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Outline

• Brief intro to Propensity Score Matching (PSM) for 

estimation of causal effects in observational studies

• PSM with clustered (multilevel, hierarchical) data

• PSM in Stata

– Available routines

– How to implement PSM with clustered data

Do-file and dataset to replicate the analyses in these slides can be 

found at: https://sites.google.com/site/brunoarpino/software

https://sites.google.com/site/brunoarpino/software
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Motivating case study (1/3)

• Goal: estimating the causal effect of doing homeworks on 

mathematical proficiency

• We use a subset of the National Education Longitudinal 

Study of 1988 (NELS-88), a nationally representative, 

longitudinal study of 8th graders in 1988 in the US 

• Our data is a subsample of the original full NELS-88 

dataset provided by Kraft and de Leeuw (1998)
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Motivating case study (2/3)

• Treatment: T = 1 for students that spend at least 1 hour 

doing math homeworks per week; 0 otherwise

• Outcome: Y, is the score on a math test

• The dataset contains 260 students from 10 schools and 

several potential confounders on both students (X) and 

schools (Z)
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Motivating case study (3/3)

• Selection mechanism: what are the factors influencing 

time spent doing homework (that may also influence math 

proficiency)? For the sake of illustration we only consider:

• Individual-level: ses (a standardised continuous measure 

of family socio-economic status), male (1 = male; 0 = 

female) and white (1 = white; 0 = other race)

• School-level: public (1 = public schools; 0 = private)
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Potential outcome framework

• Let T be the binary treatment indicator: 

= 1 at least 1 hour doing math homeworks per week;

= 0 otherwise

• Let Y(1) and Y(0) denote the potential outcomes, i.e. math 

score we would observe if students were assigned to the 

treatment or control group, respectively

• Causal estimand of interest: ATT = E[Y(1) - Y(0) | T = 1]

• Y(0) is always unobserved for treated students (T = 1)
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Propensity score (PS) methods

• Identifying assumptions:

– Y(1), Y(0) ⊥ T  |  X, Z (unconfoundedness)

– 0 < P (T=1| X, Z) < 1 (overlap)

• PS: e(X) ≡ Pr{T = 1|X, Z} = E{T|X, Z}.

• Rosenbaum and Rubin (1983):

– the propensity score is a balancing score, i.e., X, Z ⊥T | e(X, Z)

– if unconfoundedness holds, then Y(1), Y(0) ⊥ T | e(X, Z)

• These results justify matching / stratification / weighting on 

e(X, Z) instead than on (X, Z)
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PSM as a two-step procedure

• Design phase: match similar treated and control 

individuals to make them as similar as possible in terms of 

(X, Z)

• Outcome phase: estimate causal effects on the matched 

data

• It reduces model dependence (extrapolation; Drake, 1993)

• It increses objective causal inference (Rubin, 2008)

• Matching as a data pre-processing (Ho et al., 2007)
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Clustered data structures

• Very common in many fields (patients into hospitals, 

individuals into geographical areas, students into schools)

• Few methodological and applied works exist in the case of 

clustered data

• In clustered data bias can arise from omitted individual 

and/or cluster-level confounders

• How should we apply PS methods to these data?

• How can we exploit knowledge on clusters’ 

memberships?
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Existing studies with clustered data

• Arpino and Mealli (2011) 

– Show the benefit of using random or fixed effects models for the 

estimation of the propensity score to reduce the bias due to 

unmeasured cluster-level variables in PS matching (PSM)

– Focus on high number of small clusters

• Thoemmes and West (2011) and Li et al (2013) 

considered stratification and re-weighting using PS, 

respectively
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Arpino and Cannas (2016)

• Unbalanced data structure with both big and small 

clusters

• We compare different approaches:

• R package: CMatching

Approaches PS model Matching

Naïve (NV) Single-level logit Pooled

Within (W) Single-level logit Within-cluster

Preferential (PW) Single-level logit “Preferential” within-cluster

Random-effects (RE) Random-effect logit Pooled 

Fixed-effects (RE) Fixed-effect logit Pooled
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«Naïve» approach

• It ignores the clustered structure in both PS estimation: 

• and matching

• We use one-to-one nearest neighbor matching within a 

caliper of 0.25 standard deviations of the estimated PS 

(with replacement)
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Estimating the ATT

• The matched dataset is built as the subset of treated and 

control units that have been matched:

• and the ATT is estimated on this set using:
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«Within» approach

• Uses the same PS model than method A (2) but adjusts for 

clustering in the implementation of the matching that is 

forced to be within-cluster:

• Automatically guarantees that all cluster-level variables are 

perfectly balanced. But, balance of individual-level variables 

could be worse than with the “Naïve” approach. Also the no. 

of unmatched units will be higher.
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«Preferential» approach

• Tries to combine the benefits of the previous two 

approaches (“Naïve” and “Within”).

• Starts by searching control units within-cluster (according to 

(5)). If none is found, control units are searched in other 

clusters (according to (2)). 

• It is expected to improve the balancing of cluster-level 

variables with respect to the “Naïve” approach and reduces 

the loss of units compared to the “Within” approach.
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«Random-effects» and «Fixed-

effects» approaches

• They keep clustering into account in the estimation of the 

propensity score:

by estimating cluster-specific random or fixed intercepts, 

respectively (Arpino and Mealli, 2011).

(6)      )(logit  ijjij Xe +=
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Simulation results (1/2)
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Simulation results (2/2)

Note: βZ, overall sampe size, etc. are kept fixed. Z is unobserved.
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• psmatch2 (Leuven and Sianesi 2003)

– PSM and covariate matching

– severalalgorithms (nn and caliper matching (with and w/o replacement), 
kernel, radius, local linear matching

– common support plots (psgraph) and covariate imbalance testing 
(pstest)

– standard errors obtained using bootstrap methods or variance 
approximation

• nnmatch (Abadie, Drukker, Herr, and Imbens 2004)

– nearest neighbour matching with different distance metrics (replacement 
allowed)

– allows exact matching (or as close as possible) on a subset of variables

– allows for bias correction

– sample or population variance, with or w/o assuming a constant 
treatment effects

Implementing matching in Stata
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• teffects (built-in)

– PSM (some of the features of psmatch2). It does not offer balance checks 

– covariate matching (nnmatch)

– it calculates standard errors that take into account that propensity scores are 

estimated. Theoretical results for clustered data are not yet available

• kmatch (Jann, 2017)

– PSM and covariate matching (nn, kernel, ridge)

– several options for optimal bandwidth selection; exact matching; bias adjustment

– tools for common support and balance diagnostics

• cem (Iacus, King and Porro 2008)

– coarsened exact matching

• There is no command designed specifically for clustered data

Implementing matching in Stata
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PSM in Stata with clustered data

Approaches PS model Matching

Naïve (NV) Single-level logit

(logit)

Pooled

(psmatch2; nnmatch)

Within (W) Single-level logit

(logit)

Within-cluster

(cycle on psmatch2;

nnmatch with exact option)

Preferential (PW) Single-level logit

(logit)

“Preferential” within-cluster

(ad hoc procedure based on 

psmatch2 or nnmatch)

Random-effects (RE) Random-effect logit

(e.g., xtmelogit)

Pooled

(psmatch2; nnmatch)

Fixed-effects (RE) Fixed-effect logit

(e.g., logit + 

clusters' dummies)

Pooled

(psmatch2; nnmatch)

Outcome analysis should account for clustering (robust se)
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Case study: naive PSM
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Case study: naive PSM
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Case study: naive PSM
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Case study: naive PSM
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Case study: within PSM
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Case study: within PSM
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Case study: within PSM

key advantage 

of within 

matching! 

(%bias = 0)
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Comparing balance: 

naive vs within PSM

naive within
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Case study: within PSM

                                                                

    72292                  0                 9                 0

    68493                  0                 6                 0

    68448                  5                13          .3846154

    62821                  2                52          .0384615

    25642                  0                 4                 0

    25456                  0                 5                 0

    24725                  0                 7                 0

     7930                  0                12                 0

     7829                  2                14          .1428571

     7472                  0                 6                 0

                                                                

School ID   rawsum(unmatc~d)          N(treat)    mean(unmatc~d)

                                                                

. table schid if treat==1, c(rawsum unmatched n treat mean unmatched)
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Case study: preferential within PSM
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Case study: preferential within PSM
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Comparing balance: within vs 

preferential within PSM

                                                                              

public                    .59375   .60938     -3.5    -0.25  0.799       .

white                     .73438   .69531      8.8     0.69  0.491       .

male                      .47656   .41406     12.5     1.00  0.316       .

ses                       .23211   .15266      8.3     0.65  0.516    1.02

                                                                              

Variable                  Treated Control    %bias      t    p>|t|    V(C)

                                Mean                     t-test       V(T)/

                                                                              

(71 missing values generated)

. pstest ses male white public if weight_pw!=., treated(treat) mweight(weight_pw) raw graph

. * Balance after matching

preferentialwithin
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Case study: preferential within PSM

                                                                

    72292                  0                 9                 0

    68493                  0                 6                 0

    68448                  0                13                 0

    62821                  0                52                 0

    25642                  0                 4                 0

    25456                  0                 5                 0

    24725                  0                 7                 0

     7930                  0                12                 0

     7829                  0                14                 0

     7472                  0                 6                 0

                                                                

School ID   rawsum(unmatc~w)          N(treat)    mean(unmatc~w)

                                                                

. table schid if treat==1, c(rawsum unmatched_pw n treat mean unmatched_pw)
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Concluding remarks

• In the presence of clustered data several approaches can be 

followed to implement PSM

• “Within” matching works well with big clusters

• “Preferential” within matching is an attractive alternative 

when all or some clusters are small

• Available routines in Stata can be adapted to clustered data

• Future developments:

– Standard errors accounting for estimation of PS (as in teffects 

psmatch2)

– Within-cluster balance
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