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Introduction

Decision trees

Decision tree-structured models are predictive models that use
tree-like diagrams

Classification trees: the target variable takes a finite set of values

Regression trees: the target variable takes real numbers

Each branch in the tree represents a sample split criterion

Several Approaches:

Chi-square automated interaction detection, CHAID (Kass 1980;
Biggs et al. 1991)

Classification and Regression Trees, CART (Breiman et al. 1984)

Random Forests (Breiman 2001; Scornet et al. 2015)
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Introduction

A simple tree structure

y (x1, x2)


= y1 if x1 ≤ s1
= y2 if x1 > s1 and x2 ≤ s2
= y3 if x1 > s1 and x2 > s2

x1 ≤ s1

y = y1 x2 ≤ s2

y = y2 y = y3

yes no

yes no
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Introduction

CART

CART objective is to estimate a binary tree structure

It performs three algorithms:
Tree-growing: step-optimal recursive partition (LS on 50 cells with
at most two terminal nodes ≈ 6× 1014 models)
Tree-pruning & Obtaining the honest tree

The last two algorithms attempt to minimize overfitting (growing
trees with no external validity)

test sample
cross-validation, bootstrap

In Stata, modules <chaid> perform CHAID and <cart> performs
CART analysis for failure time data
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Introduction

Random Forests

Random forests is an ensemble learning method to generate
predictions using tree structures

Ensemble learning method: use of many strategically generated
models

First step: create multitude of (presumably over-fitted) trees with
tree-growing algorithm

The multitude of trees are obtained by random sampling (bagging)
and by random choice of splitting variables

Second step: case predictions are built using modes (in
classification) and averages (in regression)

In Stata, <sctree> is a Stata wrapper for the R functions "tree()",
"randomForest()", and "gbm()"

Classification tree with optimal pruning, bagging, boosting, and
random forests
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Algorithms

Growing the tree (CART & Random Forests)

Requires a so-called training or learning sample

At iteration i with tree structure Ti consider all terminal nodes
t∗ (Ti)

Classification: Let i (Ti) be an overall impurity measure (using the
gini or entropy index)
Regression: Let i (Ti) be the residual sum of squares in all terminal
nodes
The best split at iteration i identifies the terminal node and split
criterion that maximizes i (Ti)− i (Ti+1)

Recursive partitioning ends with the largest possible tree, TMAX

where there are no nodes to split or the number of observations
reach a lower limit (splitting rule)
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Algorithms

Overfitting and aggregation bias

In a trivial setting, the result is equivalent to dividing the sample
into all possible cells and computing within-cell least squares

Overfitting: TMAX will usually be too complex in the sense that it
has no external validity and some terminal nodes should be
aggregated

Besides, a more simplified structure will normally lead to more
accurate estimates since the number of observations in each
terminal node grows as aggregation takes place

However, if aggregation goes too far, aggregation bias becomes a
serious problem
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Algorithms

Pruning the tree: Error-complexity clustering (CART)

In order to avoid overfitting, CART identifies a sequence of nested
trees that results from recursive aggregation of nodes from TMAX

with a clustering procedure

For a given value α, let R (α,T) = R (T) + α |T| where |T| denotes
the number of terminal nodes, or complexity, of tree T and R (T) is
the MSE in regression or the misclassification rate in classification

The optimal tree for a given α, T (α), minimizes R (α,T) within the
set of subtrees of TMAX

T (α) belongs to a much broader set than the sequence of trees
obtained in the growing algorithm

Pruning identifies a sequence of real positive numbers
{α0, α1, ..., αM} such that αj < αj+1 and
TMAX ≡ T (α0) � T (α1) � T (α2) � . . . � {root}
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Algorithms

Honest tree (CART)

Out of the sequence of optimal trees, {T (αj)}j, TMAX has lowest
R (T) in the learning sample by construction and R (·) increases
with α

The honest tree algorithm chooses the simplest tree that
minimizes

R (T) + s× SE (R (T)) , s ≥ 0

With partitioning into a learning and a test sample, R (T) and
SE (R (T)) are obtained using the test sample
With V-fold cross validation the sample is randomly partitioned V
times into a learning and a test sample. For each αj, R (T) and
SE (R (T)) are obtained through averaging of results in the V
partitions
With the bootstrap under regression, s > 0 and SE (R (TMAX)) is
obtained using the bootstrap
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Algorithms

TMAX : 5 terminal nodes

1

2
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Algorithms

T1: Node 2 becomes terminal

1

2 3

6

8 9

7
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Algorithms

T2: Node 1 becomes terminal

1

The sequence of optimal trees is

{TMAX,T1,T2 ≡ {root}}

with |TMAX| = 5, |T1| = 4, |T2| = 1

Using a test sample, among the three we would choose the tree
that gives a smaller Rts (T) + s× SE (Rts (T))
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Algorithms

CART properties

Some basic results for recursive partitioning can be found in
(Breiman et al. 1984, ch.12)

Consistency requires an ever more dense sample at all
n-dimensional balls of the input space

Cost-complexity minimization together with test-sample R (·)
should help this condition is not to strong

For small samples correlation in splitting variables
induces instability in the tree topology
interpretation of the contribution of each splitting variable is
problematic
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Algorithms

Bagging (Random Forests)

Bagging is an ensemble method that reduces the problem of
overfitting by trading off large bias in each model considered with
higher accuracy and less bias by aggregating results from all
models considered

bootstrapping to generate a multitude of models
aggregating to make a final prediction (mode in classification;
average in regression)

Two methods to simultaneously obtain alternative models:
Sampling observations
Sampling splitting variables

Focus in Random Forests is on prediction, not interpretation
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Algorithms

Large sample properties

Breiman et al. (1984): Consistency in recursive splitting algorithms

Sexton and Laake (2009): Jackknife standard error estimator in
bagged ensemble

Mentch and Hooker (2014): Asymptotic sampling distribution in
Random Forests

Efron (2014): Estimators for standard errors for the predictions in
bagged Random Forests (Infinitesimal Jackknife and the
Jackknife-after-Bootstrap)

Scornet et al. (2015): First consistency result for the original
Breiman (2001) algorithm in the context of regression models
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crtrees
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crtrees

The crtrees ado

crtrees depvar varlist [if] [in], options

depvar: output variable (discrete in classification)

varlist: splitting variables (binary, ordinal, or cardinal)

the command implements both CART and Random Forests in
classification and regression problems

by default, the command performs Regression Trees (CART in a
regression problem) with a constant in each terminal node using a
test sample with 50 percent the original sample size, and the 0 SE
rule for estimating the honest tree
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crtrees

Model Options

rforests: performs growing the tree and bagging. By default,
crtrees performs CART

classification: performs classification trees

generate(newvar): new variable name for model predictions.
This is required when options st_code and/or rforests are
used

bootstraps(#): only available for regression trees (to obtain
SE (TMAX)) and for rforests (for bagging)

seed(#), stop(#): seed for random number generator and
stopping rule for growing the tree
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crtrees

Options for regression problems (both in CART and
Random Forests)

regressors(varlist): controls in terminal nodes. A
regression line is estimated in each terminal node

noconstant: regression line does not include the constant

level(#): sets confidence level for regression output display
when test sample is used (this option is available with CART)
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crtrees

Options for classification problems (both in CART and
Random Forests)

impurity(string): impurity measure, either “gini” or “entropy”

priors(string): Stata matrix with prior class probabilities
(learning sample frequencies by default)

costs(string): name of Stata matrix with costs of
misclassification. By default, they are 0 in diagonal and 1
elsewhere

detail: displays additional statistics for terminal nodes
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crtrees

CART options

lssize(#): proportion of the learning sample (default is 0.5)

tsample(newvar): identifies test sample observations
(e(sample) includes also the learning sample)

vcv(#): sets V-fold cross validation parameter

rule(#): SE rule to identify honest tree

tree: text representation of estimated tree

st_code: Stata code to generate tree predictions
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crtrees

Random Forests options

rsplitting(#): relative size for subsample splitting variables
(default is 0.33)

rsampling(#): relative subsample size (default is 1, with
replacement; otherwise, without replacement)

oob: out-of-bag misclassification costs using observations not
included in their bootstrap sample (default is using all
observations)

ij: standard errors using Infinitessimal Jacknife (the
nonparametric delta method); only available with regression
problems; default is jackknife-after-bootstrap

savetrees(string): name of file to save mata matrices from
multitude of trees

this is required to run predict after crtrees with rforests option. No
automatic replacement of existing file is allowed. If unspecified, crtrees
will save in the current working directory the file matatrees 25 / 52



crtrees

crtrees_p

After crtrees, we can use predict to obtain model predictions in
the same or alternative samples

the model predictions are computed using the honest tree under
CART, the average prediction of all trees from bagging with
rforest in a regression problem, or the most popular vote from
all trees from bagging with rforests in a classification problem

with rforest in a regression problem, it also creates a new
variable with the standard error of the prediction using all trees
from bagging

with rforests in a classification problem, it also creates a new
variable containing the bootstrap misclassification cost (by default,
the probability of misclassification) using all trees from bagging

26 / 52



Examples

Examples with auto data
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Examples

Regression trees without controls

crtrees price trunk weight length foreign gear_ratio,

seed(12345) rule(2)

regression trees with sample partition, learning sample 0.5 and 2
SE rule

the seed is required to ensure replicability because partitioning
the sample is random
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Examples

Regression trees without controls (cont’d)

Regression Trees with learning and test samples (SE rule: 2)

Learning Sample Test Sample
|T*| = 2
Number of obs = 37 Number of obs = 37
R-squared = 0.5330 R-squared = 0.3769
Avg Dep Var = 6205.378 Avg Dep Var = 6125.135
Root MSE = 2133.378 Root MSE = 2287.073

Terminal node results:

Node 2:
Characteristics:

1760<=weight<=3740
2.24<=gear_ratio<=3.89

Number of obs = 32
Average = 5329.125
Std.Err. = 329.8

Node 3:
Characteristics:

3830<=weight<=4840
149<=length<=233
2.19<=gear_ratio<=3.81

Number of obs = 5
Average = 11813.4
Std.Err. = 1582
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Examples

Regression trees with controls

crtrees price trunk weight length foreign gear_ratio,

reg(weight) stop(5) lssize(0.6) generate(y_hat)

seed(12345) rule(1)

variable weight is both splitting variable and control

growing the tree stops when the regression cannot be computed
or when the number of observations is smaller or equal to 5
new variable y_hat includes predictions
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Examples

Regression trees with controls (cont’d)
Regression Trees with learning and test samples (SE rule: 1)

Learning Sample Test Sample
|T*| = 2
Number of obs = 44 Number of obs = 30
R-squared = 0.5814 R-squared = 0.4423
Avg Dep Var = 6175.091 Avg Dep Var = 6150.833
Root MSE = 2008.796 Root MSE = 2258.638

Terminal node results:

Node 2:
Characteristics:

147<=length<=233
foreign==0
2.19<=gear_ratio<=3.81

Number of obs = 29
R-squared = 0.4900

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight 3.185787 .6643858 4.80 0.000 1.883614 4.487959
_const -4520.597 2219.4 -2.04 0.042 -8870.54 -170.653

Node 3:
Characteristics:

foreign==1
2.24<=gear_ratio<=3.89

Number of obs = 15
R-squared = 0.7650

price Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight 5.277319 .607164 8.69 0.000 4.0873 6.467339
_const -5702.361 1452.715 -3.93 0.000 -8549.629 -2855.092
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Examples

Classification trees with V-fold cross-validation

crtrees foreign price trunk, class stop(10) vcv(20)

seed(12345) detail tree rule(0.5)

en each partition, 100/20=5 percent of the sample is test sample

additional information is presented in the terminal nodes

tree text representation is displayed
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Examples

Classification trees with V-fold cross-validation (cont’d)
Classification Trees with V-fold Cross Validation (SE rule: .5)

Impurity measure: Gini

Sample V-fold cross validation
Number of obs = 74 V = 20
|T*| = 3
R(T*) = 0.1622 R(T*) = 0.2472

SE(R(T*)) = 0.1104
Text representation of tree:
At node 1 if trunk <= 15.5 go to node 2 else go to node 3
At node 2 if price <= 5006.5 go to node 4 else go to node 5

Terminal node results:
Node 3:

Characteristics:
16<=trunk<=23

Class predictor = 0
r(t) = 0.065
Number of obs = 31
Pr(foreign=0) = 0.935
Pr(foreign=1) = 0.065

Node 4:
Characteristics:

3291<=price<=4934
5<=trunk<=15

Class predictor = 0
r(t) = 0.259
Number of obs = 27
Pr(foreign=0) = 0.741
Pr(foreign=1) = 0.259

Node 5:
Characteristics:

5079<=price<=15906
5<=trunk<=15

Class predictor = 1
r(t) = 0.188
Number of obs = 16
Pr(foreign=0) = 0.188
Pr(foreign=1) = 0.812
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Examples

Automatic generation of Stata code

crtrees foreign price trunk, class stop(10) vcv(20)

seed(12345) detail tree rule(0.5) st_code gen(pr_class)

options generate() and st_code are required
in the output display, we can find Stata code lines to generate
predictions

this code can be copied and pasted into do files or can be used as
guidance to generate code in other software
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Examples

Automatic generation of Stata code (cont’d)
Classification Trees with V-fold Cross Validation (SE rule: .5)

Impurity measure: Gini

Sample V-fold cross validation
Number of obs = 74 V = 20
|T*| = 3
R(T*) = 0.1622 R(T*) = 0.2472

SE(R(T*)) = 0.1104
Text representation of tree:
At node 1 if trunk <= 15.5 go to node 2 else go to node 3
At node 2 if price <= 5006.5 go to node 4 else go to node 5

Terminal node results:
Node 3:

Characteristics:
16<=trunk<=23

Class predictor = 0
r(t) = 0.065
Number of obs = 31
Pr(foreign=0) = 0.935
Pr(foreign=1) = 0.065

Node 4:
Characteristics:

3291<=price<=4934
5<=trunk<=15

Class predictor = 0
r(t) = 0.259
Number of obs = 27
Pr(foreign=0) = 0.741
Pr(foreign=1) = 0.259

Node 5:
Characteristics:

5079<=price<=15906
5<=trunk<=15

Class predictor = 1
r(t) = 0.188
Number of obs = 16
Pr(foreign=0) = 0.188
Pr(foreign=1) = 0.812

// Stata code to generate predictions
generate pr_class=.
replace pr_class=0 if 3291<=price & price<=15906 & 16<=trunk & trunk<=23
replace pr_class=0 if 3291<=price & price<=4934 & 5<=trunk & trunk<=15
replace pr_class=1 if 5079<=price & price<=15906 & 5<=trunk & trunk<=15
// end of Stata code to generate predictions

35 / 52



Examples

Random forests with regression

crtrees price trunk weight, rforests regressors(weight)

generate(p_hat) bootstraps(500)

Random Forests requires options rforests, generate, and
bootstraps

subsampling and random selection of splitting variables is
controlled with options rsampling and rsplitting
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Examples

Random forests with regression (cont’d)

Random Forests: Regression
Bootstrap replications (550)

100 200 300 400 500
.................................................. 500
.....

Dep. Variable = price
Splitting Variables = trunk weight
Regressors = weight
Bootstraps = 550

Number of obs = 74
R-squared = 0.6079
Model root SS = 19649
Residual root SS = 16098
Total root SS = 25201

Variable Obs Mean Std. Dev. Min Max

p_hat 74 5954.731 2299.715 -2284.176 12357.13
p_hat_se 74 2418.164 3974.634 346.2865 31753.67

Jacknife-after-Bootstrap Standard Errors

(Note: computing time: 4.62 seconds)
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Examples

predict

Under CART, the model uses the honest tree:
. crtrees price trunk weight length, seed(12345)
. predict price_hat

Under Random Forest, crtrees creates mata matrix file where
all trees in the forest are stored ( by default this matrix is named
matatrees and saved in the working directory)
. !rm -f mytrees
. crtrees price trunk weight length foreign gear_ratio ///

in 1/50,reg(weight foreign) stop(5) lssize(0.6) ///
generate(p_hat) seed(12345) rsplitting(.4) rforests ///
bootstraps(500) ij savetrees("mytrees")

. predict p_hat2 p_hat_sd in 51/l, opentrees("mytrees")
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Examples

predict (cont’d)

Random Forests: Regression
Bootstrap replications (500)

100 200 300 400 500
.................................................. 500

Dep. Variable = price
Splitting Variables = trunk weight length foreign gear_ratio
Regressors = weight foreign
Bootstraps = 500

Number of obs = 50
R-squared = 0.7851
Model root SS = 19466
Residual root SS = 7141
Total root SS = 21968

Variable Obs Mean Std. Dev. Min Max

p_hat 50 6149.417 2780.845 3613.405 13514.61
p_hat_se 50 787.3381 680.1503 153.0508 3034.261

Infinitessimal Jacknife Standard Errors

Variable Obs Mean Std. Dev. Min Max

p_hat2 24 4114.012 389.0997 3049.175 4691.118
p_hat_sd 24 1722.967 1096.124 571.7336 4666.17
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Simulations

Simulations
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Simulations

Simulation 1: Regression Trees with constant

s1 ≤ 4

s2 ≤ 3

y = −1.64 + ε y = ε

y = 1.64 + ε

yes no

yes no

ε ∼ N (0, 1)
s1 ∈ {2, 4, 6, 8} , s2 ∈ {3, 6, 9, 12} , s3 = 0.9× s1
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Simulations

crtrees y s1 s2 s3, stop(5) rule(2)

Regression Trees with learning and test samples (SE rule: 2)

Learning Sample Test Sample
|T*| = 3
Number of obs = 524 Number of obs = 476
R-squared = 0.5294 R-squared = 0.6102
Avg Dep Var = 0.637 Avg Dep Var = 0.654
Root MSE = 1.034 Root MSE = 0.972

Terminal node results:

Node 3:
Characteristics:

6<=s1<=8
Number of obs = 255
Average = 1.638653
Std.Err. = .06302

Node 4:
Characteristics:

2<=s1<=4
s2==3

Number of obs = 60
Average = -1.600958
Std.Err. = .1316

Node 5:
Characteristics:

2<=s1<=4
6<=s2<=12

Number of obs = 209
Average = .0571202
Std.Err. = .06808
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Simulations

Simulation 2: RT with regression line

s1 ≤ 4

s2 ≤ 3

y = −1.64 + x + ε y = ε

y = 1.64 + ε

yes no

yes no

x, ε ∼ N (0, 1),
s1 ∈ {2, 4, 6, 8} , s2 ∈ {3, 6, 9, 12}
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Simulations

crtrees y s1 s2, reg(x1) stop(5)

Regression Trees with learning and test samples (SE rule: 2)

Learning Sample Test Sample
|T*| = 3
Number of obs = 504 Number of obs = 496
R-squared = 0.6420 R-squared = 0.5200
Avg Dep Var = 0.620 Avg Dep Var = 0.690
Root MSE = 0.987 Root MSE = 1.030

Terminal node results:

Node 3:
Characteristics:

6<=s1<=8
Number of obs = 248

R-squared = 0.0121

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x .117363 .0700327 1.68 0.094 -.0198986 .2546246
_const 1.758492 .0643814 27.31 0.000 1.632307 1.884677

Node 4:
Characteristics:

2<=s1<=4
s2==3

Number of obs = 76
R-squared = 0.5551

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x 1.087398 .1084246 10.03 0.000 .8748901 1.299907
_const -1.529997 .1171627 -13.06 0.000 -1.759632 -1.300362

Node 5:
Characteristics:

2<=s1<=4
6<=s2<=12

Number of obs = 180
R-squared = 0.0150

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x -.1136537 .0710472 -1.60 0.110 -.2529037 .0255962
_const -.0210631 .0738107 -0.29 0.775 -.1657295 .1236033
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Simulations

Simulation 3: Classification trees

s1 ≤ 4

s2 ≤ 6

Class 0 w.p. .7 Class 0 w.p. .3

Class 0 w.p. .1

yes no

yes no

Class ∈ {0, 1} , s1 ∈ {2, 4, 6, 8} , s2 ∈ {3, 6, 9, 12}
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Simulations

crtrees Class s1 s2, class

Classification Trees with learning and test samples (SE rule: 1)

Impurity measure: Gini

Learning Sample Test Sample
Number of obs = 526 Number of obs = 474
|T*| = 3
R(T*) = 0.1958 R(T*) = 0.2229

SE(R(T*)) = 0.0191
Terminal node results:
Node 3:

Characteristics:
6<=s1<=8

Class predictor = 0
r(t) = 0.097
Number of obs = 277

Node 4:
Characteristics:

2<=s1<=4
3<=s2<=6

Class predictor = 1
r(t) = 0.289
Number of obs = 121

Node 5:
Characteristics:

2<=s1<=4
9<=s2<=12

Class predictor = 0
r(t) = 0.320
Number of obs = 128
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Simulations

Simulation 4: Classification trees with 3 classes

s1 ≤ 4

s2 ≤ 6

1 wp .7
2 wp .3

1 wp .3
2 wp .7

1 wp .1
3 wp .9

yes no

yes no

Class ∈ {1, 2, 3} , s1 ∈ {2, 4, 6, 8} , s2 ∈ {3, 6, 9, 12}
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Simulations

crtrees Class s1 s2, class stop(5) rule(0)

Classification Trees with learning and test samples (SE rule: 0)

Impurity measure: Gini

Learning Sample Test Sample
Number of obs = 522 Number of obs = 478
|T*| = 3
R(T*) = 0.1973 R(T*) = 0.2038

SE(R(T*)) = 0.0184
Terminal node results:
Node 3:

Characteristics:
6<=s1<=8

Class predictor = 3
r(t) = 0.112
Number of obs = 250

Node 4:
Characteristics:

2<=s1<=4
3<=s2<=6

Class predictor = 1
r(t) = 0.311
Number of obs = 148

Node 5:
Characteristics:

2<=s1<=4
9<=s2<=12

Class predictor = 2
r(t) = 0.234
Number of obs = 124
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Extensions

Extensions

combining splitting variables in a single step
categorical splitting variables
graphs producing tree representation and sequences of R (T)
estimates
boosting
use of random forests for PO-based inference in high-dimensional
parameters
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Extensions

Thank you

50 / 52



Extensions

Biggs, D., B. De Ville, and E. Suen (1991). A method of choosing
multiway partitions for classification and decision trees. Journal of
applied statistics 18(1), 49–62.

Breiman, L. (2001). Random forests. Machine learning 45(1), 5–32.
Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984).

Classification and Regression Trees. Belmont,CA: Wadsworth.
Efron, B. (2014). Estimation and accuracy after model selection.

Journal of the American Statistical Association 109(507), 991–1007.
Kass, G. V. (1980). An exploratory technique for investigating large

quantities of categorical data. Journal of the Royal Statistical
Society: Series C (Applied Statistics) 29(2), 119–127.

Mentch, L. and G. Hooker (2014). Ensemble trees and clts: Statistical
inference for supervised learning. stat 1050, 25.

Scornet, E., G. Biau, J.-P. Vert, et al. (2015). Consistency of random
forests. The Annals of Statistics 43(4), 1716–1741.

51 / 52



Extensions

Sexton, J. and P. Laake (2009). Standard errors for bagged and
random forest estimators. Computational Statistics & Data
Analysis 53(3), 801–811.

52 / 52


	Introduction
	Algorithms
	crtrees
	Examples
	Simulations

