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Cross-validation

@ Cross-validation is a model validation technique for assessing
how the results of a statistical analysis will generalize to an

independent data set.
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Cross-validation

@ Cross-validation is a model validation technique for assessing
how the results of a statistical analysis will generalize to an

independent data set.

@ It is mainly used in settings where the goal is prediction, and one
wants to estimate how accurately a predictive model will perform
in practice (note: performance = model assessment).
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Cross-validation

Applications

@ However, cross-validation can be used to compare the
performance of different modeling specifications (i.e. models with
and without interactions, inclusion of exclusion of polynomial
terms, number of knots with restricted cubic splines, etc).
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Cross-validation

Applications

@ However, cross-validation can be used to compare the
performance of different modeling specifications (i.e. models with
and without interactions, inclusion of exclusion of polynomial
terms, number of knots with restricted cubic splines, etc).

@ Furthermore, cross-validation can be used in variable selection
and select the suitable level of flexibility in the model (note:
flexibility = model selection).
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Cross-validation

Applications
@ MODEL ASSESSMENT: To compare the performance of different
modeling specifications.

@ MODEL SELECTION: To select the suitable level of flexibility in
the model.
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MSE

Regression Model

f(x) = f(x1 + X2 + Xx3)
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MSE

Expectation

E(Y[X) = x1, X2 = X2, X3 = X3)
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MSE

Expectation

E(Y[X) = x1, X2 = X2, X3 = X3)

E[(Y — F(X))?IX = x]
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Bias-Variance Trade-off

Error descomposition

MSE = E[(Y —#(X))?|X = x] = Var(f(x0)) + [Bias(F(xo))]? + Var(e)

Trade-off

As flexibility of f increases, its variance increases, and its bias
decreases.
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BIAS-VARIANCE-TRADE-OFF

Bias-variance trade-off
Choosing the model flexibility based on average test error
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BIAS-VARIANCE-TRADE-OFF

Bias-variance trade-off
Choosing the model flexibility based on average test error

Average Test Error

E[(Y = (X)X = x]

And thus, this amounts to a bias-variance trade-off.
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BIAS-VARIANCE-TRADE-OFF

Bias-variance trade-off
Choosing the model flexibility based on average test error

Average Test Error

E[(Y = (X)X = x]

And thus, this amounts to a bias-variance trade-off.

@ More flexibility increases variance but decreases bias.
@ Less flexibility decreases variance but increases error.
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Bias-Variance trade-off

Regression Function
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Overparameterization

George E.P.Box,(1919-2013)
All models are wrong but some are useful
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Overparameterization

George E.P.Box,(1919-2013)
All models are wrong but some are useful

Quote, 1976

Since all models are wrong the scientist cannot obtain a "correct" one
by excessive elaboration (...). Just as the ability to devise simple but
evocative models is the signature of the great scientist so
overelaboration and overparameterization is often the mark of
mediocrity.
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Justification

@ AIC and BIC are both maximum likelihood estimate driven and
penalize free parameters in an effort to combat overfitting, they do
so in ways that result in significantly different behavior.
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so in ways that result in significantly different behavior.

@ AIC = -2%In(likelihood) + 2*k, k = model degrees of freedom

@ BIC = -2%In(likelihood) + In(N)*k, k = model degrees of freedom
and N = number of observations.
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Justification

@ AIC and BIC are both maximum likelihood estimate driven and
penalize free parameters in an effort to combat overfitting, they do
so in ways that result in significantly different behavior.

@ AIC = -2%In(likelihood) + 2*k, k = model degrees of freedom

@ BIC = -2%In(likelihood) + In(N)*k, k = model degrees of freedom
and N = number of observations.

@ There is some disagreement over the use of AIC and BIC with
non-nested models.
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Justification

Fewer assumptions

@ Cross-validation compared with AIC, BIC and adjusted R?
provides a direct estimate of the ERROR.
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Justification

Fewer assumptions

@ Cross-validation compared with AIC, BIC and adjusted R?
provides a direct estimate of the ERROR.

@ Cross-validation makes fewer assumptions about the true
underlying model.

@ Cross-validation can be used in a wider range of model selections
tasks, even in cases where it is hard to pinpoint the number of
predictors in the model.
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Cross-validation strategies

Cross-validation options
@ Leave-one-out cross-validation (LOOCV).
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@ Leave-one-out cross-validation (LOOCV).
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Cross-validation strategies

Cross-validation options
@ Leave-one-out cross-validation (LOOCV).
@ k-fold cross validation.

@ Bootstraping.
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K-fold Cross-validation

K-fold

@ Technique widely used for estimating the test error.
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K-fold Cross-validation

K-fold

@ Technique widely used for estimating the test error.

@ Estimates can be used to select the best model, and to give an
idea of the test error of the final chosen model.
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K-fold Cross-validation

K-fold

@ Technique widely used for estimating the test error.

@ Estimates can be used to select the best model, and to give an
idea of the test error of the final chosen model.

@ The idea is to randmoly divide the data into k equal-sized parts.
We leave out part k, fit the model to the other k-1 parts
(combined), and then obtain predictions for the left-out kth part.

v

MA Luque Fernandez (ibs.GRANADA) 24 October 2018 15/28



K-fold Cross-validation

K-fold

k
cv = 3 wmse
k—1
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K-fold Cross-validation

K-fold

k
cv = 3 wmse
k—1

MSEx = > (v — 7))/

i€Cx

Seeting K = n yields n-fold or leave-one-out cross-validation (LOOCV)
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Model performance: Internal Validation (AUC)

AUC

@ The AUC is a global summary measure of a diagnostic test
accuracy and discrimination. The greater the AUC, the more
able is the test to capture the trade-off between Se and Sp over a
continuous range.
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AUC

@ The AUC is a global summary measure of a diagnostic test
accuracy and discrimination. The greater the AUC, the more
able is the test to capture the trade-off between Se and Sp over a
continuous range.

@ An important aspect of predictive modeling is the ability of a model
to generalize to new cases.
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Predictive performance: internal validation

AUC

@ Evaluating the predictive performance (AUC) of a set of
independent variables using all cases from the original analysis
sample tends to result in an overly optimistic estimate of predictive
performance.
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Predictive performance: internal validation

AUC
@ Evaluating the predictive performance (AUC) of a set of
independent variables using all cases from the original analysis
sample tends to result in an overly optimistic estimate of predictive
performance.

@ K-fold cross-validation can be used to generate a more realistic
estimate of predictive performance when the number of
observations is not very large (Ledell, 2015).
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CVAUROC

cvauroc implements k-fold cross-validation for the AUC for a binary
outcome after fitting a logistic regression model and provides the
cross-validated fitted probabilities for the dependent variable or
outcome, contained in a new variable named fit.
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CVAUROC

cvauroc implements k-fold cross-validation for the AUC for a binary
outcome after fitting a logistic regression model and provides the
cross-validated fitted probabilities for the dependent variable or
outcome, contained in a new variable named fit.

GitHub cvauroc development version
https://github.com/migariane/cvAUROC
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CVAUROC

cvauroc implements k-fold cross-validation for the AUC for a binary
outcome after fitting a logistic regression model and provides the
cross-validated fitted probabilities for the dependent variable or
outcome, contained in a new variable named fit.

GitHub cvauroc development version
https://github.com/migariane/cvAUROC

Stata ssc J

ssc install cvAUROC
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CVAUROC
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cvauroc Stata command syntax

cvauroc Syntax

cvauroc depvar varlist [if] [pw] [Kfold] [Seed] [, Cluster(varname) Detail
Graph]
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Classical AUC estimation

. use http://www.stata-press.com/data/r14/cattaneo2.dta

. gen lbw =

cond (bweight<2500,1,0.)
. logistic lbw mage medu mmarried prenatal fedu mbsmoke mrace order
Logistic regression

mage
medu
mmarried
prenatal
fedu
mbsmoke
mrace
order

.9959165
.9451338
.6109995
.5886787
1.040936
2.145619
.3789501

1.05529

.0140441
.0283732
.1014788

.073186
.0214226
.3055361

.057913
.0605811

. predict fitted, pr
. roctab lbw fitted

329
.88
.97
.26
.95
.36
.35
.94

Number of obs = 4,642
P>|z]| [95% Conf. Intervall]
0.772 .9687674 1.023826
0.060 .8911276 1.002413
0.003 .4412328 .8460849
0.000 .4613759 .7511069
0.051 .9997838 1.083782
0.000 1.623086 2.836376
0.000 .2808648 .5112895
0.349 .9429895 1.180964

-Asymptotic Normal-

[95% Conf.

0.66041

Interval]

0.72749

24 October 2018

21/28



Crossvalidated AUC using cvauroc

. cvauroc lbw mage medu mmarried prenatal fedu mbsmoke mrace order,
kfold(10) seed(12)

ROC -Asymptotic Normal-
Obs Area Std. Err. [95% Conf. Intervall

4,642 0.6826 0.0174 0.64842 0.71668

Fernandez (ibs.GRANADA) 24 October 2018



cvauroc detail and graph options

// Using detail option to show the table of cutoff values and their respective Se
// and likelihood ratio values.

. cvAUROC lbw mage medu mmarried prenatall fedu mbsmoke mrace fbaby,

kfold(10) seed(3489) detail

Detailed report of sensitivity and specificity

Correctly

Cutpoint Sensitivity Specificity Classified LR+ LR-
(>= .019 ) 100.00% 0.00% 6.01% 1.0000

(>= .025 ) 99.647, 0.18% 6.16% 0.9982 1.9547
(>= .026 ) 99.64Y 0.39% 6.36% 1.0003 0.9199
(...) Omitted results

(>= .272 ) 1.08% 99.93Y% 93.99% 15.6389 0.9899
(>= .273) 0.72% 99.93%, 93.97% 10.4259 0.9935
( >= .300 ) 0.36% 99.95% 93.97% 7.8181 0.9969

// Using the "graph" option to display the ROC curve

. cvAUROC lbw mage medu mmarried prenatall fedu mbsmoke mrace fbaby,
kfold(10) seed(3489) graph

. graph export "your_path/Figurel.eps", as(eps) preview(off)
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cvauroc: Cross-validated AUC
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Conclusion

@ Evaluating the predictive performance of a set of independent
variables using all cases from the original analysis sample tends
to result in an overly optimistic estimate of predictive performance.
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reporting the AUC in observational studies.
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