The last three methods all suffer from too little variation
 - Replace each missing value with a single good estimate
Principled Methods

- Methods that produce
 - Unbiased parameter estimates when assumptions are met
 - Estimates of uncertainty that account for increased variability due to missing values

- This presentation focuses on how to implement two of these methods Stata
 - Multiple Imputation (MI)
 - Full information maximum likelihood (FIML)

- Other principled methods have been developed, for example Bayesian approaches and methods that explicitly model missingness
The classic typology of missing data mechanisms, introduced by Rubin:

- **Missing completely at random (MCAR)**
 - Missingness on x is unrelated to observed values of other variables and the unobserved values of x

- **Missing at random (MAR)**
 - Missingness on x uncorrelated with the unobserved value of x, after adjusting for observed variables

- **Missing not at random (MNAR)**
 - Missingness on x is correlated with the unobserved value of x

- MI and FIML both assume that missing data is either MAR or MCAR
An Example

The example used throughout this presentation uses data from the National Health and Nutrition Examination Survey II contained in nhanes2.dta.

We’ll regress diastolic blood pressure (bpdiast) on body mass index (bmi) and age in years (age).

The starting dataset contains no missing values on the analysis variables.

Missing values were created for bmi and age.

The missing values are MAR.
Analysis with Complete Data

.webuse nhanes2
.regress bpdiast bmi age

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 10,351</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>330967.862</td>
<td>2</td>
<td>165483.931</td>
<td>F(2, 10348) = 1224.34</td>
</tr>
<tr>
<td>Residual</td>
<td>1398651.4</td>
<td>10,348</td>
<td>135.161519</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1729619.26</td>
<td>10,350</td>
<td>167.112972</td>
<td>R-squared = 0.1914</td>
</tr>
</tbody>
</table>

| bpdiast | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------------|-----------|-----------|-----------|-------|---------------------|
| bmi | 0.9303882 | 0.023599 | 39.42 | 0.000 | 0.8841295 0.9766469 |
| age | 0.1530495 | 0.0067377 | 22.72 | 0.000 | 0.1398423 0.1662567 |
| _cons | 50.67308 | 0.6425594 | 78.86 | 0.000 | 49.41354 51.93262 |
Summarizing Missing Values

Switching to the version of the dataset with missing values, we can summarize the missing values:

```
. use nh2miss
. misstable summarize
```

```
<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs=.</th>
<th>Obs&gt;</th>
<th>Obs&lt;.</th>
<th>Unique values</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
</table>
    age   | 976  | 9,375 | 20     | 55            | 20    | 74    |
      bmi | 1,858| 8,493 | >500   | 12.3856       | 61.1297 |
```

Switching to the version of the dataset with missing values, we can summarize the missing values.
Missing Value Patterns

. misstable patterns

Missing-value patterns
(1 means complete)

<table>
<thead>
<tr>
<th>Percent</th>
<th>Pattern</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>76%</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

100%

Variables are (1) age (2) bmi
Estimation Using Complete Case Analysis

By default, `regress` performs complete case analysis

```plaintext
. regress bpdiast bmi age

               Source |        SS   df       MS
-------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
          Model | 143032.35     2  71516.1748  Prob > F = 0.0000
           Residual | 820969.154   7,912  103.762532  R-squared = 0.1484
       Total | 964001.504   7,914  121.809642  Adj R-squared = 0.1482
-------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+

      bpdiast |   Coef.  Std. Err.  t    P>|t|   [95% Conf. Interval]
-------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
        bmi |   .7273228   .0255498  28.47  0.000    .6772383    .7774072
        age |   .1215468   .0066455  18.29  0.000    .1085198    .1345738
       _cons |   53.93006   .6638102  81.24  0.000    52.62882    55.2313
-------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+
```
Comparing Complete Data to Listwise Deletion

Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Complete</th>
<th>Listwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>.93</td>
<td>.727</td>
</tr>
<tr>
<td>age</td>
<td>.153</td>
<td>.122</td>
</tr>
<tr>
<td>intercept</td>
<td>50.7</td>
<td>53.9</td>
</tr>
</tbody>
</table>

Standard errors

<table>
<thead>
<tr>
<th></th>
<th>Complete</th>
<th>Listwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>.023</td>
<td>.025</td>
</tr>
<tr>
<td>age</td>
<td>.007</td>
<td>.006</td>
</tr>
<tr>
<td>intercept</td>
<td>.643</td>
<td>.663</td>
</tr>
</tbody>
</table>
What is Multiple Imputation?

- Multiple imputation (MI) is a simulation-based approach for analyzing incomplete data.

- Multiple imputation:
 - replaces missing values with multiple sets of simulated values to complete the data—*imputation step*
 - applies standard analyses to each completed dataset—*data analysis step*
 - adjusts the obtained parameter estimates for missing-data uncertainty—*pooling step*

- The objective of MI is to analyze missing data in a way that results in valid statistical inference (Rubin 1996).

- MI does not attempt to produce imputed values that are as close as possible the missing values.
Preparing the Data for Imputation

First, we need to tell Stata how to store the imputations. Stata call these _mi_ styles.

```
. mi set wide
```

Next we tell Stata what variables we plan to impute

```
. mi register imputed bmi age
```

Optionally, we can also tell Stata what variables we don’t plan to impute

```
. mi register regular bpdiast
```
Imputing Missing Values

```
.mi impute mvn bmi age = bpdiast, add(20)
```

Performing EM optimization:

```
Performing EM optimization:
note: 398 observations omitted from EM estimation because of all imputation
variables missing observed log likelihood = -47955.552 at iteration 8
```

Performing MCMC data augmentation ...

```
Multivariate imputation Imputations = 20
Multivariate normal regression added = 20
Imputed: m=1 through m=20 updated = 0
```

Prior: uniform

```
Prior: uniform
```

```
Observations per m
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Complete</th>
<th>Incomplete</th>
<th>Imputed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>8493</td>
<td>1858</td>
<td>1858</td>
<td>10351</td>
</tr>
<tr>
<td>age</td>
<td>9375</td>
<td>976</td>
<td>976</td>
<td>10351</td>
</tr>
</tbody>
</table>

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)
Obtaining MI Estimates

```
.mi estimate: regress bpdiast bmi age
```

Multiple-imputation estimates
Linear regression

<table>
<thead>
<tr>
<th></th>
<th>Imputations = 20</th>
<th>Number of obs = 10,351</th>
<th>Average RVI = 0.1619</th>
<th>Largest FMI = 0.2424</th>
<th>Complete DF = 10348</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF adjustment:</td>
<td>Small sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model F test:</td>
<td>Equal FMI</td>
<td>F(2, 838.8) = 970.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within VCE type:</td>
<td>OLS</td>
<td>Prob > F = 0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Variable | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------|---------|-----------|--------|------|----------------------|
| bmi | 0.9283816 | 0.0263465 | 35.24 | 0.000 | 0.8766788 to 0.9800844 |
| age | 0.1510538 | 0.0076479 | 19.75 | 0.000 | 0.1360076 to 0.1660999 |
| _cons | 50.86274 | 0.7051584 | 72.13 | 0.000 | 49.47863 to 52.24685 |
Comparing MI Estimates

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Complete</th>
<th>Listwise</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>.93</td>
<td>.727</td>
<td>.928</td>
</tr>
<tr>
<td>age</td>
<td>.153</td>
<td>.122</td>
<td>.151</td>
</tr>
<tr>
<td>intercept</td>
<td>50.7</td>
<td>53.9</td>
<td>50.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard errors</th>
<th>Complete</th>
<th>Listwise</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>.023</td>
<td>.025</td>
<td>.026</td>
</tr>
<tr>
<td>age</td>
<td>.007</td>
<td>.006</td>
<td>.008</td>
</tr>
<tr>
<td>intercept</td>
<td>.643</td>
<td>.663</td>
<td>.705</td>
</tr>
</tbody>
</table>
If the analysis model includes categorical variables, we’ll want to include those in the imputation model as well.

To demonstrate we’ll add three categorical variables to our analysis model.

The analysis model is now:
```
regress bpdiast bmi age i.race i.female i.region
```
- Respondent’s race (`race`) takes on 3 values and has missing values.
- Respondent’s sex (`female`) is binary and has missing values.
- Region of the U.S. (`region`) takes on 4 values and is complete.
The multivariate normal model implemented in `mi impute mvn` assumes all variables follow a multivariate normal distribution.

However, it turns out to be surprisingly robust to nonnormality (Schafer 1997; Demirtas et al. 2008), even when imputing categorical variables (e.g., Lee and Carlin 2010).

To include `race` and `region` in a model using `mi impute mvn` we would need to create \(k - 1 \) dummy variables to use in the imputation model.

An alternative is to use the multivariate imputation by chained equations (MICE) approach to impute the missing values.
MICE allows us to specify the method used to impute each of the variables in our model.

In Stata, MICE is implemented in `mi impute chained`.

For our example, we will use:
- A linear model (`regress`) to impute `bmi` and `age`.
- A logistic model (`logit`) to impute `female`.
- A multinomial logit model (`mlogit`) to impute `race`.

`mi impute chained` allows the user to specify models for a variety of variable types, including binary, ordinal, nominal, truncated, and count variables.
Using `mi impute chained`

As before, we prepare the data for imputation

```
. mi set wide
. mi register imputed bmi age race female
. mi register regular bpdiast region
```

Then we can run the imputation model

```
. mi impute chained (regress) bmi age (logit) female ///
  (mlogit) race = bpdiast i.region, add(20)
```

Conditional models:

- **age**: `regress age bmi i.female i.race bpdiast i.region`
- **bmi**: `regress bmi age i.female i.race bpdiast i.region`
- **female**: `logit female age bmi i.race bpdiast i.region`
- **race**: `mlogit race age bmi i.female bpdiast i.region`

Performing chained iterations ...

Multivariate imputation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Imputations =</td>
<td>20</td>
</tr>
<tr>
<td>Chained equations</td>
<td>added =</td>
</tr>
<tr>
<td>Imputed: m=1 through m=20</td>
<td>updated =</td>
</tr>
</tbody>
</table>

Initialization: monotone

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations =</td>
<td>200</td>
</tr>
<tr>
<td>burn-in =</td>
<td>10</td>
</tr>
</tbody>
</table>
mi impute chained (continued)

bmi: linear regression
age: linear regression
female: logistic regression
race: multinomial logistic regression

<table>
<thead>
<tr>
<th>Observations per m</th>
<th>Complete</th>
<th>Incomplete</th>
<th>Imputed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bmi</td>
<td>8493</td>
<td>1858</td>
<td>1858</td>
<td>10351</td>
</tr>
<tr>
<td>age</td>
<td>9375</td>
<td>976</td>
<td>976</td>
<td>10351</td>
</tr>
<tr>
<td>female</td>
<td>8220</td>
<td>2131</td>
<td>2131</td>
<td>10351</td>
</tr>
<tr>
<td>race</td>
<td>7297</td>
<td>3054</td>
<td>3054</td>
<td>10351</td>
</tr>
</tbody>
</table>

of the number of filled-in observations.)
(complete + incomplete = total; imputed is the minimum across m)
We haven’t seen Stata’s tools for
- Data management with mi data
- Use of mi impute to impute univariate and monotone missing values
- Investigating convergence for both mi impute and mi impute chained
- Hypothesis tests and predictions after mi estimate
- The use of mi estimate with special data types, for example survey or time-series data (see help mi xxxset)

The dialog box for mi which guides you through the MI process
- It can be reached from the menus Statistics > Multiple imputation or by typing db mi
Handling missing data in Stata
More on the Imputation Step

In practice the imputation process involves a lot of decision making:

- Scope of the imputation—Whether to impute for a specific analysis, set of related analyses, or for all analyses on a given dataset
- The type of imputation model to use
- What variables to include in the imputation model
- The number of imputations to create
Selecting an Imputation Model

For the most common missing data pattern the options are

- **The multivariate normal model**—implemented in `(mi estimate mvn)`
 - Assumes multivariate normality or all variables
 - If the model includes non-normal or categorical variables, you’ll have to decide how to include those

- **Multivariate imputation by chained equations**—implemented in `(mi impute chained)`
 - Offers flexibility in how each variable is modeled
Selecting Variables

The imputation model must maintain the existing characteristics of the data, in order to do so it should include:

- All variables in the analysis model
- Any interactions that will be tested in the analysis model
- Transformations of variables
- Auxiliary variables—variables that do not appear in the analysis model, but
 - Predict missingness, and
 - Are correlated with the variables with missing values
Full Information Maximum Likelihood Estimation

- Full information maximum likelihood (FIML) estimation adjusts the likelihood function so that each case contributes information on the variables that are observed.
- Does not create or impute any data, it just analyzes everything that is there.
- FIML is implemented as part of Stata’s `sem` command which fits linear structural equation models.
- FIML assumes:
 - Multivariate normality
 - Missing values are MAR or MCAR
Using `sem`

- The `sem` command uses a form of model specification that is different from other commands
 - Direct paths within variables in a model are specified within sets of parentheses
 - Arrows are used to denote the direction of relationships
- The following all regress `bpdiast` on `bmi` and `age`
 . `regress bpdiast bmi age`
 . `sem (bpdiast <- bmi age)`
 . `sem (bmi age -> bpdiast)`
- By default `sem` performs maximum likelihood estimation on the complete cases
- To request estimation using FIML use the option `method(mlmv)`
. use nh2miss, clear
. sem (bpdiast <- bmi age), method(mlmv)

(output omitted)

Structural equation model
Number of obs = 10,351
Estimation method = mlmv
Log likelihood = -105553.76

<table>
<thead>
<tr>
<th></th>
<th>OIM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef. Std. Err. z P></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Structural</td>
<td></td>
</tr>
<tr>
<td>bpdiast <-</td>
<td></td>
</tr>
<tr>
<td>bmi</td>
<td>.9229957 .0276157 33.42 0.000 .86887 .9771214</td>
</tr>
<tr>
<td>age</td>
<td>.152064 .0076274 19.94 0.000 .1371146 .1670133</td>
</tr>
<tr>
<td>_cons</td>
<td>50.95577 .7217014 70.61 0.000 49.54126 52.37028</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>mean(bmi)</td>
<td>25.46282 .0518402 491.18 0.000 25.36121 25.56442</td>
</tr>
<tr>
<td>mean(age)</td>
<td>47.72442 .1827953 261.08 0.000 47.36615 48.08269</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>var(e.bpdiast)</td>
<td>135.9395 1.985341 67.85 0.000 132.1035 139.887</td>
</tr>
<tr>
<td>var(bmi)</td>
<td>22.67168 .3509293 64.68 0.000 21.9942 23.37003</td>
</tr>
<tr>
<td>var(age)</td>
<td>307.4869 4.563105 67.90 0.000 298.6722 316.5618</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>cov(bmi,age)</td>
<td>16.85967 .965718 17.46 0.000 14.9669 18.75244</td>
</tr>
</tbody>
</table>

LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 = .

Medeiros Handling missing data in Stata
Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Complete</th>
<th>Listwise</th>
<th>MI</th>
<th>FIML</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>.93</td>
<td>.727</td>
<td>.928</td>
<td>.923</td>
</tr>
<tr>
<td>age</td>
<td>.153</td>
<td>.122</td>
<td>.151</td>
<td>.152</td>
</tr>
<tr>
<td>intercept</td>
<td>50.7</td>
<td>53.9</td>
<td>50.9</td>
<td>51</td>
</tr>
</tbody>
</table>

Standard errors

<table>
<thead>
<tr>
<th></th>
<th>Complete</th>
<th>Listwise</th>
<th>MI</th>
<th>FIML</th>
</tr>
</thead>
<tbody>
<tr>
<td>bmi</td>
<td>.023</td>
<td>.025</td>
<td>.026</td>
<td>.028</td>
</tr>
<tr>
<td>age</td>
<td>.007</td>
<td>.006</td>
<td>.008</td>
<td>.008</td>
</tr>
<tr>
<td>intercept</td>
<td>.643</td>
<td>.663</td>
<td>.705</td>
<td>.722</td>
</tr>
</tbody>
</table>
Comparison

Multiple imputation
- If the chained equation approach is used, there is not assumption of multivariate normality
- MI generally makes it easier to include auxiliary variables
- Allows for a wide variety of analysis models
- Care is required when constructing the imputation model

Full information maximum likelihood
- Repeated runs of the same model produce the same results
- Easier for others to reproduce, since fewer decisions need to be made and documented
Stata provides multiple options for analyzing data that contain missing values.

- MI and FIML both assume missing values are MAR or MCAR.
 - Other solutions are necessary for MNAR data.

