Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probi bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Introduction to Bayesian Analysis in Stata

Gustavo Sánchez

StataCorp LLC

October 24 , 2018 Barcelona, Spain

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesml Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

1 Bayesian analysis: Basic Concepts

- The general idea
- The Method
- 2 The Stata Tools

Outline

- The general command bayesmh
- The bayes prefix
- Postestimation Commands
- 3 A few examples
 - Linear regression
 - · Panel data random effect probit model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Change point model

Outline

The general idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

The general idea

Frequentist

ъ

・ロト ・ 同ト ・ ヨト ・ ヨト

The general idea

Fundamental MCMC

bayes: - bayesmh

bavesstats ess bavestestmodel

bayesgraph

The general idea

I don't know.

in, ways	union.	hours	who, work	10000-00	14.08	gra de	111,000
	-	11.	11		DOM: N	11	1.063333
1.03463			10	0.63333333	bill a site	11	
1.14 8877			2.2		D-David B	11	
1 18.1775				0.43333.333	bill a site	11	
1.1773642		10	24	3 6666.63	black	12	2,725645
1,774681		30	10	1.4	black	12	
2.433206		50			bild cit	12	3.65.2564
		47	12	1.8333.33	104/18	1.1	
3.433363		47	3.55	1000007	b. and	11	1.1546777
2.43.4172		42	93	1.1166.63	biack	12	
	1	45	90		black	12	
		48	72		DOA-CR.	1.7	33, 33333
1.362348		40	13	. 20	black	12	.71113044
1.205110			22		black	12	1.13.6615

Outline

The general idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Bayesian Analysis vs Frequentist Analysis

Frequentist Analysis

- Estimate unknown fixed parameters.
- Data for a (hypothetical) repeatable random sample.
- Uses data to estimate unknown fixed parameters.
- Data expected to satisfy the assumptions for the specified model.

"Conclusions are based on the distribution of statistics derived from random samples, assuming unknown but fixed parameters." **Bayesian Analyis**

- Probability distributions for unknown random parameters
- The data is fixed.
- Combines data with prior beliefs to get probability distributions for the parameters.
- Posterior distribution is used to make explicit probabilistic statements.

"Bayesian analysis answers questions based on the distribution of parameters conditional on the observed sample."

Outline

The general idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Stata's simple syntax: bayes:

regress y x1 x2 x3

bayes: regress y x1 x2 x3

logit y x1 x2 x3

bayes: logit y x1 x2 x3

mixed y x1 x2 x3 || region: bayes: mixed y x1 x2 x3 || region:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Outline

The general idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probi bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

The Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The Method

• Inverse law of probability (Bayes' Theorem):

$$f(\theta|y) = \frac{f(y; \theta) \pi(\theta)}{f(y)}$$

- Marginal distribution of y, f(y), does not depend on (θ)
- We can then write the fundamental equation for Bayesian analysis:

 $\boldsymbol{\rho}(\theta|\boldsymbol{y}) \propto \boldsymbol{L}(\boldsymbol{y}|\theta) \pi(\theta)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The general idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

The Method

- Let's assume that both, the data and the prior beliefs, are normally distributed:
 - The data: $y \sim N(\theta, \sigma_d^2)$

• The prior:
$$\theta \sim N\left(\mu_p, \sigma_p^2\right)$$

- Homework...: Doing the algebra with the fundamental equation we find that the posterior distribution would be normal with (see for example Cameron & Trivedi 2005):
 - The posterior: $\theta | \mathbf{y} \sim \mathbf{N} \left(\mu, \sigma^2 \right)$

Where:

$$\mu = \sigma^2 \left(N \bar{y} / \sigma_d^2 + \mu_p / \sigma_p^2 \right)$$

$$\sigma^2 = \left(N / \sigma_d^2 + 1 / \sigma_p^2 \right)^{-1}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example (Posterior distributions)

50

100

150

Number of days

200

250

300

<ロ> <四> <回> <回> <三> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回</p>

Outline

The genera idea

The Method Fundamental

equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

- The Method
 - The previous example has a closed form solution.
 - What about the cases with non-closed solutions, or more complex distributions?
 - Integration is performed via simulation
 - We need to use intensive computational simulation tools to find the posterior distribution in most cases.
 - Markov chain Monte Carlo (MCMC) methods are the current standard in most software. Stata implement two alternatives:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Metropolis-Hastings (MH) algorithm
- Gibbs sampling

Outline

The genera idea

The Method Fundamental

мсмс

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

The Method

- Links for Bayesian analysis and MCMC on our youtube channel:
 - Introduction to Bayesian statistics, part 1: The basic concepts

https://www.youtube.com/watch?v=0F0QoMCSKJ4&feature=youtu.be

• Introduction to Bayesian statistics, part 2: MCMC and the Metropolis Hastings algorithm.

https://www.youtube.com/watch?v=OTO1DygELpY&feature=youtu.be

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- The genera idea
- The Method Fundamental equation MCMC
- Stata tools
- bayes: bayesm Postestimation
- Examples
- 1 Linear regression bayesstats ess bayesgraph thinning() bayestestmodel
- 2- Random effects probi bayesgraph bayestest interval
- 3- Change point mode Gibbs sampling
- Summary
- References

The Method

Monte Carlo Simulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Method

Outline

The genera idea

The Method Fundamental equation MCMC

Stata tools

bayes: - bayesn Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probi bayesgraph bayestest interval

3- Change point mode Gibbs sampling

Summary

References

Markov Chain Monte Carlo Simulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

The genera idea

The Method Fundamental

MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probi bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

The Method

- Metropolis Hastings intuitive idea
 - Green points represent accepted proposal states and red points represent rejected proposal states.

・ロト・西ト・西ト・日・ 白・ シック

Outline

The genera idea

- The Method Fundamental equation MCMC
- Stata tools

bayes: - bayesn Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probi bayesgraph bayestest interval

3- Change point mode Gibbs sampling

Summary

References

The Method

- Metropolis Hastings simulation
 - The trace plot illustrates the sequence of accepted proposal states.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Method

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

We expect to obtain a stationary sequence when convergence is achieved.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

The Method

- An efficient MCMC should have small autocorrelation.
- We expect autocorrelation to become negligible after a few lags.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

The Stata tools for Bayesian regression

イロト 不得 トイヨト イヨト

Outline

- The genera idea
- The Method
- Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

- 1 Linear regression bayesstats ess bayesgraph thinning() bayestestmodel
- 2- Random effects probit bayesgraph bayestest interval
- 3- Change point model Gibbs sampling
- Summary
- References

The Stata tools: bayesmh & bayes:

- bayesmh General purpose command for Bayesian analysis
 - You need to specify all the components for the Bayesian regression: Likelihood, priors, hyperpriors, blocks, etc
- bayes: Simple syntax for Bayesian regressions
 - Estimation command defines the likelihood for the model.
 - Default priors are assumed to be "noninformative"'.
 - Other model specifications are set by default depending on the model defined by the estimation command.
 - Alternative specifications may need to be evaluated.

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

The Stata tools: Postestimation commands

・ロット (雪) ・ (日) ・ (日)

3

- Bayesstats ess
- Bayesgraph
- Bayesstats ic
- Bayestest model
- Bayestest interval
- Bayesstats summary

Outline

The general idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Examples

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmi Postestimation

Examples

1- Linear regression

bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: Linear Regression

- Let's look at our first example:
 - We have stats on the average number of days tourists spend in Cataluña and their average per capita expenditure.
 - We fit a linear regression for the average number of days.
 - Let's consider two specifications:

tripdays = $\alpha_1 + \beta_{day} * capexp_day + \epsilon_1$ tripdays = $\alpha_2 + \beta_{avg} * avgexp_cap + \epsilon_2$

Where:

tripdays : Number of days tourists spend in Cataluña. capexp_day: Tourists' daily per capita expenditure. avgexp_cap: Tourists' total per capita expenditure.

Outline

The general idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1- Linear regression

- bayesstats ess bayesgraph thinning() bayestestmodel
- 2- Random effects probit bayesgraph bayestest interval
- 3- Change point model Gibbs sampling
- Summary
- References

Example 1: Linear Regression

A B > A B > A B >

э.

http://www.ine.es

Outline

The genera idea

The Method Fundamental

equation MCMC

Stata tools bayes: - bayesm

Examples

1- Linear regression

bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: Linear Regression

• Linear regression with the bayes: prefix

bayes ,rseed(123): regress tripdays capex_day

• Equivalent model with <code>bayesmh</code>

bayesmh tripdays capexp_day, rseed(123)	
likelihood(normal(sigma2))	
<pre>prior(tripdays:capexp_day, normal(0,10000))</pre>	
<pre>prior(tripdays:_cons, normal(0,10000))</pre>	
prior(sigma2, igamma(.01,.01))	
<pre>block(tripdays:capexp_day _cons)</pre>	
block(sigma2)	

Example 1: Menu for Bayesian regression

Outline

The general idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1- Linear regression

bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

E Stata/MP 15.1 - C:\Users\gas\D	ocuments\spain18\spain18\data\tripdays.dt	ta		- 0
File Edit Data Graphics	Statistics User Window Help			
Rotaria -	Count outcomes Practional outcomes Centrealized Inear models Time series Multivoiates time arriers Spatial autoregressive models Longitudinal planet data Multilivel mised-effects models Survival analysis Epidemology and refetted Endogenous covariates Sample-selection models Treatment effects	> > > > > > > > > > > > > > > > > > >		
	SEM (structural equation modeling) LCA (latent class analysis) FMM (finite mixture models) IRT (item response theory) Survey data analysis	Ъ Ъ Ъ	Continuous outcomes Binary outcomes Ordinal outcomes Categorical outcomes	
Command	Multiple imputation Nonparametric analysis Multivariate analysis Exact statistics Resampling Power and sample size Bayesian analysis Postestimation	Regression models General estimation and regression Graphical summaries Effective sample sizes Summary statistics Information orienta Henderbeits testina usine model costerior probability	Court outcomes Fractional outcomes Generalized linear model (GLM) Survival models Selection models Censored and funcated models Zaro-inflation court models ties Multiveer models	
C\Users\gas\Documents\spain18	Other	Interval hypothesis testing	Multivariate models	CAP

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmi Postestimation

Examples

1- Linear regression

bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

- 3- Change point model Gibbs sampling
- Summary
- References

Example 1: Menu for Bayesian regression

Cancel

00

C:\Users\gas\Documents\spain18\spain18\tourism

Censored and truncated models

Zero-inflation models

Command

Result of the second se

CAP

Submit

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

OK

Cancel

Outline

- The genera
- The Method
- Fundamental equation MCMC
- Stata tools
- bayes: bayesmi Postestimation

Examples

1- Linear regression

- bayesstats ess bayesgraph thinning() bayestestmodel
- 2- Random effects probit bayesgraph bayestest interval
- 3- Change point model Gibbs sampling
- Summary
- References

Example 1: Menu for Bayesian regression

- Make the following sequence of selection from the main menu:
 - Statistics > Bayesian analysis > Regression models

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 Select 'Continuous outcomes'
- 3 Select 'Linear regression'
- 4 Click on 'Launch'
- Specify the dependent variable (tripdays) and the explanatory variable (capex_day)
- 6 Click on 'OK'

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmi Postestimation

Examples

1- Linear regression

bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: bayes: prefix

. bayes ,rseed(123) blocksummary:regress tripdays capexp_day

Burn-in ... Simulation ... Model summary

Likelihood: tripdays ~ regress(xb_tripdays,{sigma2}) Priors: {tripdays:capexp_day _cons} ~ normal(0,10000) {sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_tripdays. Block summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

```
1: {tripdays:capexp_day _cons}
2: {sigma2}
```

Fundamental MCMC

bayes: - bayesmh

1- Linear regression

bayestestmodel

bayesgraph

Example 1: bayes: prefix

. bayes , rseed(123) blocksummary:regress tripdays capexp_day

Bayesian linear regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	5
	Acceptance rate =	. 3799
	Efficiency: min =	.03477
	avg =	.08801
Log marginal likelihood = -16.207649	max =	.1146

					Equal-tailed		
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]	
tripdays							
capexp_day	0383973	.0128253	.000379	0377857	0647811	0122725	
_cons	12.64544	2.484331	.073378	12.52498	7.610854	17.84337	
sigma2	.0926729	.0928459	.004979	.0616775	.0151486	.3563017	

イロト 不得 トイヨト イヨト

Note: Default priors are used for model parameters.

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesml Postestimation

Examples

1- Linear regression

bayesstats ess bayesgraph thinning()

bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: bayesstats ess

· Let's evaluate the effective sample size

. bayesstats ess

Efficiency	summaries	MCMC	sample	size	=	10,000
------------	-----------	------	--------	------	---	--------

	ESS	Corr. time	Efficiency	
ripdavs				
capexp_day	1146.26	8.72	0.1146	
_cons	1146.27	8.72	0.1146	
sigma2	347.72	28.76	0.0348	

- We expect to have an acceptance rate (see previous slide) that is neither to small nor too large.
- We also expect to have low correlation
- Efficiencies over 10% are considered good for MH. Efficiencies under 1% would be a source of concern.

Outline

- The genera idea
- The Method
- Fundamental equation MCMC
- Stata tools
- bayes: bayesm Postestimation
- Examples
- 1 Linear regression bayesstats ess bayesgraph
- thinning() bayestestmodel
- 2- Random effects probit bayesgraph bayestest interval
- 3- Change point model Gibbs sampling
- Summary
- References

Example 1: bayesgraph

- We can use <code>bayesgraph</code> to look at the trace, the correlation, and the density. For example:
 - . bayesgraph diagnostic {capex_day}

(日)

- · The trace indicates that convergence was achieved
- Correlation becomes negligible after 10 periods

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

- 1 Linear regression bayesstats ess bayesgraph
- thinning() bayestestmodel
- 2- Random effects probit bayesgraph bayestest interval
- 3- Change point model Gibbs sampling
- Summary
- References

Example 1: bayesgraph

• We can use <code>bayesgraph</code> to look at the trace, the correlation, and the density. For example:

. bayesgraph diagnostic {sigma2}

(日)

э

· Correlation is still persistent after 10 periods

Outline

- The genera idea
- The Method
- Fundamental equation MCMC
- Stata tools
- bayes: bayesm Postestimation
- Examples
- 1 Linear regression bayesstats ess bayesgraph thinning()
- bayestestmodel
- 2- Random effects probit bayesgraph bayestest interval
- 3- Change point model Gibbs sampling
- Summary
- References

Example 1: thinning()

- We can reduce autocorrelation by using thinning
- Save the random draws skipping a prespecified number of simulated values in the MCMC iteration process.
- Use the option 'thinning(#)' to indicate that Stata should save simulated values from every (1+k*#)th iteration (k=0,1,2,...).

bayes ,nomodelsummary nodots rseed(123) /// thinning(4): regress tripdays capexp_day

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

The genera

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning()

bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: thining()

. bayes ,rseed(123) nomodelsummary thinning(4): ///
> regress tripdays capexp_day

note: discarding every 3 sample observations; using observations 1,5,9,...

Burn-in ... Simulation ...

Bayesian linear regression Random-walk Metropolis-Hastings sampling

Loa	marginal	likelihood	=	-16.191209

				Equal-	tailed	
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
tripdays						
capexp_day	0384152	.0126655	.000196	0383658	0636837	0126029
_cons	12.64972	2.455834	.037984	12.62602	7.628034	17.57862
sigma2	.0917518	.0951007	.002932	.0605151	.0151486	.3519349

Note: Default priors are used for model parameters.

MCMC iterations

Acceptance rate

Number of obs

Efficiency:

MCMC sample size =

Burn-in

42,497

10,000

2,500

.3773

.1052

.313

.418

5

=

=

=

=

min =

avg =

max =

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: bayesstats ess

• Let's evaluate again the effective sample size

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

	ESS	Corr. time	Efficiency
tripdays			
capexp_day	4159.44	2.40	0.4159
_cons	4180.27	2.39	0.4180
sigma2	1051.71	9.51	0.1052

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The efficiency improved for all the parameters.
- Correlation time was significantly reduced.

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmi Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: bayestest model

- bayestest model is another postestimation command to compare different models.
- bayestest model computes the posterior probabilities for each model.
- The result indicates which model is more likely.
- It requires that the models use the same data and that they have proper posterior.
- It can be used to compare models with:
 - Different priors and/or different posterior distributions.
 - Different regression functions.
 - Different covariates
- MCMC convergence should be verified before comparing the models.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: bayestest model

- Let's fit now two other models and compare them to the one we already fitted.
- We store the results for the three models and we use the postestimation command <code>bayestest model</code> to select one of them.

quietly {

bayes , rseed(123) saving(pcap,replace): /// regress tripdays capexp_day estimates store daily

bayes , rseed(123) saving(total,replace): /// regress tripdays avgexp_cap estimates store total

bayes , rseed(123) saving(media,replace) /// prior(tripdays:_cons, normal(9,.4)): /// regress tripdays estimates store mean

bayestest model daily total mean

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning()

bayestestmodel

2- Random effects probi bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: bayestest model

- Here is the output for bayestest model
 - . quietly {
 - . bayestest model daily total mean

Bayesian model tests

	log(ML)	P (M)	P (M y)
daily	-16.2076	0.3333	0.4997
total mean	-18.6705 -16.2955	0.3333 0.3333	0.0426 0.4577

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

• We could also assign different priors for the models:

```
. bayestest model daily total mean, //,
> prior(.15 0.75 0.1)
```

Bayesian model tests

log(ML)	P (M)	P(M y)
-16.2076		0.4910
-18.6705		0.2092
-16.2955		0.2998

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning()

bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 1: bayestest model

- Here is the output for bayestest model
 - . quietly {
 - . bayestest model daily total mean

Bayesian model tests

	log(ML)	P (M)	P (M y)
daily	-16.2076	0.3333	0.4997
total	-18.6705	0.3333	0.0426
mean	-16.2955	0.3333	0.4577

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

· We could also assign different priors for the models:

```
. bayestest model daily total mean, ///
> prior(.15 0.75 0.1)
```

Bayesian model tests

	log(ML)	P (M)	P(M y)
daily	-16.2076	0.1500	0.4910
total mean	-18.6705 -16.2955	0.7500 0.1000	0.2092 0.2998

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 2: Random Effects Probit model

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1- Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 2: Random effects probit model

• Let's use bayes: to fit a random effects for a binary variable, whose values depend on a linear latent variable.

$$y_{it} = \beta_0 + \beta_1 x \mathbf{1}_{it} + \beta_2 x \mathbf{2}_{it} + \dots + \beta_k x k_{it} + \alpha_i + \epsilon_{it}$$

Where:

$$y_{it} = \begin{cases} 1 & \text{if } y_{it} * > 0 \\ 0 & \text{otherwise} \end{cases}$$

 $\alpha_i \sim N(0, \sigma_{\alpha}^2)$ is the individual random panel effect $\epsilon_{it} \sim N(0, \sigma_e^2)$ is the idiosyncratic error term

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- This is also referred as a two-level random intercept model.
- We can also fit this model with meprobit or xtprobit, re

Outline

The genera idea

```
The Method
```

Fundamental equation MCMC

```
Stata tools
```

bayes: - bayesm Postestimation

```
Examples
```

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

```
References
```

Example 2: Random effects probit model

- This time we are going to work with simulated data.
- Here is the code to simulate the panel dataset:

```
clear
set obs 100
set seed 1
* Panel level *
generate id=_n
generate alpha=rnormal()
expand 5
* Observation level *
bysort id:generate year=_n
xtset id year
generate x1=rnormal()
generate x2=runiform()>.5
```

```
generate x3=uniform()
generate u=rnormal()
```

* Generate dependent variable *
 generate y=.5+1*x1+(-1)*x2+1*x3+alpha+u>0

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph

3- Change point model Gibbs sampling

Summary

References

Example 2: Random effects probit model

Let's show the results with meprobit:

x2 x3 cons	.9426958 .5220418	.2187448	0.017	.0933098	.9507738
x2 x3 cons	.9426958	2187448	0 017	0933098	9507738
x2 x3	. 9426958				
x 2		2941061	0.001	3662584	1.519133
	9896286	.1853433	0.000	-1.352895	6263625
x 1	.9769118	.1143889	0.000	.7527138	1.20111
У	Coef.	Std. Err.	P> z	[95% Conf.	Interval]
Log likelihood	1 = -236.8858	9	Prob >	chi2 =	0.0000
			Weldeh	+2 (2) -	00.00
Integration me	thod: mvaghe:	rmite	Integra	tion pts. =	7
				max =	5
				avg =	5.0
			-	min =	5
			Obs per	group:	
Group variable: id		id	Number	of groups =	100
Group wariable	probit regres	ssion	Number	of obs =	500
Mixed-effects					

LR test vs. probit model: chibar2(01) = 67.24 Prob >= chibar2 = 0.0000

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph

3- Change point model Gibbs sampling

Summary

References

Example 2: Random effects probit model

• We now fit the model with bayes:

bayes , nodots rseed(123) thinning(5) blocksummary: /// meprobit y x1 x2 x3 || id:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Equivalent model with bayesmh

bayesmh y x1 x2 x3, thinning(5) rseed(123)	
likelihood(probit)	
prior(y:i.id, normal(0,y:var))	///
prior(y:x1 x2 x3 _cons, normal(0,10000))	///
prior(y:var, igamma(.01,.01))	///
block(y:var)	///
blocksummary dots	

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point mode Gibbs sampling

Summary

References

Example 2: Random effects probit model

```
. bayes , nodots rseed(123) thinning(5) blocksummary:
    meprobit y x1 x2 x3 || id:
```

note: discarding every 4 sample observations; using observations 1,6,11,... Burn-in ... Simulation ...

Multilevel structure

id

{U0}: random intercepts

Model summary

Likelihood:

y _ meprobit(xb_y)

Priors:

```
{y:x1 x2 x3 _cons} _ normal(0,10000) (1)
{U0} _ normal(0,{U0:sigma2}) (1)
```

Hyperprior:

{U0:sigma2} _ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_y.

Block summary

1: {y:x1 x2 x3 _cons} 2: {U0:sigma2} 3: {U0[id]:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 > 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 > 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100}

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 回 > <

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph

3- Change point model Gibbs sampling

Summary

References

Example 2: Random effects probit model

. bayes , nodots rseed(123) thinning(5) blocksummary: meprobit y x1 x2 x3 || id:

Bayesian multilevel probit regression Random-walk Metropolis-Hastings sampling Group variable: id	MCMC iterations Burn-in MCMC sample size Number of groups	= = =	52,496 2,500 10,000 100
	Obs per group:		
	min	=	5
	avg	=	5.0
	max	=	5
Family : Bernoulli	Number of obs	=	500
Link : probit	Acceptance rate	=	.3268
	Efficiency: min	=	.05399
	avg	=	.102
Log marginal likelihood	max	=	.1628

						Equal-	tailed
		Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
У							
	x 1	. 9977099	.1181726	.003773	.9936143	.7810441	1.242439
	x 2	-1.018063	.1892596	.00557	-1.012598	-1.396798	6509636
	x 3	.9539304	.2936949	.007279	.9514395	.3823801	1.52913
	_cons	. 5433822	.2205077	.00949	. 5398387	.1216346	.9847166
id							
	U0:sigma2	1.456558	.4384163	.015537	1.401461	.7611919	2.463175

Note: Default priors are used for model parameters.

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probi

bayesgraph bayestest interva

3- Change point model Gibbs sampling

Summary

References

Example 2: bayesgraph diagnostic

• We can look at the diagnostic graph for a couple of variables:

. bayesgraph diagnostic {y:x1}

- The trace seems to indicate convergence this time.
- Autocorrelation decays quicker and becomes negligible after about 15 periods.

・ロット (雪) (日) (日)

ъ

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probi

bayesgraph bayestest interv

- 3- Change point model Gibbs sampling
- Summary
- References

Example 2: bayesgraph diagnostic

• We now look now at the diagnostic graphs for {U0:sigma2}

. bayesgraph diagnostic U0:sigma2

- The trace seems to indicate convergence this time.
- Autocorrelation decays quicker and becomes negligible after about 15 periods.

・ロット (雪) (日) (日)

ъ

Outline

- The genera idea
- The Method
- Fundamental equation MCMC
- Stata tools
- bayes: bayesm Postestimation
- Examples
- 1 Linear regression bayesstats ess bayesgraph thinning() bayestestmodel
- 2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

- Summary
- References

Example 2: bayestest interval

- We can perform interval testing with the postestimation command bayestest interval.
- It estimates the probability that a model parameter lies in a particular interval.
- For continuous parameters the hypothesis is formulated in terms of intervals.
- We can perform point hypothesis testing only for parameters with discrete posterior distributions.
- bayestest interval estimates the posterior distribution for a null interval hypothesis.
- bayestest interval reports the estimated posterior mean probability for Ho.

bayestest interval ({y:x1},lower(.9) upper(1.02)) /// ({y:x2},lower(-1.1) upper(-.8))

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 2: bayestest interval

• We can, for example, perform separate tests for different parameters:

I	Mean	Std. Dev.	MCSE
prob1	.3888	0.48750	.0077073
prob2	.5474	0.49777	.0097517

We can also perform a joint test:

. bayeste	st inter	<pre>val (({y:x1},</pre>	lower(.9)	upper(1.02)) ///	/
>		({y:x2},lower	(-1.1) up	per(8)),joint)	
Interval	tests	MCMC sample	size =	10,000	
prob1	: .9 < {	y:x1 < 1.02,	$-1.1 < \{$	y:x2} < −.8	

Mean	Std. Dev.	MCSE
	0.41754	.0066399

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

```
References
```

Example 2: bayestest interval

• We can, for example, perform separate tests for different parameters:

	Mean	Std. Dev.	MCSE
prob1	. 3888	0.48750	.0077073
prob2	. 5474	0.49777	.0097517

We can also perform a joint test:

. bayest	est inter	<pre>rval (({y:x1}</pre>	},lower(.9)	upper(1.02))	///
>		({y:x2},lowe	er(-1.1) up	per(8)), <mark>joi</mark> :	nt)
Interval	tests	MCMC sampl	le size =	10,000	
prob1	: .9 < {	$\{y:x1\} < 1.02$	$2, -1.1 < {$	y:x2} < −.8	

		Mean	Std. Dev.	MCSE
prob1	I	. 2249	0.41754	.0066399

A D F A 同 F A E F A E F A Q A

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model

Summary

References

Example 3: Change-point model

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

- 1 Linear regression bayesstats ess bayesgraph thinning() bayestestmodel
- 2- Random effects probit bayesgraph bayestest interval

3- Change point model

Gibbs sampling

- Summary
- References

Example 3: Change-point model

- Let's work now with an example where we write our model using a substitutable expression.
- We have yearly data on fertility for Spain:

・ロット (雪) ・ (日) ・ (日)

э

- The series has a significant change around 1980.
- We may consider fitting a change-point model.

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

Change point model specification with blocking

payesmh fertil = ({mu1}*sign(year<{cp})	
+ {mu2}*sign(year>={cp})),	
likelihood(normal({var}))	///
<pre>prior({mu1}, normal(1,5))</pre>	///
prior({mu2}, normal(5,5))	///
prior({cp}, uniform(1960,2015))	///
prior({var}, igamma(2,1))	///
initial({mu1} 5 {mu2} 1 {cp} 1960)	///
rseed(123) mcmcsize(40000)	
dots(500,every(5000))	
title(Change-point analysis)	

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

Change point model specification with blocking

bayesmh fertil = ({mu1}*sign(year<{cp})	
+ {mu2}*sign(year>={cp})),	///
likelihood(normal({var}))	///
prior({mu1}, normal(1,5))	///
prior({mu2}, normal(5,5))	///
prior({cp}, uniform(1960,2015))	///
prior({var}, igamma(2,1))	///
initial({mu1} 5 {mu2} 1 {cp} 1960)	///
block(var, gibbs) block(cp) blocksummary	///
rseed(123) mcmcsize(40000)	///
dots(500,every(5000))	///
title(Change-point analysis)	

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

```
References
```

Example 3: Gibbs sampling

Change point model specification with blocking

	bayesmh	<pre>fertil=({mu1}*sign(year<{cp})+{mu2}*sign(year>={cp})), //</pre>				
>		<pre>likelihood(normal({var}))</pre>	111			
>		<pre>prior({mu1}, normal(0,5))</pre>	111			
>		<pre>prior({mu2}, normal(5,5))</pre>	111			
>		<pre>prior({cp}, uniform(1960,2015))</pre>	111			
>		<pre>prior({var}, igamma(2,1))</pre>	111			
>		initial({mu1} 5 {mu2} 1 {cp} 1960)	111			
>		block(var, gibbs) block(cp) blocksummary	111			
>		<pre>rseed(123) mcmcsize(40000) dots(500, every(5000))</pre>	111			
>		title (Modelo de Cambio de Punto)				

Burn-in 2500 aaaaa done

Si	mulation	40000	 10000	15000	20000
>		25000	 35000	40000 doi	ıe

Model summary

Likelihood:

```
fertility ~ normal({mul}*sign(year<{cp})+{mu2}*sign(year>={cp}), {var})
Priors:
{var} ~ igamma(2,1)
{mul} ~ normal(0,5)
{mul} ~ normal(5,5)
{cp} ~ uniform(1960,2015)
```

Block summary

1:	{var}	(Gibbs)
2:	{cp}	
3:	{mu1} {mu2}	

・ロト・日本・日本・日本・日本・日本

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

Change point model specification with blocking

. bayesmh	<pre>fertil=({mu1}*sign(year<{cp})+{mu2}*sign</pre>	gn(year>={cp})),	111	
>	<pre>likelihood(normal({var}))</pre>		111	
>	<pre>prior({mu1}, normal(0,5))</pre>		111	
>	<pre>prior({mu2}, normal(5,5))</pre>		111	
>	<pre>prior({cp}, uniform(1960,2015))</pre>		///	
>	<pre>prior({var}, igamma(2,1))</pre>		111	
>	initial({mu1} 5 {mu2} 1 {cp} 1960)		111	
>	<pre>block(var, gibbs) block(cp) blocksumma</pre>	ry	111	
>	rseed(123) mcmcsize(40000) dots(500, e	very(5000))	111	
>	title(Modelo de Cambio de Punto)			
Modelo de	Cambio de Punto	MCMC iterations	=	42,500
Metropoli	s-Hastings and Gibbs sampling	Burn-in	=	2,500
		MCMC sample size		40,000
		Number of obs	=	56
		Acceptance rate	=	.5704
		Efficiency: min	. =	.08572
		avg	r =	.2629
Log margi	nal likelihood = -16.240692	max	. =	.7203

					Equal-tailed		
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]	
ср	1980.87	.7407595	.010454	1980.772	1979.439	1982.517	
mu1	2.771024	.0654542	.001118	2.770196	2.64247	2.897339	
mu2	1.376056	.0489823	.000706	1.375648	1.281815	1.472107	
var	.078699	.0152773	.00009	.0768054	.0541305	.1136579	

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 3: bayesgraph trace

Use bayesgraph trace to look at the trace for all the parameters.

. bayesgraph trace

The plots indicate that convergence seems to be achieved.

(日)

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Example 3: bayesgraph ac

Use bayesgraph ac to look at the autocorrelation for all the parameters.

. bayesgraph ac

 Autocorrelation decays and becomes negligible quickly for almost all the parameters.

(日)

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Summing up

- Bayesian analysis: An statistical approach that can be used to answer questions about unknown parameters in terms of probability statements.
- It can be used when we have prior information on the distribution of the parameters involved in the model.
- Alternative approach or complementary approach to classic/frequentist approach?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

The genera idea

The Method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Linear regression bayesstats ess bayesgraph thinning() bayestestmodel

2- Random effects probit bayesgraph bayestest interval

3- Change point model Gibbs sampling

Summary

References

Reference

Cameron, A. and Trivedi, P. 2005. *Microeconometric Methods and Applications*. Cambridge University Press, Section 13.2.2, 422—423.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@