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Univariate distributions
Marginal distributions

Laplace distribution
. sysuse nlsw88, clear
(NLSW, 1988 extract)

. gen lnw = ln(wage)

. hangroot lnw, dist(laplace)
(bin=33, start=.00493961, width=.11219493)
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Univariate distributions
Marginal distributions

Introduction

I Comparing the distribution of an observed variable with a
theoretical distribution

I For example: the residuals after a linear regression should
follow a normal/Gaussian distributed

I Two parts
I Part 1 focusses on:

I univariate distributions
I hanging and suspended rootograms

I Part 2 focusses on:
I marginal distributions
I hanging and suspend rootograms and pp and qq-plots
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Univariate distributions
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Outline

Univariate distributions

Marginal distributions

Maarten L. Buis Comparing observed and theoretical distributions



Univariate distributions
Marginal distributions

histogram with normal curve

. sysuse nlsw88, clear
(NLSW, 1988 extract)

. gen ln_w = ln(wage)

. reg ln_w grade age ttl_exp tenure

Source SS df MS Number of obs = 2229
F( 4, 2224) = 214.79

Model 203.980816 4 50.9952039 Prob > F = 0.0000
Residual 528.026987 2224 .237422206 R-squared = 0.2787

Adj R-squared = 0.2774
Total 732.007802 2228 .328549283 Root MSE = .48726

ln_w Coef. Std. Err. t P>|t| [95% Conf. Interval]

grade .0798009 .0041795 19.09 0.000 .0716048 .087997
age -.009702 .0034036 -2.85 0.004 -.0163765 -.0030274

ttl_exp .0312377 .0027926 11.19 0.000 .0257613 .0367141
tenure .0121393 .0022939 5.29 0.000 .0076408 .0166378
_cons .7426107 .1447075 5.13 0.000 .4588348 1.026387

. predict resid, resid
(17 missing values generated)

. hist resid, normal freq
(bin=33, start=-2.1347053, width=.13879342)
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Univariate distributions
Marginal distributions

histogram with normal curve
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Univariate distributions
Marginal distributions

hanging rootogram, Tukey 1972 and 1977

. hangroot resid
(bin=33, start=-2.1347053, width=.13879342)
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Univariate distributions
Marginal distributions

Confidence intervals
I For a histogram the variable is broken up in a number of

bins.

I The hight of a bar/spike is the number of observations
falling in a bin.

I One can think of this number of observations as following a
multinomial distribution.

I Confidence intervals for these counts are computed using
Goodman’s (1965) approximation of the simultaneous
confidence interval.

I For (hanging) rootograms these confidence intervals are
transformed to the square root scale.

I These confidence intervals do not take into account that:
I the parameters of the theoretical curve are often estimated
I and that nearby bins are often similar.
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Univariate distributions
Marginal distributions

Confidence intervals
. hangroot resid, ci
(bin=33, start=-2.1347053, width=.13879342)
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Univariate distributions
Marginal distributions

Simulations

I We know that the residuals should follow a normal
distribution with mean 0 and standard deviation e(rmse).

I We can compare the observed distribution with several
draws from this theoretical distribution.

I The simulated distributions capture the variability one can
expect if our model is true
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Univariate distributions
Marginal distributions

Simulations
. forvalues i = 1/20 {

2. qui gen sim`i´ = rnormal(0,`e(rmse)´) if e(sample)
3. }

. hangroot resid, sims(sim*) jitter(5)
(bin=34, start=-2.1347053, width=.13471126)
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Univariate distributions
Marginal distributions

Suspended rootogram
. hangroot resid, ci susp theoropt(lpattern(-))
(bin=33, start=-2.1347053, width=.13879342)
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Univariate distributions
Marginal distributions

Suspended rootogram
. hangroot resid, ci susp notheor
(bin=33, start=-2.1347053, width=.13879342)
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Univariate distributions
Marginal distributions

Aside: Where did that bi-modality come from?
. qui reg ln_w grade age ttl_exp tenure union

. predict resid2, resid
(380 missing values generated)

. hangroot resid2, ci
(bin=32, start=-1.7272859, width=.10744561)

−
5

0
5

10
15

sq
rt

(f
re

qu
en

cy
)

−2 −1 0 1 2
Residuals

95% Conf. Int.

Maarten L. Buis Comparing observed and theoretical distributions



Univariate distributions
Marginal distributions

Where did the parameters come from?

I By default hangroot tries to estimate those parameters.

I One can directly specify the parameters using the par()
option. In this case one would type:
hangroot resid, par(0 ‘e(rmse)’)

I One can first use an estimation command to estimate the
parameters. In this case one would type:
regres resid
hangroot
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Univariate distributions
Marginal distributions

Is this just for the normal distribution?

One can specify other distributions with the dist() option.
normal / Gaussian Singh-Maddala
lognormal Generalized Beta II
logistic generalized extreme value
Weibull exponential
Chi square Laplace
gamma uniform
Gumbel geometric
inverse gamma Poisson
Wald / inverse Gaussian zero inflated Poisson
beta negative binomial I
Pareto negative binomial II
Fisk / log-logistic zero inflated negative binomial
Dagum
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Univariate distributions
Marginal distributions

Other examples: a beta distribution
. use "`home´\citybudget", clear
(Spending on different categories by Dutch cities in 2005)

. hangroot governing, dist(beta)
(bin=19, start=.02759536, width=.01572787)
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Univariate distributions
Marginal distributions

Other examples: a Poisson distribution
. use "`home´\cavalry", clear
(horsekick deaths in 14 Prussian cavalry units 1875-1894)

. hangroot deaths [fw=freq], ci dist(poisson)
(start=0, width=1)
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Univariate distributions
Marginal distributions

Other examples: displaying the results of a simulation

. program drop _all

. program define sim, rclass
1. drop _all
2. set obs 250
3. gen x1 = rnormal()
4. gen x2 = rnormal()
5. gen x3 = rnormal()
6. gen y = runiform() < invlogit(-2 + x1)
7. logit y x1 x2 x3
8. test x2=x3=0
9. return scalar p_250 = r(p)
10. return scalar chi2_250 = r(chi2)
11. logit y x1 x2 x3 in 1/25
12. test x2=x3=0
13. return scalar p_25 = r(p)
14. return scalar chi2_25 = r(chi2)
15.
. end

.

. set seed 123456

.

. simulate chi2_250=r(chi2_250) p_250=r(p_250) ///
> chi2_25 =r(chi2_25) p_25 =r(p_25) , ///
> reps(1000) nodots : sim

command: sim
chi2_250: r(chi2_250)

p_250: r(p_250)
chi2_25: r(chi2_25)

p_25: r(p_25)
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Univariate distributions
Marginal distributions

Other examples: displaying the results of a simulation

. hangroot chi2_25, dist(chi2) par(2) name(chi, replace) ci ///
> title("distribution of Wald statistics" ///
> "compared to a {&chi}{sup:2}(2) distribution" ) ///
> xtitle(Wald statistics) ///
> ytitle("frequency (root scale)") ///
> ylab(-2 "-4" 0 "0" 2 "4" 4 "16" 6 "36" 8 "64")
(bin=29, start=.00226492, width=.18900082)

.

. hangroot p_25 , dist(uniform) par(0 1) ///
> susp notheor ci name(p, replace) ///
> title("deviations of the distribution of p-values" ///
> "from the uniform distribution") ///
> xtitle("p-value") ytitle("residual (root scale)") ///
> ylab(-4 "-16" -3 "-9" -2 "-4" -1 "-1" 0 "0" 1 "1" )
(bin=29, start=.06446426, width=.03222082)
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Univariate distributions
Marginal distributions

Other examples: displaying the results of a simulation

. hangroot chi2_250, dist(chi2) par(2) name(chi2, replace) ci ///
> title("distribution of Wald statistics" ///
> "compared to a {&chi}{sup:2}(2) distribution" ) ///
> xtitle(Wald statistics) ///
> ytitle("frequency (root scale)") ///
> ylab(-5 "-25" 0 "0" 5 "25" 10 "100" 15 "225" )
(bin=29, start=.00158109, width=.41837189)

.

. hangroot p_250 , dist(uniform) par(0 1) ///
> susp notheor ci name(p2, replace) ///
> title("deviations of the distribution of p-values" ///
> "from the uniform distribution") ///
> xtitle("p-value") ytitle("residual (root scale)") ///
> ylab(-1 0 1)
(bin=29, start=.00231769, width=.03437559)
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Univariate distributions
Marginal distributions

Other examples: displaying the results of a simulation
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Outline

Univariate distributions

Marginal distributions
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Univariate distributions
Marginal distributions

marginal distribution

I In linear regression the residuals have a known theoretical
distribution: normal/Gaussian distribution.

I This is typically not the case in other models like Poisson
regression or beta regression.

I The theoretical marginal distribution of the dependent
variable is known: It is a mixture distribution where each
observation gets its own parameters
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Univariate distributions
Marginal distributions

Marginal distribution is a mixture distribution

. set seed 1234

. drop _all

. set obs 1000
obs was 0, now 1000

. gen byte x = _n <= 250

. gen y = -3 + 3*x + rnormal()
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Univariate distributions
Marginal distributions

Marginal distribution is a mixture distribution
. hangroot y, dist(normal) ci name(wrong, replace)
(bin=29, start=-6.1794977, width=.30656038)

.

. qui reg y x

. hangroot, ci name(right, replace)
(bin=29, start=-6.1794977, width=.30656038)
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Univariate distributions
Marginal distributions

comparing fit of count models (Poisson)

. use "`home´\couart2", clear
(Academic Biochemists / S Long)

. gen lnment = ln(ment)
(90 missing values generated)

. qui poisson art fem mar kid5 phd lnment

. predict lambda, n
(90 missing values generated)

. forvalues i=1/20 {
2. qui gen sim`i´ = rpoisson(lambda)
3. }

. hangroot , sims(sim*) jitter(5) susp notheor ///
> title(poisson) name(poiss, replace) ///
> legend(off)
(start=0, width=1)

also see: Hilbe 2010
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Univariate distributions
Marginal distributions

comparing fit of count models (zero inflated Poisson)

. use "`home´\couart2", clear
(Academic Biochemists / S Long)

. gen lnment = ln(ment)
(90 missing values generated)

. qui zip art fem mar kid5 phd lnment, inflate(_cons)

. predict lambda, xb
(90 missing values generated)

. replace lambda = exp(lambda)
(825 real changes made)

. predict pr, pr

. forvalues i=1/20 {
2. qui gen sim`i´ = cond(runiform()< pr, 0, rpoisson(lambda))
3. }

. hangroot , sims(sim*) jitter(5) susp notheor ///
> title(zip) name(zip, replace) ///
> legend(off)
(start=0, width=1)
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Univariate distributions
Marginal distributions

comparing fit of count models (negative binomial)

. use "`home´\couart2", clear
(Academic Biochemists / S Long)

. gen lnment = ln(ment)
(90 missing values generated)

. qui nbreg art fem mar kid5 phd lnment

. predict xb, xb
(90 missing values generated)

. tempname a ia

. scalar `a´ = e(alpha)

. scalar `ia´ = 1/`a´

. gen exb = exp(xb)
(90 missing values generated)

. gen xg = .
(915 missing values generated)

. gen xbg = .
(915 missing values generated)

. forvalues i = 1/20 {
2. qui replace xg = rgamma(`ia´, `a´)
3. qui replace xbg = exb*xg
4. qui generate sim`i´ = rpoisson(xbg)
5. }

. hangroot , sims(sim*) jitter(5) susp notheor ///
> title(neg. binomial) ///
> legend(off) name(nb, replace)
(start=0, width=1)

also see: Hilbe 2010
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Univariate distributions
Marginal distributions

comparing fit of count models (zero inflated negative
binomial)

. use "`home´\couart2", clear
(Academic Biochemists / S Long)

. gen lnment = ln(ment)
(90 missing values generated)

. qui zinb art fem mar kid5 phd lnment, inflate(_cons)

. predict xb, xb
(90 missing values generated)

. predict pr, pr

. tempname a ia

. scalar `a´ = exp([lnalpha]_b[_cons])

. scalar `ia´ = 1/`a´

. gen exb = exp(xb)
(90 missing values generated)

. gen xg = .
(915 missing values generated)

. gen xbg = .
(915 missing values generated)

. forvalues i = 1/20 {
2. qui replace xg = rgamma(`ia´, `a´)
3. qui replace xbg = exb*xg
4. qui generate sim`i´ = cond(runiform()< pr, 0, rpoisson(xbg))
5. }

. hangroot , sims(sim*) jitter(5) susp notheor ///
> title(zero infl. neg. binomial) ///
> name(znb, replace) legend(off)
(start=0, width=1)

Maarten L. Buis Comparing observed and theoretical distributions



Univariate distributions
Marginal distributions

comparing fit of count models
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Univariate distributions
Marginal distributions

Beta regression

. use "`home´\citybudget", clear
(Spending on different categories by Dutch cities in 2005)

. qui betafit governing, mu(noleft minorityleft popdens houseval)

.

. predict a, alpha
(1 missing value generated)

. predict b, beta
(1 missing value generated)

. forvalues i = 1/20 {
2. qui gen sim`i´ = rbeta(a,b)
3. }

.

. hangroot, sims(sim*) jitter(5)
(bin=20, start=.00440596, width=.01610095)

Maarten L. Buis Comparing observed and theoretical distributions



Univariate distributions
Marginal distributions

Beta regression
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Univariate distributions
Marginal distributions

Cumulative density function
. margdistfit, cumul
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Univariate distributions
Marginal distributions

PP-plot
. margdistfit, pp
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Univariate distributions
Marginal distributions

QQ-plot
. margdistfit, qq
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Conclusion
I Deviations from the theoretical distribution are best shown

as deviations from a straight line rather than a curve

I Hanging and suspended rootograms are easy because
many have been trained to look at histograms, but they
require binning

I QQ and PP-plots allow you to see the raw data but many
have not been trained to interpret them.

I One can derive the theoretical distribution implied by a
regression type model by treating that distribution as a
mixture distribution where each observations gets its own
parameters.

I One can get a feel for the amount of ‘legitimate’ variability
by either plotting confidence intervals or random draws
from the theoretical distribution.
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