

CENTRO NACIONAL DE EPIDEMIOLOGÍA

Dealing with missing data in practice: Methods, applications, and implications for HIV cohort studies

What is Missing or Incomplete data?

What is Missing or Incomplete data?

Missing or Incomplete data

Data that were intended to collect on observations but that due to different reasons were not collected

V1	V2	V3	V4
Х		Х	Х
Х	Х	Х	
Х	Х		Х
Х	Х	Х	

Do I need to be worried about missing data?

Importance and consequences

No universal rule to indicate **the proportion** of missing data producing **bias** or to **invalid** results

The **success** of a statistical analysis in the presence of missing data will depend on the reasons why data are missing (**missing data mechanisms**)

Which Missing data mechanisms are there?

Which Missing data mechanisms are there?

Missing Completly At Random (MCAR)

- Missing At Random (MAR)
- Missing Not At Random (MNAR)

Missing data mechanisms

Missing completely at random (MCAR)

There is no relationship between whether an observation is missing and the unseen value nor to any values (observed or missing)

P(R|Y) = P(R)

Missing at random (MAR)

There is no relationship between whether an observation is missing and the unseen value, but it is related to some of the observed data

 $P(R|Y) = P(R|Y_{obs})$

Missing not at random (MNAR)

Whether an observation is missing depends on the unseen value itself

R=missing data point ; Y=Variables

Methods to deal with missing data

If it is not possible to get the original value

... it is necessary to face the problem with statistical techniques

Methods to deal with missing data

Ad-hoc or conventional

Complete- Case (CC) Indicator Method (IM) Simple mean or regression mean imputation

Stochastic regression imputation

- Easy implementation
- No specific software
- Not based on statistical principles
- Might produce biased results and loss of power

Ad-hoc or conventional

Complete- Case (CC) Indicator Method (IM)

Simple mean or regression mean imputation Stochastic regression imputation

Advanced or complex

Multiple Imputation by Chained Equations (MICE) Maximum likelihood estimation Bayesian Methods Inverse Probability weighting

- Easy implementation
- No specific software
- Not based on statistical principles
- Might produce biased results and loss of power

- Maximize use of available information
- More precise results (higher statistical power)
- Depend on missing data mechanism
- Some not implemented in statistical software

Methods to deal with missing data

Ad-hoc or conventional

Complete- Case (CC) Indicator Method (IM)

Simple mean or regression mean imputation Stochastic regression imputation

Advanced or complex

Multiple Imputation by Chained Equations (MICE) Maximum likelihood estimation Bayesian Methods Inverse Probability weighting

- Easy implementation
- No specific software
- Not based on statistical principles
- Might produce biased results and loss of power

- Maximize use of available information
- More precise results (higher statistical power)
- Depend on missing data mechanism
- Some not implemented in statistical software

Consists of restricting the statistical analyses to the cases with complete information for all the variables in the model

	Ori	ginal	
ID	Outcome	Variable	Complete- Case
1	5	4	Yes
2 _	<u> </u>		No
3 -		2	No No
4 -	3		No
5	4	5	Yes

	Comp	lete-cases	
ID	Outcome	Variable	Complete-
			Case
1	5	4	Yes
5	4	5	Yes

Creates an extra category for missing values in each incomplete, independent and categorical variable and therefore all the observations are included in the analyses

	Orig	ginal			Indicate	or Method	
ID	Outcome	Variable	Complete-	ID	Outcome	Variable	Complete-
			Case				Case
1	5	0	1	1	5	0	1
2	4	\bigcirc	0	2	4	9	0
3	4	1	1	3	4	1	1
4	3	\bigcirc	0	4	3	9	0
5	4	1	1	5	4	1	1

The information collected in the sample is used to assign one value to those variables with missing values

×,

Simple imputation methods

Simple mean imputation

replaces each missing observation by the completers mean

Regression mean imputation

replaces each missing observation with the predicted values from a regression model

Random or stochastic regression imputation

to create an imputed value, an appropriate random residual is added to the value predicted using regression mean imputation.

Si

Simple imputation methods

Simple mean imputation replaces each missing observation by the completers mean

Regression mean imputation

replaces each missing observation with the predicted values from a regression model

Random or stochastic regression imputation

to create an imputed value, an appropriate random residual is added to the value predicted using regression mean imputation.

Simple imputation methods

PROBLEM:

- Underestimated variances

SOLUTION: Multiple Imputation

Multiple Imputation by Chained Equations (MICE)

Multiple Imputation by Chained Equations (MICE)

âD

Missing values in X_1 , X_2 , X_3

Multiple Imputation: The complete process is repeated *m* times

Maximum likelihood estimation

models simultaneously the outcome and the reason why data are missing

Bayesian methods

estimate a statistical model for full data (including missingness mechanism and the outcome)

Inverse Probability Weighting

calculates the predicted probability for certain variable to be observed of each patient and use these weights in the outcome model

Different Approaches to Account for Missing Data in a Cohort of HIV-Positive Patients

To compare three different methods to deal with missing data in both outcome (cause of death) and covariates in a cohort of HIV-Positive patients (CoRIS)

- CoRIS (N=10,469)
- Cancer mortality

Poisson regression mortality rates and rate ratios for the effect of Hepatitis C Virus coinfection

- Complete-case
- Indicator- Method
- MICE

Missing data Summary

e sex						Obs<.
				+		
Variable	Obs=.	Obs>.	Obs<.	values	Min	Mas
CD4 6M	787		9,682	+ >500	0	8246
	823		9,646	>500	0	6.54e+0
EDUCATION	1,371		9,098	1 4	0	
HIV RISK	246		10,223	14		
ORIGEN	220		10,249	4	0	
HCV 6M	1,103		9,366	2	0	1
CoD	49		10,420	1 6	0	

Variables: AIDS survtime age sex are complete

. misstable patt survtime age sea	tern k, f	ls C reg	:D4_ [6М	VL_6M	ED	UCAI	ION	HIV	_risf	CORIGIN	HCV_6M	CoD	AIDS_	6
Missing-value pa (1 means complet	atte ce)	rns													
	P	att	ern	L											
Frequency	1	2	3	4	5	6	7								
7,382 (71%)	1	1	1	1	1	1	1								
889	1	1	1	1	1	1	0								
699	1	1	1	1	1	0	1								
434	1	1	1	0	0	1	1								
166	1	1	1	1	1	0	0								
117	1	1	0	1	1	1	1								
Variables are HCV_6M (7) EDUCA	(1) ATIO	Co N	D	(2)	orig	ən	(3)	ΗI	V_RI	SK	(4) CD4_	6M (5)	VL_(6M (6))

Complete-Cases

. use mortality data, clear

mi set flong

mi unset

mi register imputed CD4 6M VL 6M HIV RISK origin CoD EDUCATION HCV 6M

keep if mi miss==0

. stset survtime, fail(CoD==2) scale(365.25) . strate , per(1000)

Estimated rates (per 1000) and lower/upper bounds of 95% confidence intervals (7384 records included in the analysis)

D Y Rate Lower Upper | **32** 26.6981 1.19859 0.84761 1.69489

 \cdot gen tpo = t- t0

. poisson d i.HCV 6M , exp(tpo) irr

Poisson	regressior	ı			Number of ob	s =	7,384
					LR chi2(1)	=	10.70
					Prob > chi2	=	0.0011
Log lik	elihood = -	219.82597			Pseudo R2	=	0.0238
	d	IRR	Std. Err.	Z	P> z [9	95% Conf.	Interval]
	·····						

HCV_6M						
Positive	3.640965	1.329493	3.54	0.000	1.779925	7.447859
cons	.0008726	.0001951	-31.50	0.000	.0005629	.0013525
ln(tpo)	1	(exposure)				

Indicator method

. use mortality	data, clea:	r					
. recode CD4_6M	VL_6M HIV_I	RISK origin	CoD EDUC	ATION HCV	/_6м (. =9)		
. stset survtim . strate , per(e, fail(CoD 1000)	==2) scale(3	65.25)				
Estimated rates (10469 records	(per 1000) included in	and lower/u the analysi	pper boun s)	nds of 95	5% confidend	ce int	ervals
+	Y Rate	Lower	+ Upper				
 52 37.437	2 1.3890	1.0584 1	 .8228				
+							
. gen tpo =_t . poisson d i.	t0 HCV 6M , exp	o(tpo) irr					
Poisson rogross	- , .			Numbor	of obc		10 460
IOISSON TEGLESS	1011			LR chi2	2(2)	_	9.48
Log likelihood	= -359.94413	L		Prob > Pseudo	chi2 R2	+	0.0087 0.0130
d	IRR	Std. Err.	Z	P> z	[95% Coi	nf. In	terval]
HCV_6M							
Positive	2.792667	.8831188	3.25	0.001	1.502608	8 5	.190303
Unknown	1.622859	.681196	1.15	0.249	.7128344	4 3	.694649
_cons ln(tpo)	.00106 1	.0001935 (exposure)	-37.52	0.000	.0007412	2.	0015161

- Several predictors for the probability of being missing in each covariate
- No evidence against assuming data are MAR

- Multiple imputation model for each variable with missing values including:
- Other incomplete variables (education, mode, origin, CD4, VL, HCV & CoD)
- Complete variables (AIDS at entry, age and sex)
- The outcome (log survival time and CoD)

. use mortality_data, clear . gen lsurvtime=log(survtime)
. mi set flong . mi register imputed CD4_6M VL_6M HIV_RISK origin CoD EDUCATION HCV_6M . mi register regular AIDS_6M lsurvtime TRAN_AGE sex
<pre>. mi impute chained /// (regress, include (i.AIDS_6M c.lsurvtime TRAN_AGE i.sex)) TRAN_CV_6M /// (regress, include (i.AIDS_6M c.lsurvtime TRAN_AGE i.sex)) TRAN_CD4_6M /// (mlogit, include (i.AIDS_6M c.lsurvtime TRAN_AGE i.sex)) origin /// (mlogit, include (i.AIDS_6M c.lsurvtime TRAN_AGE i.sex)) HIV_RISK /// (mlogit, conditional(if exitus==1) include (i.AIDS_6M c.lsurvtime TRAN_AGE i.sex)) CoD /// (ologit, include (i.AIDS_6M c.lsurvtime TRAN_AGE)) EDUCATION /// (logit, include (i.AIDS_6M c.lsurvtime TRAN_AGE i.sex)) HCV_6M /// , add(12) rseed(10) burnin(10) augment savetrace(impstats,replace)</pre>
Conditional models:
CoD: mlogit CoD i.origen i.HIV RISKTRAN CD4 6M TRAN VL 6M i.HCV 6M
i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1)
i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M i.EDUCATION i.AIDS 6M lsurvtime i.sex , augment
i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment HIV_RISK: mlogit HIV RISKi.CoD i.origen TRAN_CD4_6M TRAN_VL_6M i.HCV_6M
i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment HIV_RISK: mlogit HIV_RISKi.CoD i.origen TRAN_CD4_6M TRAN_VL_6M i.HCV_6M i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment
i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment HIV_RISK: mlogit HIV_RISKi.CoD i.origen TRAN_CD4_6M TRAN_VL_6M i.HCV_6M i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment TRAN_CD4_6M: regress TRAN_CD4_6M i.CoD i.origen i.HIV_RISK TRAN_VL_6M i.HCV_6M
<pre>i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M</pre>
<pre>i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M</pre>
<pre>i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M</pre>
<pre>i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M</pre>
<pre>i.EDUCATION i.AIDS_6M lsurvtime i.sex , augment conditional(if exitus==1) origen: mlogit origen i.CoD i.HIV_RISKTRAN_CD4_6M TRAN_VL_6M i.HCV_6M</pre>

, , , , , , , , , , , , , , , , , , , ,			- , <u>-</u> r (-1 <i>"</i> /			
Multiple-imputa	tion estima	tes		Imputat	ions	=	12
oisson regress?	ion			Number o	of obs	=	10,469
				Average	RVI	=	0.1166
				Largest	FMI		0.1062
				DF:	min	=	1,009.20
					avg	=	1,009.20
OF adjustment:	Large sam	ple			max		1,009.20
				F(0,	.)	=	•
Within VCE type	•	OIM		Prob > 1		=	•
cause tumo	 IRR	Std. Err.	t	 P> t	[95% Cc	onf.	Interval]
	.0016503 1	.0002219 (exposure)	-47.64	0.000	.001267	'5	.0021487
. mi estimate ,	irr: poiss	on cause_tum	no i.HCV_(6M, exp(t)	00)		
	IRR	Std. Err.	t	P> t	[95% Cc	onf.	Interval]
cause_tumo							
cause_tumo +- HCV 6M							
cause_tumo +- HCV_6M Positive	2.593291	.7609617	3.25	0.001	1.45744	15	4.61434/
cause_tumo +- HCV_6M Positive cons	2.593291 .0013245	.7609617 .0002133	3.25 -41.15	0.001 0.000	1.45744 .000965	15 57	4.614347

Which is the best method to deal with missing data?

	СС	IM	MICE
Death rate x1000	1.20 (0.84; 1.69)	1.39 (1.06; 1.82)	1.65 (1.26; 2.14)
HCV rate ratio	3.64 (1.78; 7.45)	2.79 (1.50; 5.19)	2.59 (1.46; 4.61)

Is it so easy in practice?

20-answer

Dealing with missing data in practice....

Difficulties with....

Interactions It is not possible to include interactions between variables with missing data in the imputation model	
Interaction II . mi estimate: lincom not working	
. mi stset Not working when the outcome has been imputed	

Conclusions

- STATA provides multiple options to deal with missing data
- In our case-study of an HIV cohort, the application of different methods to deal with missing data in both covariates and cause of death did not produce results that differed to the extent that would vary the fundamental interpretation of the study conclusions
- MICE is a powerful approach. However, it rests on the assumption that incomplete values are Missing At Random

!Muchas gracias!

Thank you very much