Interactive Graphs with Stata

M. Escobar (modesto@usal.es) P. Cabrera (pablocal@usal.es)
C. Prieto (cprietos@usal.es) D. Barrios (metal@usal.es)

University of Salamanca

2019 Spanish Stata Users Group meeting

Madrid, 17th October
The aims of this presentation are:

• To show *network coincidence analysis*, which is a statistical framework to study concurrence of events.

• To present *coin*, an ado program that is able to perform this analysis.

• To show interactive graphs with Stata with the command *netcoin*.

• As an example, an analysis of people in the picture albums of an eminent character in the early 20th century will be presented.

• This kind of representations can also be applied to
 • Social media analysis.
 • Content analysis of media and textbooks.
 • Multiresponse, glm and sem analysis in questionnaires.
 • Historical representation of eminent figures.
Coincidence analysis

Definition

- Coincidence analysis is a set of techniques whose object is to detect which people, subjects, objects, attributes or events tend to appear at the same time in different delimited spaces.
- These delimited spaces are called n scenarios, and are considered as units of analysis (i).
- In each scenario a number of J events X_j may occur (1) or may not (0) occur.
- We call incidence matrix (X) an $n \times J$ matrix composed by 0 and 1, according to the incidence or not of every event X_j.
- In order to make comparative analysis of coincidences, these scenarios may be classified in H sets.
An example of incidences matrix
Meeting the people
An example of incidences matrix

Coding the people
Input of the analyses

Incidences matrix (appearance or not appearance of 8 events in 4 scenarios)

The input of the analysis is a \(X \) matrix constructed with \(i \) rows representing scenarios, and the \(j \) columns representing events:

\[
X = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{bmatrix}
\]
• From the incidence matrix (X), the coincidences matrix (F) can be obtained by

\[F = X'X \]

• where each element f_{jk} represents the number of scenarios where X_j and X_k are both 1, that is to say, the two events coincide.

• As may be imagined, there are special elements (f_{jj}) in the diagonal, which represent the number of incidences of X_j in the n scenarios.
Example of coincidences matrix
Coincidences matrix (co-appearances in the pictures)

The symmetric F matrix is composed by i rows and j columns representing incidences (diagonal) and coincidences of events:

$$F = \begin{bmatrix}
3 & 4 \\
3 & 2 & 2 \\
2 & 4 \\
3 & 4 & 2 & 4 \\
3 & 4 & 2 & 4 & 4 \\
3 & 4 & 2 & 4 & 4 & 4 \\
3 & 4 & 2 & 4 & 4 & 4 & 4 \\
3 & 4 & 2 & 4 & 4 & 4 & 4 & 4 \\
3 & 4 & 2 & 4 & 4 & 4 & 4 & 4 & 4 \\
1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
1 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 1 & 2
\end{bmatrix}$$
3 grades of coincidence
Mere and probable events

- Two events \((X_j \text{ and } X_k)\) are defined as 1) **merely** coincident if they occur in the same scenario at least once:
 \[
 \exists i (x_{ij} = 1 \land x_{ik} = 1) \lor f_{jk} \geq 1
 \]

- Additionally, two events \((X_j \text{ and } X_k)\) are defined as 2) **conditionally** coincident if they occur more frequently than if they are independent:
 \[
 f_{jk} > \frac{f_{jj} f_{kk}}{n}
 \]
• And two events are 3) **statistically conditional** if the joint frequency of their events meets one of the following inequalities:

\[
P(r_{jk} \leq 0) < c \\
P(\theta_{jk} \leq 1) < c \\
P(p(X_j) - p(X_j|X_k) \leq 0) < c
\]

• where \(r_{jk} \) is the Haberman residual, \(\theta_{jk} \) is the odd ratio, and the third equation represents a one tailed Fisher exact test. Furthermore, \(c \) is the selected level of significance, normally 0.05)
Statistical dependence

Measurement

- Haberman residuals (r_{jk}) with normal distribution may be used to assess statistically conditional events:

$$r_{jk} = \frac{f_{jk} - \frac{f_{jj}f_{kk}}{n}}{\sqrt{\frac{f_{jj}f_{kk}(n-f_{jj})(n-f_{kk})}{n^3}}}$$
“A graph \mathcal{G} consist of two sets of information: a set of Nodes (events), $\mathcal{N} = \{n_1, n_2, ..., n_g\}$, and a set of lines (adjacencies), $\mathcal{L} = \{l_1, l_2, ..., l_L\}$ between pair of nodes ”. (Wasserman and Faust 1994).
Adjacencies
Elaboration of the adjacency matrices

• From the residual matrix, an adjacency $J \times J$ matrix A may be elaborated with all the elements equal to 0, but 1 in the case where r_{jk} is significantly below the level c.

$$A[j, k] = 1 \iff [P(r_{jk} \leq 0) < c] \land j \neq k$$

• By extension, other adjacency matrices can be elaborated following
 • The mere coincidence criterion

$$A[j, k] = 1 \iff f_{jk} \geq 1$$

• Or the conditional coincidence criterion

$$A[j, k] = 1 \iff [P(r_{jk} \leq 0) < 0.5] \land j \neq k$$
Graph representation
Fruchterman-Reingold layout
Social network programs
Stata program

- Stata has no tools for SNA.
- However, some advanced users have begun to write some routines. I wish to highlight the following works from which I have obtained insights:
 - Corten (2010) wrote a routine to visualize social networks [netplot].
 - Mihura (2012) created routines (SGL) to calculate networks centrality measures, including two Stata commands [netsis and netsummarize].
 - Afterwards, White (2013) presented a suite [network] of Stata programs for meta-analysis which includes the network graphs of Anna Chaimani in the UK. users group meeting.
 - And Grund (2013-2018, forthcoming) have presented a collection of programs to plot and analyze social networks [nwcommands].
coin

What is it?

- **coin** is an ado program in its development phase, which is capable of performing coincidence analysis.
- Its input is a dataset with scenarios as rows and events as columns.
- Its outputs are:
 - Different matrices (frequencies, percentages, residuals (3), distances, adjacencies and edges).
 - Several bar graphs, network graphs (circle, mds, pca, ca, biplot) and dendrograms (single, average, waverage, complete, wards, median, centroid).
 - Measures of centrality (degree, closeness, betweenness, information) (eigenvector and power)
 - Options to export to excel and .csv files.
- Its syntax is simple, but flexible. Many options such as output, bonferroni, p value, minimum, special event, graph controls, ...
Introduction

NCA Coincidence Types

Graphs

Adjacency Example

Remarks

Final

Command

coin

\texttt{coin \textit{varlist} [\textit{if}] [\textit{in}] [\textit{weight}] [, \textit{options}]}

Options can be classified into the following groups:

- **Outputs**: f, g, v, h, e, r, s, n, ph, o, po, pf, t, a, d, l, c, all, x, xy.

- **Controls**: head(\textit{varlist}), variable(\textit{varname}), ascending, descending, minimum (#), support(#), pvalue(#), levels(# # #), bonferroni, lminimum(#), iterations(#).

- **Plots**
 - Bar: bar, cbar(\textit{varname})
 - Graph: plot(circle|mds|ca|pca|biplot)
 - Dendrograms: dendrogram(single|complete|average|wards)
Data examples

Coincidences matrix of Unamuno’s nuclear family

```
.coin Unamuno-Jugo, f
11 events (n>=5): Unamuno Lizarraga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo
```

<table>
<thead>
<tr>
<th>Frequencies</th>
<th>Una-o</th>
<th>Liz-a</th>
<th>Fer-o</th>
<th>Pablo</th>
<th>Sal-e</th>
<th>Fel-a</th>
<th>Jose</th>
<th>Maria</th>
<th>Raf-l</th>
<th>Ramon</th>
<th>Jugo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unamuno y Jugo, Migue</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Lizarraga, Concepcion</td>
<td>12</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Fernando de</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Pablo de</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Salome de</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Felisa de</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Jose de</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Maria de</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Rafael de</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Ramon de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Jugo, Salome</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Data examples

Haberman’s residuals matrix of Unamuno’s nuclear family

```plaintext
.coin Unamuno-Jugo, normalized
11 events (n>=5): Unamuno Lizarraga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo

<table>
<thead>
<tr>
<th>Haberman residuals</th>
<th>Una-o</th>
<th>Liz-a</th>
<th>Fer-o</th>
<th>Pablo</th>
<th>Sal-e</th>
<th>Fel-a</th>
<th>Jose</th>
<th>Maria</th>
<th>Raf-1</th>
<th>Ramon</th>
<th>Jugo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unamuno y Jugo, Migue</td>
<td>18.1</td>
<td>0.9</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lizarraga, Concepcion</td>
<td>1.0</td>
<td>5.9</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Fernando de</td>
<td>-0.0</td>
<td>7.5</td>
<td>4.6</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Pablo de</td>
<td>1.9</td>
<td>9.7</td>
<td>5.9</td>
<td>8.9</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Salome de</td>
<td>2.1</td>
<td>10.5</td>
<td>3.6</td>
<td>9.8</td>
<td>12.4</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Felisa de</td>
<td>1.1</td>
<td>10.2</td>
<td>6.2</td>
<td>10.9</td>
<td>11.9</td>
<td>11.4</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Jose de</td>
<td>1.7</td>
<td>11.2</td>
<td>5.3</td>
<td>11.9</td>
<td>13.5</td>
<td>14.4</td>
<td>12.5</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Maria de</td>
<td>1.2</td>
<td>8.5</td>
<td>7.0</td>
<td>10.7</td>
<td>13.4</td>
<td>12.8</td>
<td>12.0</td>
<td>14.1</td>
<td>18.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Rafael de</td>
<td>-3.2</td>
<td>2.5</td>
<td>0.8</td>
<td>3.7</td>
<td>5.1</td>
<td>4.8</td>
<td>4.2</td>
<td>4.5</td>
<td>6.2</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>Unamuno, Ramon de</td>
<td>-1.5</td>
<td>1.4</td>
<td>2.8</td>
<td>1.5</td>
<td>2.1</td>
<td>2.0</td>
<td>2.2</td>
<td>1.9</td>
<td>2.6</td>
<td>-0.6</td>
<td>18.1</td>
</tr>
</tbody>
</table>
```

Data examples

Adjacency matrix from Haberman’s residuals matrix

```
. coin Unamuno-Jugo, adjacencies
11 events (n>=5): Unamuno Lizarra~aga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo

<table>
<thead>
<tr>
<th>Adjacency matrix</th>
<th>Una-o</th>
<th>Liz-a</th>
<th>Fer-o</th>
<th>Pablo</th>
<th>Sal-e</th>
<th>Fel-a</th>
<th>Jose</th>
<th>Maria</th>
<th>Raf-l</th>
<th>Ramon</th>
<th>Jugo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unamuno y Jugo, Miguel</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lizarra, Concepcion</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Fernando de</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Pablo de</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Salome de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Felisa de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Jose de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Maria de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Rafael de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unamuno, Ramon de</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jugo, Salome</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Data examples

Adjacency matrix from significant Haberman’s residuals matrix

```
. coin Unamuno-Jugo, adjacencies pvalue(.05)
329 scenarios. 44 statistically probable(p<=.05) coincidences. Density: 0.80. Components: 1.
11 events(n>=5): Unamuno Lizarraga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo

<table>
<thead>
<tr>
<th>Adjacency matrix</th>
<th>Una-o</th>
<th>Liz-a</th>
<th>Fer-o</th>
<th>Pablo</th>
<th>Sal-e</th>
<th>Fel-a</th>
<th>Jose</th>
<th>Maria</th>
<th>Raf-l</th>
<th>Ramon</th>
<th>Jugo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unamuno y Jugo, Migu-e</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lizárraga, Concepción</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Fernando de</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Pablo de</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Salomé de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Felisa de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, José de</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, María de</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Rafael de</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unamuno, Ramón de</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jugo, Salomé</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```
. coin Unamuno-Jugo, list key(normalized) lminimum(10)

11 events: Unamuno Lizarraga Fernando Pablo Salome Felisa Jose Maria Rafael Ramon Jugo

N Edge

14.38 Unamuno, Felisa de <-> Unamuno, María de
14.12 Unamuno, María de <-> Unamuno, Rafael de
13.48 Unamuno, Salomé de <-> Unamuno, María de
13.40 Unamuno, Salomé de <-> Unamuno, Rafael de
12.81 Unamuno, Felisa de <-> Unamuno, Rafael de
12.54 Unamuno, José de <-> Unamuno, María de
12.43 Unamuno, Salomé de <-> Unamuno, Felisa de
12.00 Unamuno, José de <-> Unamuno, Rafael de
11.93 Unamuno, Pablo de <-> Unamuno, María de
11.91 Unamuno, Salomé de <-> Unamuno, José de
11.37 Unamuno, Felisa de <-> Unamuno, José de
11.22 Lizárraga, Concepción <-> Unamuno, María de
10.86 Unamuno, Pablo de <-> Unamuno, José de
10.65 Unamuno, Pablo de <-> Unamuno, Rafael de
10.47 Lizárraga, Concepción <-> Unamuno, Felisa de
10.22 Lizárraga, Concepción <-> Unamuno, José de
netcoin

What is it?

- netcoin is a new ado command in its development phase, which is capable of create interactive graphs in html format.
- Its input is a dataset with scenarios as rows and events as columns.
- It can also use another dataset with the characteristics of the events.
- Its output is an interactive graph in html format.
- Its syntax is very simple as it uses coin to calculate its statistics.
netcoin `varlist` `[if]` `[in]` `[weight]` `[using filename]` `[, options]

Options can be classified into the following groups:

- **Controls**: `minimum(#)` `directory(dirname)` `language(en|es|ca)`
- **Outputs** (only if using): `name(varname)` `label(varname)` `size(varname)` `color(varname)` `shape(varname)` `image(varname)`
Interactive Graphs with Stata

M.E. et al.

Introduction

NCA Coincidence Types Graphs Adjacency Example coin netcoin Remarks

Final

Process

From Stata to D3-JavaScript-html
Output

Network representation of Unamuno’s family album
Remarks
About coincidence analysis

- I’ve proposed a manner of analyzing coincidences mixing different statistical tools.
- I think that the novelty of coincidence analysis is combining several techniques in order to represent data with interactive html graphs.
- This may be useful in analyzing dichotomous variables, but also to represent regressions, structural equation models and other networked graphs.
- I think that this approach could be extensively used with the aid of the coin, precoin, netcoin and other forthcoming programs.
Availability of coin and netcoin

If you are users of a version superior to the 11.2 of Stata, you can have a free copy of coin by typing:

- `net install coin, from(https://sociocav.usal.es/me/stata/)`

It is still a beta version, but it works reasonably well and it is being improved. It could be updated as follows:

- `adoupdate, update`

`netcoin` is more difficult to install as it requires Stata 16.0, Python and the `igraph` module.

Comments and suggestions will be welcome!!
¡Gracias por la atención prestada!
modesto@usal.es