
Complementing Stata with Python:

Optimization and Self-Differentiation in

Point-Mass Models

15th Spain Stata Conference

Seville, May 22, 2025

A. Morales-Kirioukhina1, E. Congregado1, D. Troncoso-Ponce2

1Department of Economics, University of Huelva and CCTH
2Department of Economic Analysis and Political Economy, University of Seville



Motivation

• Stata has evolved: since version 16 (2019), it supports

direct integration with Python.

• This allows running Python code from within Stata, using

packages like pandas, numpy, or scikit-learn.

• From Stata 17+, users can also control Stata from Python

using the pystata package.

• This bidirectional interoperability expands possibilities for

advanced data science, automation, and reproducibility.

• But: despite this progress, Stata still faces limitations in

flexibility, automation, and integration depth—particularly

when customizing advanced workflows or scaling up

computations.

1



The case study: Duration models in Stata

• Estimation of discrete-time duration models with unobserved

heterogeneity.

• hshaz (Jenkins, 2004): implements proportional hazard model

with mass-point heterogeneity à la Heckman-Singer (1984).

• hshaz2 (Troncoso-Ponce, 2017): same model, but using

algebraic gradient and Hessian (Stata’s d2 method) ⇒ huge

speed-up.

• Example: youth unemployment data from Spanish Social

Security (CSWH), 2000–2013.

• Sample size: 568,042 observations (unispell), >1.5 million

(multispell).

2



Model specification

• Discrete-time hazard model with time-varying covariates and

unobserved heterogeneity:

h(t|x , η) = 1− exp(− exp(λ(t) + xβ + η))

• Heterogeneity modeled as a finite mixture:

η ∈ {η1, η2, ..., ηP}.
• Estimated via maximum likelihood. The likelihood

contribution of individual i :

Li =
P∑
j=1

πj

Ti∏
t=1

hyitijt (1− hijt)
1−yit

• hshaz2 allows estimation with up to 5 support points and

multispell structures.

• Estimation with 2 mass-points:

Type 1: η1 = 0, Type 2: η2 estimated, π1 + π2 = 1 3



hshaz vs. hshaz2: Analytical Efficiency

• hshaz2 (Troncoso-Ponce, 2017) rewrites Jenkins’ hshaz using

explicit algebraic derivatives:

• Gradient and Hessian coded analytically using Stata’s d2

method.

• Leads to major gains in computation time.

• Code size comparison (effective lines):

• hshaz: 735 lines; hshaz ll: 267 lines.

• hshaz2: 1,957 lines; hshaz2 ll: ∼25,900 lines / ∼1.35M

characters.

4



Speed gains (unispell, 568,042 obs)

Method Running time (hh:mm:ss)

hshaz — Two mass-points 0:22:20

hshaz — Three mass-points 0:43:08

hshaz2 — Two mass-points 0:00:42

hshaz2 — Three mass-points 0:01:13

5



From Stata to Python – Why and how?

• What lies beyond Stata? Time to explore other universes.

• Challenge 1: Replicate hshaz2 results in Python.

• Challenge 2: Beat Stata in speed and flexibility.

• First attempts with numpy and scipy: failed to converge or

extremely slow.

• statsmodels and other R-inspired libraries: better, but

inaccurate and inefficient.

• Stata proved both faster and more precise — hard to beat

C-compiled routines.

• Needed a different angle: What does cutting-edge

computation look like today?

6



“Using a sledgehammer to crack a nut”

Yes... but what if that nut is multidimensional, noisy, and moving?

7



JAX: Modern Optimization Beyond Deep Learning

• Epiphany: Tensor libraries are still calculus libraries.

• If they compute gradients for deep learning, they can optimize

any differentiable function.

• Auto-differentiation with JAX eliminates manual derivative

coding.

• Optimization with scipy.optimize: BFGS, L-BFGS-B,

trust-constr.

• Achieved execution time: ∼ 30 seconds.

• Greater flexibility for future model extensions.

• Final twist: could this be called from Stata?

8



Python implementation

• Separate programs for each number of mass points, and for

each optimization method: BFGS, L-BFGS-B, trust-constr.

• Also includes a generic version where number of mass points

is an input argument.

• Code size: ∼100 lines per case (excluding comments).

• Fully modular, flexible, and replicable.

• Allows easy benchmarking across solvers and configurations.

9



Calling Python from Stata

• Python programs were executed via .do files using Stata’s

python integration.

• Requires only: jax, scipy, statsmodels, pandas.

• Execution from Stata was even faster than from the terminal.

• Full integration is feasible and efficient.

Stata is no longer an island.

The bridge to Python works — and it’s fast.

10



Speed comparison (unispell, 568,042 obs)

Model Execution method Time

Two mass-points Stata (hshaz) 22 min 20 s

Stata (hshaz2) 42 s

Python (terminal) 30.0 s

Python via Stata 16.8 s

Three mass-points Stata (hshaz) 43 min 08 s

Stata (hshaz2) 1 min 13 s

Python (terminal) 40.7 s

Python via Stata 21.0 s

Execution times rounded to seconds where applicable.

11



Execution Time by Method and Model

Log scale reveals massive gains in performance.
12



Conclusions

• Significant reduction in computation time — from over 40

minutes to under 30 seconds.

• Much shorter code — ∼100 lines per version (no manual

derivatives).

• No need for Hessians — auto-differentiation handles

everything.

• Full Stata–Python integration — seamless execution via

python in .do files.
• Cutting-edge tools — vectorized libraries and robust
optimizers from operations research.

• JAX, scipy.optimize, and multiple solver choices (e.g.,

BFGS, trust-constr).

• Flexible backend: suitable for complex, nonlinear models.

Efficient, transparent, and future-proof estimation.
13



Thank You

Thank you for your attention!

Questions are welcome.

A. Morales-Kirioukhina — alejandro.morales@dege.uhu.es
14


